Skip to main content
. 2024 Apr 5;13(7):e7140. doi: 10.1002/cam4.7140

TABLE 3.

The latest artificial intelligence‐based methods for reducing the false positive rate.

Year Authors Method/identified features Dataset Quality index Quality index value
2013 Tartar et al. 67 Shape features Dataset from Cerrahpasa Medicine Faculty, Istanbul University Sensitivity 0.896
Specificity 0.875
2014 Teramoto et al. 107 Shape features, intensity Cancer‐screening program at the East Nagoya Imaging Diagnosis Center Sensitivity 0.83
2018 Gong et al. 29 Intensity, shape, texture features LUNA16/ANODE09 Sensitivity 0.8462
2019 Zuo et al. 108 Multi‐resolution features integrated 2D CNN LUNA16 Accuracy 0.9733
2019 Zhou et al. 95 2/3D Models Genesis with encoder‐decoder architecture LUNA16 AUC 0.982
2019 Kim et al. 68 Multi‐scale gradual integration CNN LUNA16 CPM 0.942
2020 Sun et al. 109 S‐transform Dataset from Sichuan Provincial People's Hospital Sensitivity 0.9787
2020 Zuo et al. 69 Multi‐branch 3D CNN LUNA16 CPM 0.83
2020 Masood et al. 70 Multi‐PRN inspired by VGG‐16 LUNA16/LIDC‐IDRI Sensitivity 0.974
2021 Majidpourkhoei et al. 110 CADe/CADx LIDC‐IDRI Accuracy 0.901
Sensitivity 0.841
Specificity 0.917
2021 Yuan et al. 71 MP‐3D‐CNN LUNA16 CPM 0.881
Sensitivity 0.962
2023 Mkindu et al. 111 3D residual CNN with 3D ECA LUNA16 CPM 0.911
Sensitivity 0.9865

Abbreviations: AUC, area under the curve; CNN, convolutional neural network; CPM, competitive performance metrics.