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Abstract 

Background

Active participation of stroke survivors during robot-assisted 
movement therapy is essential for sensorimotor recovery. Robot-
assisted therapy contingent on movement intention is an effective 
way to encourage patients’ active engagement. For severely impaired 
stroke patients with no residual movements, a surface 
electromyogram (EMG) has been shown to be a viable option for 
detecting movement intention. Although numerous algorithms for 
EMG detection exist, the detector with the highest accuracy and 
lowest latency for low signal-to-noise ratio (SNR) remains unknown.

Methods

This study, therefore, investigates the performance of 13 existing EMG 
detection algorithms on simulated low SNR (0dB and -3dB) EMG 
signals generated using three different EMG signal models: Gaussian, 
Laplacian, and biophysical model. The detector performance was 
quantified using the false positive rate (FPR), false negative rate (FNR), 
and detection latency. Any detector that consistently showed FPR and 
FNR of no more than 20%, and latency of no more than 50ms, was 
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considered an appropriate detector for use in robot-assisted therapy.

Results

The results indicate that the Modified Hodges detector – a simplified 
version of the threshold-based Hodges detector introduced in the 
current study – was the most consistent detector across the different 
signal models and SNRs. It consistently performed for ~90% and ~40% 
of the tested trials for 0dB and -3dB SNR, respectively. The two 
statistical detectors (Gaussian and Laplacian Approximate Generalized 
Likelihood Ratio) and the Fuzzy Entropy detectors have a slightly lower 
performance than Modified Hodges.

Conclusions

Overall, the Modified Hodges, Gaussian and Laplacian Approximate 
Generalized Likelihood Ratio, and the Fuzzy Entropy detectors were 
identified as the potential candidates that warrant further 
investigation with real surface EMG data since they had consistent 
detection performance on low SNR EMG data.

Keywords 
EMG detectors, Low SNR EMG, Movement intent detection, EMG-BCI, 
Robot-assisted therapy, Neurorehabilitation
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Introduction
Active patient participation during movement therapy is an essential ingredient for sensorimotor recovery after a stroke.
About 30% of stroke survivors are severely impaired1,2 and require physical assistance to actively engage in movement
training. Robotic assistance can motivate such subjects to attempt and train movements and when it is contingent on the
intention to move it may be an effective way to guide neuroplasticity.3

However, it can be difficult to detect the intention to move in stroke patients with no visible residual movement.
Electroencephalogram (EEG) based brain-computer interface (BCI) has been used to detect movement intention to
trigger robotic movement assistance. There are, however, several drawbacks to EEG-BCI systems. They often exhibit a
poor signal-to-noise ratio, with significant trial-to-trial intra-subject variability.4 EEG-BCI modalities lack task speci-
ficity,5 and their complexity and time-consuming nature make them less suitable for routine clinical use.6

Surface Electromyogram (sEMG) could be a viable alternative to address these drawbacks of the EEG-BCI modality for
robot-assisted therapy. sEMG is a simple, robust, compact modality suitable for routine clinical use. In a recent study, we
identified sEMG as a potential alternative to EEG-BCI to detect movement intention from severely affected stroke
patients without visible residual movement.6 The lack of visible movement in severely affected stroke patients can be
because of co-contraction, increased joint stiffness, etc. Residual EMG could still be present in this patient group if weak
neural commands from the brain can reach the target muscles and elicit muscle activation, which may not be sufficient to
cause visible movements. About 70% (22 out of the 30) of the study participants had residual sEMG in the forearm
muscles that showed a consistent increase in amplitude with wrist/finger movement attempts.

However, our study reported poor agreement between the EEG and sEMGmodalities for detecting movement intention.
The authors suggested that this discrepancy could be because of the simple root mean square detector with temporal
thresholding that was used. This detector may not optimally pick up low SNR sEMG signals6 expected from severe
patients with no visible residual movements.

Numerous sEMG detection algorithms have been proposed for the automatic detection of sEMG onset.7–14 The review
article by Staude et al.7 compared different sEMG detector types to identify the best detectors for detecting sEMG onset.7

However, this work was done on high SNR (3 dB and 6 dB) simulated sEMG signals generated by bandpass-filtering
white Gaussian noise, and it only investigated detectors reported till 2001. Other detectors have been reported in the last
20 years, and a systematic characterization of existing sEMG detector types on low SNR sEMG signals (generated using
different signal models) is lacking. Identifying an optimal detector is essential for further exploring the use of sEMG-
based movement intent detection for robot-assisted therapy in severely affected stroke subjects with no visible residual
movements.

Our goal in this study is to systematically compare the detection accuracy and latency of existing sEMG detectors on low
SNR sEMG signals to identify the most promising detectors, while eliminating the ones with poor performance, for
further investigation. To this end, we will here:

• Generate simulated low SNR (0 dB and -3 dB) sEMG data using two phenomenological (Gaussian and
Laplacian) models and a biophysical model to evaluate the performance of the different detector types.

• Define an appropriate cost function considering the detection accuracy and latency to evaluate the performance
of the different detector types.

• Compare the performance of the different detector types on simulated sEMG signals from the three signal
models for two different SNRs (0 dB and -3 dB) and identify the most appropriate detector type(s).

REVISED Amendments from Version 3

We have made corrections based on the suggestions from the reviewer comments on our paper. The terminology “no
residual movement” is now changed to “no visible residual movement” as suggested. Formal corrections to the references
as suggested were also made.

Any further responses from the reviewers can be found at the end of the article
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Methods
Neurorehabilitation training consists of repeating specific movements of interest punctuated by periods of rest.15,16

A typical training session will involve several “trials” of a particular movement, each with a period of rest (rest-phase)
followed by a period of movement/movement attempt (move-phase). In sEMG-driven robot-assisted therapy, the robot
remains inactive during the rest phase, while in the move phase robot-assisted movement of the subject’s limb is
contingent upon the presence or absence of sEMG at any given time instant; continued sEMG is required to continuously
receive robotic assistance. The rest of this section starts with the formal definition of the signal processing problem solved
by an sEMG detector, followed by the details of the simulated sEMG signals, a description of the general structure of
sEMG detectors, and the approach used to compare the performance of the different detectors.

The formal definition of the signal processing problem
Let xi n½ �,0≤ n<Nt be the recorded signal from a target muscle during the ith trial; n is the sampling instant, where n¼ 0 is
the start of a trial,Nt is the number of data points from each trial. LetNr andNm be the number of samples in the rest- and
move-phases of a trial, respectively, thenNt ¼NrþNm. The time segments 0≤ n<Nr andNr ≤ n<Nt correspond to the
rest-phase and move-phase of the trial, respectively.

Problem definition: To detect the presence of EMG in real-time in the move-phase of a trial using only the current and
past EMG data x k½ �f g,0≤ k ≤ n from the start of the trial. Let y n½ � represent the binary output of the sEMG detector at the
current sampling instant n,

y n½ � ¼D x k½ �f gnk¼0;p
� �

∈ 0,1f g (1)

where, D �ð Þ is the detector function that maps the sEMG signal x k½ �f gnk¼0, from the start of a trial to a binary output
corresponding to the presence or absence of sEMG at the current time instant n; p is the set of detector parameters that
control the detector’s performance. The functionD �ð Þ is often a complex mathematical operation consisting of a series of
simpler operations performed on the sEMG data to produce the binary output. This binary output can be used as a simple
on/off control of robotic assistance by severely affected patients to relearn movement initiation.17,18

Simulation of surface EMG signal
The analysis of the different sEMG detectors was performed using simulated sEMG data. To generate this simulated
sEMG, we assume that:

• the measurement noise has a fixed variance throughout the experiment,

• the muscle is fully relaxed in the rest-phase of any trial, i.e., there is no sEMG activity from the target muscle
during the rest-phase, and

• the muscle is activated at a constant level for the entire duration of the move-phase.

These assumptions were made to evaluate the sEMG detectors under the conditions that: (a) the sEMG signal has a fixed
signal-to-noise ratio (SNR) in the move-phase, and (b) all other intra- and inter-trial variabilities in the sEMG signal
characteristics are minimized. The detectors that perform poorly under these ideal conditions will likely perform worse
with real sEMG data from patients, since real sEMG data from severely affected stroke patients might occur in random
bursts and is likely to have time-varying amplitude.

We simulated 100 trials of sEMG data with an individual trial duration of 13 seconds (8 s and 5 s for rest- and move-
phases, respectively). The sampling frequency of the simulated signal was set to 1000 Hz. Three different sEMG signal
generation models were employed in the current analysis – two phenomenological (Gaussian and Laplacian) models and
one biophysical model.

Phenomenological models: Gaussian and Laplacian
The phenomenological models were based on the work of De Luca19 where a surface sEMG signal from a muscle
activated at a fixed level can be treated as zero-mean white noise followed by a shaping filter (electrode properties); this
model is widely accepted in the literature.7,20–23 The exact probability density of the sEMG signal depends on the muscle
activation level, with high levels of activation following a Gaussian distribution.20,21 However, at low levels of muscle
activation, sEMG signals have been reported to follow a distribution that lies between a Gaussian and a Laplacian
distribution.24 Therefore, to ensure that the detectors are tested with the appropriate signals, we generated data using both
white Gaussian and white Laplacian signals, resulting in two phenomenological models.
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The first step in this model is the generation of the zero-mean unit-variance white Gaussian and Laplacian noise e n½ �.
A step change in the signal variance, within a trial, at the transition between the rest- and move-phases of a trial was
obtained by multiplying e n½ � by σ n½ �:

be n½ � ¼ σ n½ � e n½ �, 0≤ n≤Nt (2)

σ2 n½ � ¼ σ20 0≤ n<Nr

σ20þσ21 Nr ≤ n<Nt

(
(3)

where σ20 and σ
2
1 are the noise and signal variances, respectively. The noise variance is always set to σ

2
0 = 1 in this analysis,

and the signal variance is chosen based on the desired signal-to-noise ratio (SNR) in the move-phase. The signal be n½ � is
then zero-phase bandpass filtered (8th order FIR bandpass filter with cut-off frequency 10Hz and 450Hz) to have a signal
with spectral characteristics like a sEMG signal.

x n½ � ¼ hsf n½ �∗be n½ � (4)

where, hsf n½ � is the impulse response of the bandpass or shaping filter, and x n½ � is the generated sEMG signal that is used
for the analysis. The signal-to-noise ratio (SNR) of this simulated sEMG signal in the move-phase is given by,

SNR¼ 10log
σ21
σ20

� �
dB: (5)

Biophysical model
In addition to the phenomenological models, we also wanted to test the detectors on more realistic data based on the
biophysics of the sEMG signal, accounting for the physiological origin of the electrical muscle activity and the recording
electrode geometry. In this paper, the biophysical model proposed in Ref. 25 was employed to generate the simulated
sEMG data. Assuming a linear, isotropic volume conduction model, a simple muscle geometry with parallel muscles
fibres ignoring the effects due to the finite muscle fibre length, the sEMG recorded by a bipolar electrode configuration
can be approximated using the following expression:

sEMG tð Þ¼
XQ
q¼1

Rq tð Þ∗Dq tð Þ∗eq tð Þ∗p tð Þ

Dq tð Þ¼
XMq

m¼1

δ t� τmð Þ
(6)

whereQ is the number of motor units in the muscle, Rq tð Þ is the impulse train signal arriving at the qth motor unit through
its correspondingmotor neuron,Mq is the number ofmuscle fibers in the qth motor unit, eq tð Þ is the approximate electrode
transfer function between the qth motor unit and the recording electrodes, and p tð Þ is the single fibre action potential,
which is assumed to be the same for all fibres. The full details of the model can be found in Devasahayam.25 with the
associated parameters provided in Table S3 of the supplementary material.

The EMG simulator developed by Devasahayam23 was employed in the current work to generate the simulated sEMG
signals.25 A bipolar surface electrode configuration with a 10 mm interelectrode distance was considered. The simulator
takes in themuscle force level as its input and computes the corresponding firing pattern for themotor units. In the current
study, the force levels from themuscle were set to 0N in the rest-phase (nomuscle activation) and 10N in themove-phase
(average firing rate of 16.4 Hz for the muscle). The simulator generated pure muscle activity xpure n½ � recorded by the
chosen electrode configuration. The force level for the muscle in the move-phase was chosen empirically to ensure that
the temporal profile of the simulated sEMG signal xpure n½ �,0≤ n≤ Nt

� �
visually resembled that of real surface sEMG

signals. A zero-mean white Gaussian noise e n½ � of fixed noise variance σ20 was added to xpure n½ � to introduce measurement
noise. The noise variance was chosen based on the signal power (σ21) of xpure n½ � in the move-phase to obtain a signal with
the desired SNR:

σ20 ¼
σ21
SNR

(7)

Following this, the noisy signal xpure n½ �þ e n½ �� �
is bandpass filtered (8th order non-causal FIR filter) between 10 Hz and

450 Hz cut-off frequencies:
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x n½ � ¼ hsf n½ �∗ xpure n½ �þ e n½ �� �
(8)

where hsf n½ � is the impulse response of the bandpass shaping filter. The characteristics of sEMG generated from these
three models are shown in Figure 1. We wanted to investigate the performance of the detectors under two conditions
where the signal power was: (a) equal to noise power, and (b) less than the noise power. Thus, the current study employed
two different SNRs of 0 dB (signal power equals noise power) and -3 dB (signal power is half the noise power).

Detection algorithms
The general structure for sEMG detectors proposed by Staude et al.7 is shown in Figure 2, which consists of three steps
carried out sequentially to map the given real-time sEMG data into a binary output:

1. Signal conditioning is the first step to improve sEMG signal quality for better detection, often involving high-
pass filtering for movement artefact removal. Some detectors might employ additional filtering operations, such
as adaptive whitening for stable sEMG amplitude estimation.26,27 The conditioned signal is represented by

Figure 1. Characteristics of the sEMG signals generated from the three models. The three rows correspond to
the three different signal models: Biophysical in the top row, Gaussian in the middle, and Laplacian in the bottom
row. The left most column shows the time series of the simulated 13 seconds of data with the first 8 seconds
corresponding to the rest phase and the next 5 seconds to the move phase. The middle column shows the
corresponding Fourier magnitude spectrum of the 5 seconds of move phase data. The right column displays the
estimate of the probability density functions of the 5 seconds of move phase data from the three models.

Figure 2. A general structure for sEMG detectors as proposed by Staude et al.7

Page 6 of 32

F1000Research 2024, 12:429 Last updated: 18 APR 2024



ex n½ � ¼ S x k½ �f gnk¼0

� �
,0< n<Nt (9)

where S �ð Þ represents the mathematical operation performed by the signal conditioning step.

2. Test function computation transforms ex n½ � into a scalar variable or feature that can distinguish the presence
or absence of sEMG. The test function g n½ � is computed at the current time instant n over a causal window of
size W :

g n½ � ¼ T ex k½ �f gnk¼n�Wþ1

� �
,0< n<Nt (10)

Some examples of test functions in the literature include the moving average of ex n½ �, χ2 test variable,28

likelihood ratio29 etc.

3. A decision rule is applied on the test function g n½ � by comparing it to a threshold h to identify the presence/
absence of an sEMG signal:

y n½ � ¼R g n½ �ð Þ ¼ 1 g n½ �> h

0 g n½ �≤ h

�
(11)

The threshold h is adaptive and is calculated for each trial by adding α times the standard deviation of first
3 seconds data (Figure 3) to the mean. α is termed as the weight for threshold in this paper. Some detectors
employ a more sophisticated decision rule, such as double thresholding, to control the false positive rates of
detection.28,30

We note that each detector has a set of parameters associated with it. The current study compares the performance of
13 detector types reported in the literature which can be implemented in real-time, listed in Table 1. Each detector type fits
into the general structure shown in Figure 2. The different parameters associated with these detector types are also

Figure 3. A representative example of a trial from the Gaussian signal model with -3 dB SNR run through the
Modified Hodges detector. The plot shows the rectified sEMG signals, its lowpass filtered output, and the binary
output from the detector. The trial is 13 seconds long with first 8 seconds corresponding to the rest-phase and the
next 5 seconds to themove-phase. The rest-phase is further divided into thebaseline phase (yellowbackground) that
is used for computing the threshold h, and the remaining rest-phase (red background) is used for computing rFP. The
move-phase (green background) is used to compute Δt and rFN .

Table 1. Description of the structure of the 13 detectors investigated in the current study, along with the
different parameters associated with the individual detectors.

Detectors Signal
Conditioning

Test function Parameters

Modified
Hodges

Rectification
Low pass filter

g n½ � ¼ex n½ � Cut-off frequency of LPF ( f cÞ
Weight (α)

AGLR - G7,31 Adaptive
whitening

Likelihood Ratio test Window size (W)
Weight (α)

AGLR - L Adaptive
whitening

Likelihood Ratio test Window size (W)
Weight (α)
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Table 1. Continued

Detectors Signal
Conditioning

Test function Parameters

Fuzzy11

Entropy
- Chebyshev distance

Fuzzy function
Window size (W)
Weight (α)

Modified
Lidierth

Rectification
Low pass filter

g n½ � ¼ex n½ � Cut-off frequency of LPF ( f cÞ
Weight (α)
Double threshold params: m, T1

Hodges7 Rectification
Low pass filter

bx n½ � ¼MAV ex n½ �ð Þ
g n½ � ¼ bx n½ ��μ0

� �
=σ0

Cut-off frequency of LPF ( f cÞ
Window size (W)
Weight (α)

RMS6 Band pass
filter

Root mean square (ex n½ �) Window size (W)
Weights (α)
Window shift (p)
Temporal threshold (m)

Lidierth7 Rectification ey n½ � ¼MAV ex n½ �ð )
g n½ � ¼ ey n½ ��μ0ð Þ=σ0

Window size (W)
Weight (α)
Double threshold params: m, T1

TKEO12 High pass
filter

φ n½ � ¼ex2 n�1½ ��ex2 n�2½ �ex2 n½ �
g n½ � ¼MAV φ n½ �ð Þ

Cut-off frequency of HPF ( f cÞ
Window size (W)
Weight (α)
Double threshold params:m = 1, T1

Bonato28 Adaptive
whitening

g n½ � ¼ ex2 n½ ��ex2 n�1½ �
� �

=σ20
n∈ 1,3,5,…f g

Weight (α)
Double threshold params: m, T1

Sample14

Entropy
- Chebyshev distance

Local tolerance for the distance
Window size (W)
Weight (α)
Tolerance ρð Þ

CWT13 - Correlation of signal with Wavelet
representing shape of MUAP

Scaling parameter of the mother
wavelet (a)
Weight (α)

SSA32 - Computation of detection statistics
using Euclidean distance.

Window size (W)

Moving average (MAV): 1
W

Pn
k¼n�Wþ1ex k½ �; AGLR-G – approximate generalized likelihood ratio test assumingGaussianmodel; AGLR-L – AGLR

assuming Laplacian model; Double threshold: Active state for at least (m) samples and during m samples can test function go below
threshold repeatedly, not more that (T1) samples. CWT – Continuous wavelet transform; SSA – Singular spectrum analysis; RMS – Root
mean square detector.

Table 2. Optimal parameters for the different detector types for the different SNRs and signal model. These
parameters were identified using procedure described in Algorithm 1 on the 50 trials from the training
datasets.

Detector
type

Parameters SNR 0 dB SNR -3 dB

Gaussian Laplacian Biophysical Gaussian Laplacian Biophysical

Modified
Hodges

Weight 1 1 1 1 1 1

LPF cut-off (Hz) 7.5 7.5 4.5 6.5 5.5 4.5

AGLR-G Window size (ms) 100 100 150 100 150 150

Weight 2 1 3 1 1 1

AGLR-L Window size (s) 0.1 0.1 0.1 0.1 0.15 0.2

Weight 2 1 1 1 1 1

Fuzzy
Entropy

Window size (ms) 60 80 100 90 70 100

Weight 1 1 2 1 1 1

Modified
Lidierth

LPF cut-off 9.5 9.5 9.5 9.5 9.5 7.5

Weight 1 1 1 1 1 1

m 20 25 5 25 55 25

T1 30 30 30 30 60 30
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provided in Table 2. A detailed description of the individual detector types and the algorithms for their implementation are
provided in the extended data (Table S1). All detector algorithms were obtained from the literature and implemented in
MATLAB33 with appropriate modifications required for real-time detection.

A measure of detector performance
The simulated sEMG data from the three different signal models and the two different SNRs were used to evaluate the
performance of the different detector types. Each trial of sEMG signal (13 seconds long) was input to the different
detectors to compute binary output indicating the presence or absence of sEMG signal. An optimal EMG detector
designed for use in EMG-driven robot-assisted therapy should possess the capability to quickly identify the onset of
sEMG, efficiently eliminate false positives, and consistently detect sEMGwhen it is present (lower false negative). Such
a detector might be essential for maintaining the user’s motivation and sense of agency. These are computed from the
output y n½ � of each trial (Figure 3), where the sEMG signal from each trial was analysed in the following three steps:

1. the first three seconds (0–3s) of the rest-phase data is used for estimating the threshold h for detection:

h¼ μgþασg α∈ 1,5½ � (12)

where μg and σg are the mean and standard deviation of the test function in this period.

2. the remaining 5 seconds of the rest-phase are used to estimate the false positive rate rFPð Þ.

3. the 5 seconds of themove-phase are used to estimate the false negative rate rFNð Þ and the detection latency Δtð Þ.

Table 2. Continued

Detector
type

Parameters SNR 0 dB SNR -3 dB

Gaussian Laplacian Biophysical Gaussian Laplacian Biophysical

Hodges Window size (ms) 100 100 100 100 100 100

Weight 1 1 1 1 1 1

LPF cut-off (Hz) 9.5 9.5 9.5 9.5 8.5 9.5

RMS Window size (ms) 120 120 120 120 120 120

Weight 1 1 1 1 1 1

Window shift
(ms)

40 40 40 40 40 40

Time threshold
(ms)

40 40 40 40 40 40

Lidierth Window size (ms) 100 100 100 100 100 100

Weight 1 1 1 1 1 1

m 10 10 5 20 25 25

T1 30 30 30 30 30 30

TKEO HPF cut-off (Hz) 5 5 5 15 20 15

Window size (ms) 100 100 100 100 100 100

Weight 1 1 1 1 1 1

T1 30 30 30 30 30 30

Bonato Weight 1 2 2 2 1 2

m 10 25 20 20 20 25

T1 30 30 30 30 60 30

Sample
Entropy

Window size (ms) 50 50 50 50 50 50

Weight 1 1 1 1 1 1

Tolerance for
distance

0.5 1.5 0.5 0.5 1.5 0.5

CWT Weight 1.1 1.2 1 1.1 1 1.4

SSA Window size (ms) 52 50 50 50 50 50
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We defined a performance measure to compute a single number referred to as the cost of detection that considers the false
positive rate rFP, the false negative rate rFN , and the detection latency Δtð Þ. Let c≜ rFP rFN f Δtð Þ½ �T be the cost vector
associatedwith the output y n½ � of the detector for a particular trial.We define the cost of detectionC as the infinity norm of
the cost vector c.

C¼ max rFP , rFN , f Δtð Þf g (13)

providing the worst-case performance of the detector on the given trial.

The false positive rate rFP is defined as the ratio of the number of 1s in the detector output y n½ � in the rest-phase of a trial,
and the false negative rate rFN is defined as the ratio of the number of 0s in y n½ � in the move-phase.

0,1½ �∋rFP≜ 1
Nr

XNr�1

n¼0

y n½ �

0,1½ �∋rFN≜ 1
Nt�Nr

XNt�Nr�1

n¼Nr

1� y n½ �ð Þ
(14)

From Figure 3, the detection latency is defined as the time delay from the start of the move-phase to when the detector
output goes to 1:

Δt¼ Ts� min n�Nr j y n½ � ¼ 1,Nr ≤ n<Ntf gð Þ (15)

where Ts is the sampling period of data in milliseconds, andΔt∈ 0,5000½ �ms. The cost due to this latency is quantified by
the function f Δtð Þ that maps Δt to a real number in the closed interval between 0 and 1:

0,1½ �∋f Δtð Þ¼
0 Δt< 0 ms
Δt
250

0 ms ≤Δt< 250 ms

1 Δt ≥ 250 ms

8><>: (16)

Latencies between 0 to 250 ms have linearly increasing costs while the ones above 250 ms are considered as bad as
250 ms. Based on the definitions of rFP, rFN , and f Δtð Þ, C∈ 0,1½ �. A detector with a consistently lower cost of detection
C would be considered a better detector.

Comparing different detector types
A detector’s performance or cost is determined by the SNR of the input signal, the detector type, and its associated
parameters. Thus, for a fixed SNR input signal, comparing two detector types must be done only after controlling for the
influence of their corresponding detector parameters. In the current work, this was done by first choosing the optimal
parameters for each detector type, before comparing different detector types. The optimal parameters for a detector type
were selected by first splitting the 100movement trials of simulated sEMGdata of the threemodels (which was generated
as explained above) into training and validation datasets with 50 trials each. This was done for both SNRs (0 dB and
-3 dB) and for all three signal models (Gaussian, Laplacian, and biophysical). The training dataset was used to identify the
optimal parameter values for the different detector types, i.e. the values of the parameter combination that consistently
resulted in the least cost for the detector on the training dataset. The exact procedure is given in Algorithm 1 (end of the
document), while details are provided in the extended data.

After identifying the optimal parameter combination for each detector type, the optimal parameter valueswere used to run
the detector on the 50 trials of the validation dataset, which resulted in the validation cost set CD

val ¼ CD
i

	 
50
i¼1 for the

detector type D. The cost set from the different detector types were compared using two-way ANOVA with the detector
type and signal SNR as the two factors for each of the three-signal model. The complete code for the analysis can be
found here.

Results
The entire analysis – generation of the simulated data, the various detection algorithms, optimization34 of the detector
parameters, and analysis of the results – reported in this paper were implemented in MATLAB R2020 (RRID:
SCR_001622) (alternative languages could also recreate this study i.e. Python [RRID:SCR_008394] or GNU Octave
[RRID:SCR_014398]). A sample of the individual trials from the three sEMG signal models is depicted in Figure 1.
A sample output of the different processing stages of the Modified Hodges detector from a Gaussian sEMG signal trial is
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shown in Figure 3. The Modified Hodges detector, filters (2nd order Butterworth low pass filter) the rectified raw sEMG
signal (blue coloured trace in Figure 3). This lowpass filtered signal is the test function of the detector (red-coloured trace
in Figure 3). The threshold h for this trial is shown by the green-coloured horizontal line in Figure 3. The output of the
detector (black coloured trace in Figure 3) is 1 whenever the test function crosses the threshold, it is 0 otherwise. The
figure also shows the values of rFP, rFN , Δt, and f Δtð Þ for the trial.

Optimal parameters for the different detector types
The 13 detector types were compared after choosing the optimal parameter set for each detector type using the training
dataset of 50 trials for each of the six combinations of the three signal models and two SNRs.35 This procedure is depicted
in Figure 4 for the Modified Hodges detector for the 0 dB SNR Gaussian signal model, which shows the outcomes from
the different steps in the optimization process described inAlgorithm 1. Figure 4(a) shows the histograms of the costC for

the different parameter combinations, in light blue traces. These histograms are estimated from the cost values Cif g50i¼1

obtained from the 50 trials in the training dataset for the different combinations of the detector parameters. The scatter plot
of the median cmed and inter-quartile range ciqr of these histograms are shown in Figure 4(b). The choice of the best

parameter for the detector was determined to be the one with the least Euclidean norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2med þ c2iqr

q
which is shown as the

red circle in Figure 4(b); its corresponding histogram is shown in the thick red trace in Figure 4(a). Figure 4(c) shows the
marginal histograms of the individual contributors rFP,rFP, f Δtð Þð Þ to the cost C for the optimal parameter combination
for the Modified Hodges detector. The values of the optimal parameters for the different detector types are listed in
Table 2.

How do the different detector types perform on the different signal models and SNRs?
The performance of the different “optimal” detector types, i.e., detectors using the optimal parameter values, were
compared using the 50 trials from the validation datasets. The boxplot of the performance of these different detector
types for the three different signal models – Gaussian, Laplacian, and biophysical – are shown in Figure 5(a), (b), (c),
respectively; each of these subplots displays the performance for the 0 dB and -3 dB SNRs in red and blue boxplots,
respectively. Note that the order of the depiction of the different detectors is in terms of the increasing average cost across
the three signal models and two SNRs; the detectors on the left are better than the ones on the right in an average sense.
A two-way ANOVA on the effect of the detector type and SNR on performance revealed a significant difference between
the detector types (p < 0.001) and SNRs (p < 0.001) for all three signal models. The test revealed a significant interaction
between the factors for all three models (biophysical: p < 0.0001; Gaussian: p < 0.0001; Laplacian: p < 0.0001). These
statistical results confirm the results shown in the boxplots in Figure 5, where the performance is different among the
detector types, with consistently poorer performance for -3 dB compared to 0 dB. The costs for both 0 dB and -3 dB appear
to be lower for the biophysical model compared to the Gaussian and Laplacian models.

Most detector types perform similarly except for the Sample entropy, Continuouswavelet transform (CWT), and Singular
spectrum analysis (SSA) detector types which perform worse across the different signal models and SNRs. Among the
other detector types – the Modified Hodges, the approximate generalise likelihood ratio test- Gaussian (AGLR-G), and
the approximate generalise likelihood ratio test- Laplacian (AGLR-L) detectors – have almost similar costs for the
different signal models and SNRs. The other detector types – Root mean square (RMS), Hodges, Bonato, Lidierth,
Modified Lidierth, Teager Kaiser Energy Operator (TKEO), and Fuzzy entropy – have slightly higher costs for one or

Figure 4. Outcomes of the parameter optimization process for the Modified Hodges detector as described in
Algorithm 1. (a) Estimated probability density function of cost for the different combinations of parameters (in light
blue traces). The red trace corresponds to the cost of theoptimumparameter combination. (b) Scatter plot ofmedian
vs IQR for the cost of different parameter combinations. (c) Estimated histograms of latency, false positive rate, false
negative rate and cost of the optimum parameter.
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more specific signal models and SNRs. We note that the Fuzzy entropy detector performs very well on the biophysical
signal model for both SNRs with an acceptable cost for more than 95% of the validation trials.

Which detector types have an acceptable cost?
The choice of appropriate detector type(s) for use in robot-assisted therapy requires the specification of an acceptable cost
of detection Caccept . To this end, we specify the upper limits for the false positive rate, false negative rate, and the latency
of detection as Caccept ¼ 0:2, which corresponds to a detector with the following cost components:

rFP ≤ 0:2

rFN ≤ 0:2

Δt ≤ 50 ms

9>=>;⟺ ck k∞ ¼C ≤ Caccept ¼ 0:2 (17)

We believe that these upper limits are a reasonable compromise among the three competing factors determining the cost.
Any detector type with costs consistently lower than Caccept would be deemed an appropriate detector for use in robot-
assisted therapy. To determine the detector types with consistently lower costs than Caccept , we computed the proportion

Figure 5. Boxplot of cost of performance of the different detectors in the validation datasets from the
different signal models and SNRs. All detectors shown in this plot use the optimal detector parameter sets
optimized on the training dataset. (a) Cost of detection for the Gaussian signal model, (b) Laplacian signal model
and (c) Biophysical signal model. The red and blue colored boxplots are of 0 dB and -3 dB SNR, respectively. The red
dashed line is the acceptable cost Caccept ¼ 0:2.
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ðrDacceptÞ of the 50 validation trials with acceptableC ≤ Caccept for the detectorD for the three signal models and two SNRs
using

rDaccept ¼
1
50

X50
i¼1

I CD
i ≤Caccept

� �
(18)

where CD
i is the cost of detection for the ith validation trial for detector D. The value of rDaccept for the different detector

types is shown in Table 3, where the cells with rDaccept ≥ 0:8 are highlighted. We can observe there that:

1. All detectors perform poorly for the -3 dB Laplacian signal model. The highest value of rDaccept is 0.22 for this
signal model, which interestingly is from the AGLR-L detector designed for the Laplacian signal. Many
detectors perform a little better with higher rDaccept values for the -3 dB Gaussian and biophysical signal models.

2. TheModifiedHodges detector is themost consistent detector across the different signalmodels and SNRs. It has
an rDaccept > 0:8 for the three signal models at 0 dB and the biophysical model at -3 dB SNR.

3. The Fuzzy Entropy detector performs as well as theModified Hodges detector for the Gaussian and biophysical
signal models, but not on the Laplacian model.

4. In terms of the average value of rDaccept , across the three signalmodels (last two columns of Table 3), theModified
Hodges detector performs the best for the 0 dB signals, followed by the AGLR-G, AGLR-L, and Fuzzy Entropy
detectors which have slightly lower but similar performance. For -3 dB signals, theModifiedHodges, AGLR-G,
and AGLR-L detectors result in similar performances.

Based on these observations, theModified Hodges appears to be the most consistent detector for low SNR signal models,
irrespective of the sEMG signal model. The two statistical detectors (AGLR-G, and AGLR-L) and the fuzzy entropy
detectors provide similar but slightly lower performance than the Modified Hodges detector.

Discussion
Movement intention-triggered robot-assisted therapy is one of the options available for severely impaired patients
without visible residual movement. sEMG for movement intent detection is a simpler, more direct and task-specific
alternative to EEG-BCI.6 The investigation of sEMG-driven robot-assisted therapy requires a sensitive and robust method
for the accurate and fast detection of movement intention from residual low SNR sEMG signals. This study systematically
investigated existing sEMG detection algorithms in the literature until 2018. The investigation was carried out on

Table 3. The proportion of the 50 validation trials with cost less than the acceptable cost of 0.2 for different
detector types, signalmodels, and SNRs. The cells with proportions greater or equal to 0.8 are highlighted in gray.

Signal Model Gaussian Laplacian Biophysical Average

SNR 0 dB -3 dB 0 dB -3 dB 0 dB -3 dB 0 dB -3 dB

RMS 0.34 0 0.12 0.02 0.84 0.7 0.43 0.24

Hodges 0.32 0.26 0.28 0.02 0.76 0.5 0.45 0.26

Modified Hodges 0.86 0.4 0.82 0.06 1 0.84 0.89 0.43

AGLR-G 0.82 0.56 0.76 0.16 0.7 0.6 0.76 0.44

AGLR-L 0.8 0.54 0.68 0.22 0.68 0.44 0.72 0.4

Fuzzy Entropy 0.86 0.02 0.54 0 0.94 0.98 0.78 0.33

Sample Entrpoy 0 0 0 0 0 0 0 0

Lidierth 0.18 0.04 0.18 0.02 0.72 0.46 0.36 0.17

Modified Lidierth 0.64 0.08 0.4 0.02 0.96 0.64 0.67 0.25

Bonato 0.54 0.02 0.08 0 0.06 0 0.23 0.01

TKEO 0.36 0.04 0.3 0 0.64 0 0.43 0.01

CWT 0 0 0 0 0 0 0 0

SSA 0 0 0 0 0 0 0 0
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simulated sEMG signals using three different signal models with low SNR of 0 dB and -3 dB. These SNRs correspond
to feeble sEMG signals compared to regular sEMG recordings from healthy individuals. Using three different signal
models – two phenomenological and one biophysical –makes the study results robust to assumptions about the simulated
sEMG data.

The study by Staude et al. published in 20017 compared different sEMG detectors for accurate sEMG onset-time
detection. They employed a Gaussian signal model with ramp variance profiles (with varying slopes) at SNR of 3 dB to
12 dB in their analysis7 and found the AGLR statistical detector to be the best in terms of onset detection, while the
Hodges detector performed poorly.7 Although there are some similarities between the current study and those of Staude
et al., the two differ in several ways: (a) the current study is focused on real-time detection, while Staude et al.’s primary
goal was offline analysis; (b) the current study employed lower SNR signals, which is important considering its
application to detect motion intention in severally affected stroke patients; (c) the current study tested three different
signal models, while Staude et al. used only the Gaussian signal model; (d) the primary performance measure in Staude
et al. was onset detection latency, while the current study used a composite performance measure (or cost) consisting of
the false positive rate, false negative rate, and detection latency; (e) the rationale for the choice of the specific detector
parameters was not explicitly mentioned in Staude et al. In the current study, the detector parameters were optimized
through a brute force search to ensure the best detectors from each detector type were compared; and (f) the current study
investigates a wider class of detector types than Staude et al., including the detectors published after 2001.

In this analysis, an acceptable cost 0.2 was chosen for application in sEMG-driven robot-assisted therapy; this
corresponds to a latency of 50 ms, 20% FPR or 20%FNR; the low latency, and relatively high FPR and FNR can result
in a more sensitive detector being chosen as the optimal detector. We do not believe this is a problem, because the raw
output of this detector is unlikely to be used directly to drive the robot-assistance. Some form of low-pass or time-based
filtering (like the one employed by Ramos-Murguialday et al.15) will be employed to filter out short false positives/
negative pulses before using it to drive robotic assistance. This filtering operation reduce the FPR and FNR at the expense
of introducing an additional latency; a delay of 200-300ms are well tolerated when reporting for sense of agency.36 The
choice of amount of filtering of the chosen detector’s output will need to be done through feedback from patients/users of
the system.

The current study identified that the Modified Hodges detector performed consistently well with cost C ≤ 0:2 for at least
80% of the validation trials, across the different signal models and SNRs, except for the -3 dB Laplacian signal model,
where all detectors fail. ThemodifiedHodges detector – a simplified version of theHodges detector – performs better than
Hodges because it does not involve the additional averaging step in computing its test function. This reduces the detection
latency for the modified Hodges detector without an appreciable increase in the false positive and false negative rates
(Table S4 in the extended data in figshare (RRID:SCR_004328)). The AGLR-G, AGLR-L, and fuzzy entropy detectors
perform slightly lower than modified Hodges but better than the rest of the detectors. The good performance of the
statistical detectors agrees with that of Staude et al. even with the lower SNRs investigated in this study. The fuzzy
entropy detector also performs well, unlike its counterpart – sample entropy. The sample entropy algorithm in this study
used the local estimate of the signal’s standard deviation for normalizing the data. Sample entropy’s poor performance
with the local estimate of the standard deviation was previously reported by Zhang et al. Sample entropy performs well
only with the global estimate of the signal’s standard deviation.14 This is not suitable for real-time implementation as
estimating the global standard deviation is a non-causal operation requiring the entire signal record. The use of the fuzzy
similarity measure addresses this problem with sample entropy, allowing the fuzzy entropy detector to track changes in
the overall signal amplitude. Interestingly, fuzzy entropy has a low cost of detection for both 0 dB and -3 dB biophysical
signal models, which could be due to the additional structure of the motor unit action potentials (MUAPs) in the move-
phase of the biophysical signal.

Interestingly, the RMS detector we used previously to demonstrate the viability of sEMG as an alternative to detect
movement intention in severely impaired chronic stroke subjects6 was not one of the best performers, as seen in Figure 5
and Table 3.We note that the observed performance was for the RMS detector with optimized parameters (Table 2) using
the training dataset. This optimized RMS detector had a relatively high false negative rate and higher detection latency
which resulted in its poor performance. This could possibly explain the lack of agreement between the sEMG and EEG
detectors we had observed in our previous study, and a more sensitive detector might have identified sEMG activity in a
larger proportion of subjects. The current study results warrant further investigation with real sEMG data from severely
impaired patients using other detectors, such as the modified Hodges, AGLR-G/L, and fuzzy entropy.

In general, most detectors have a relatively lower cost of detection for the biophysical signal model, compared to the
Gaussian and the Laplacian signal models. The reasons for the better performance on the biophysical model are not
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entirely clear, except for the fuzzy entropy detector, which might be sensitive to the temporal structure of the simulated
data (MUAP) from the biophysical model. One possibility is the difference in the spectra of the signals from the
biophysical model compared to the Gaussian or Laplacian modes (Figure 1); more signal energy is concentrated in the
lower frequencies for the biophysical model than in the Gaussian or Laplacian models. Most detectors compute their test
functions through a lowpass filtering or averaging operation, which could retain a relatively larger portion of the signal in
the biophysical model compared to the Gaussian and Laplacian ones, thus resulting in improved performance with the
biophysical model. If this is correct, then the difference in performances between the biophysical and the Gaussian/
Laplacian models should disappear when an appropriate spectral shaping filter is used in the Gaussian and Laplacian
models, yielding a spectrum like the biophysicalmodel. Finally, among theGaussian andLaplacianmodels, the relatively
poorer performance with the Laplacian signal model could be due to the long tails of the Laplacian distribution.

The simulated data used in the current study relies on a step-change in the signal properties between the rest- and move-
phase, and an sEMG signal of fixed amplitude during the move phase. These assumptions will be violated when dealing
with feeble surface sEMG signals recorded from impaired participants with no visible residual movements. In such
participants, movement attempts are likely to produce intermittent bursts of sEMG activity with smooth transitions
between the on and off states in the target muscles. The sEMG signal might have time-varying amplitude even when the
participant can continuously activate the muscle for sufficient duration. Although based on idealized simulated sEMG
data, the current results do provide some idea about the detector types that can potentially work on real low SNR sEMG
signals; a detector performing poorly on ideal data is likely to performworse with real data. Furthermore, the results from
the current analysis also indicate that modified Hodges, AGLR-G, AGLR-L, and fuzzy entropy detectors are likely to
pick up even bursts of sEMG signals since they have small detection latency (Δt ≤ 50 ms).

The detectors studied in this paper can be used for on-off control of robotic assistance,37 where once sEMG activity is
detected, robotic assistance drives the limb towards the target in a preprogramed fashion. The choice of the best control
variable depends on which one of these is sensitive, robust, and provides a natural human-robot interaction with minimal
lag. However, it should be noted that it is unclear how well severely impaired participants, with no visible residual
movements, can finely modulate their sEMG activity and will require a screening procedure to evaluate the ability of the
participant to modulate sEMG activity in the target muscle.

The study has limitations that are worth noting to ensure that the results are interpreted appropriately. The study entirely
relies on simulated data to investigate the different detectors. The conclusions are thus only as good as the assumed signal
models and how well they represent the residual sEMG signals of patients with no visible movements. This is the first
study investigating detectors for low SNR sEMG, and thus the use of simulated data was essential to gain some
understanding of the performance of the different detectors. Simulated data also allows complete control of the ground
truth, which provides a more truthful characterization of different detectors’ detection accuracy and latency. The use of
three different signal models to investigate the different detectors also adds some robustness to the study’s findings.
Additionally, this analysis allows us to exclude the poorly performing detectors and identify the ones that warrant further
investigation with real data. Another potential limitation of the use of simulated data is the availability of complete
information about the ground truth against which the different detectors are compared. However, the results of the current
study can’t be verified with real data because we will never know the ground truth in the surface EMG from patients with
no visible residual movements. This is a valid concern. Nevertheless, some form of an unsupervised approach will be
required for verifying the results of the current study with real data. With real data, the best detector would be the one that
consistently provides the maximum separation for the probability density function of the test function g n½ � from the
different detectors under the rest-phase and move-phase.

Conclusions
This paper systematically investigated existing sEMG detection algorithms on low SNR sEMG signals simulated using
three different signal models (two phenomenological – Gaussian, Laplacian models and a biophysical model) at two
different SNRs (0 dB and -3 dB). The Modified Hodges detector – a simplified version of the threshold-based Hodges
detector, introduced in the current study –was found to be the most consistent detector across the different signal models
and SNRs. This detector had false positive and false negative rates of lower than 20%and a detection latency of lower than
50ms for almost 90% of the trials onwhich it was tested for 0 dB SNR andmore than 40% of the trials for -3 dB SNR. The
two statistical detectors (Gaussian and Laplacian Approximate Generalized Likelihood Ratio) and the Fuzzy Entropy
detectors have a slightly lower performance than Modified Hodges. Overall, the modified Hodges, Gaussian and
Laplacian approximate generalized likelihood ratio, and fuzzy entropy detectors were identified as potential candidates
for further validation with real surface sEMG data on a population of severely impaired patients. The current study forms
the first step towards developing a simpler, practical, and robust sEMG-based human-machine interface for triggered
robot-assisted therapy in severely impaired patients.
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Source code: https://github.com/1608Moni/EMG_detectors

Archived source code: https://doi.org/10.5281/zenodo.7750951
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Algorithm 1: Procedure for selecting the best parameter combination for the detector type.

Let the parameter set for the given detector type be Π¼ p1,p2,…,pm

	 

.

Set the parameter ranges for the individual parameters pi in the parameter set P for the detector type, which results
in K different parameters combinations.

For j¼ 1 to K parameter combinations:

- Compute the output of the detector yi n½ �	 
50
i¼1for the chosen combination of parameter values for each of

the 50 trials in the training dataset.

- Compute the cost Cif g50i¼1 for each of the 50 trials.

- Compute the median cmed and inter-quartile range ciqr of the cost values from the 50 trials.

- Compute the overall detector performance for the jth trial as P j½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2med þc2iqr

q
.

Get the best parameter combination for the detector type as the following,

kopt ¼arg min
1≤ j ≤ K

P j½ �

Page 16 of 32

F1000Research 2024, 12:429 Last updated: 18 APR 2024

https://doi.org/10.6084/m9.figshare.22317658.v2
https://doi.org/10.6084/m9.figshare.22317658.v2
https://doi.org/10.6084/m9.figshare.22232527.v3
https://doi.org/10.6084/m9.figshare.22232527.v3
https://creativecommons.org/licenses/by/4.0/
https://github.com/1608Moni/EMG_detectors
https://doi.org/10.5281/zenodo.7750951
https://opensource.org/license/mit/


References

1. Langhorne P, Coupar F, Pollock A: Motor recovery after stroke:
a systematic review. Lancet Neurol. 2009; 8: 741–754.
Publisher Full Text

2. Young J, Forster A:Reviewof stroke rehabilitation. BMJ. 2007; 334:
86–90.
PubMed Abstract|Publisher Full Text|Free Full Text

3. Ethier C, Gallego JA, Miller LE: Brain-controlled neuromuscular
stimulation to drive neural plasticity and functional recovery.
Curr. Opin. Neurobiol. 2015; 33: 95–102.
PubMed Abstract|Publisher Full Text|Free Full Text

4. Bai O, et al.: Prediction of human voluntary movement before it
occurs. Clin. Neurophysiol. 2011; 122: 364–372.
PubMed Abstract|Publisher Full Text|Free Full Text

5. Obermaier B, Neuper C, Guger C, et al.: Information transfer rate
in a five-classes brain-computer interface. IEEE Trans. Neural Syst.
Rehabil. Eng. 2001; 9: 283–288.
PubMed Abstract|Publisher Full Text

6. Balasubramanian S, Garcia-Cossio E, Birbaumer N, et al. :
Is EMG a Viable Alternative to BCI for Detecting Movement
Intention in Severe Stroke? I.E.E.E. Trans. Biomed. Eng. 2018; 65:
2790–2797.

7. Staude G, Flachenecker C, Daumer M, et al. : Onset detection in
surface electromyographic signals: a systematic comparison of
methods. EURASIP J. Adv. Signal Process. 2001; 2001: 1–15.

8. Yang D, Zhang H, Gu Y, et al. : Biomedical Signal Processing and
Control Accurate EMG onset detection in pathological, weak
andnoisymyoelectric signals. Biomed Signal Process Control. 2017;
33: 306–315.
Publisher Full Text

9. Tabie M, Kirchner EA: EMG onset detection-comparison of
different methods for a movement prediction task based on
EMG. International Conference on Bio-inspired Systems and Signal
Processing. 2013; Vol. 2, pp. 242–247. SciTePress.

10. VaismanL, Zariffa J, PopovicMR:Applicationof singular spectrum-
based change-point analysis to EMG-onset detection.
J. Electromyogr. Kinesiol. 2010; 20: 750–760.
PubMed Abstract|Publisher Full Text

11. Ming L, XiongC, ZhangQ, et al.: FuzzyEntropy-BasedMuscleOnset
DetectionUsing Electromyography (EMG). Intelligent Robotics and
Applications. Xianmin Z, Liu H, Chen Z, et al. editors. Springer
International Publishing; 2014; pp. 89–98.

12. Solnik S, Devita P, Rider PM, et al. : Teager-Kaiser Operator
improves the accuracy of EMG onset detection independent of
signal-to-noise ratio. Acta Bioeng. Biomech. 2008; 10(2): 65–68.
PubMed Abstract

13. Merlo A, Farina D, Merletti R: A fast and reliable technique for
muscle activity detection fromsurface EMGsignals. I.E.E.E. Trans.
Biomed. Eng. 2003; 50: 316–323.
Publisher Full Text

14. Zhang X, Zhou P: Sample entropy analysis of surface EMG
for improved muscle activity onset detection against
spurious background spikes. J. Electromyogr. Kinesiol. 2012; 22(6):
901–907.
PubMed Abstract|Publisher Full Text|Free Full Text

15. Ramos-Murguialday A, et al. : Brain–machine interface in chronic
stroke rehabilitation: A controlled study. Ann. Neurol. 2013; 74:
100–108.
PubMed Abstract|Publisher Full Text|Free Full Text

16. Lan Y, Yao J, Dewald JPA: The impact of shoulder abduction
loading on EMG-based intention detection of hand opening
and closing after stroke. 2011 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. 2011;
pp. 4136–4139.
Publisher Full Text

17. Irastorza-Landa N, et al. : EMG Discrete Classification
Towards a Myoelectric Control of a Robotic Exoskeleton
in Motor Rehabilitation. Biosystems and Biorobotics. 2017; 15:
159–163.
Publisher Full Text

18. Hu XL, Tong KY, Song R, et al. : A comparison between
electromyography-driven robot and passive motion device on
wrist rehabilitation for chronic stroke. Neurorehabil. Neural
Repair. 2009; 23: 837–846.
PubMed Abstract|Publisher Full Text

19. De Luca CJ: The Use of Surface Electromyography in
Biomechanics. J. Appl. Biomech. 1997; 13: 135–163.
Publisher Full Text

20. Bilodeau M, Cincera M, Arsenault AB, et al. : Normality and
stationarity of EMG signals of elbow flexormuscles during ramp
and step isometric contractions. J. Electromyogr. Kinesiol. 1997; 7:
87–96.
PubMed Abstract|Publisher Full Text

21. Parker PA, Stuller JA, Scott RN: Signal processing for the
multistate myoelectric channel. Proc. IEEE. 1977; 65: 662–674.
Publisher Full Text

22. Merletti R, Lo Conte LR: Advances in processing of surface
myoelectric signals: Part 1. Med. Biol. Eng. Comput. 1995; 33:
362–372.
PubMed Abstract|Publisher Full Text

23. Shwedyk E, Balasubramanian R, Scott RN: A Nonstationary Model
for the Electromyogram. I.E.E.E. Trans. Biomed. Eng. 1977; BME-24:
417–424.
Publisher Full Text

24. Clancy EA, Hogan N: Probability density of the surface
electromyogram and its relation to amplitude detectors. I.E.E.E.
Trans. Biomed. Eng. 1999; 46: 730–739.
Publisher Full Text

25. Devasahayam SR: Signals and systems in biomedical
engineering: physiological systems modeling and signal
processing. 468.

26. Clancy EA: Electromyogram amplitude estimationwith adaptive
smoothing window length. I.E.E.E. Trans. Biomed. Eng. 1999; 46:
717–729.
Publisher Full Text

27. Clancy EA, Hogan N: Single site electromyograph amplitude
estimation. I.E.E.E. Trans. Biomed. Eng. 1994; 41: 159–167.
Publisher Full Text

28. Bonato P, D’Alessio T, Knaflitz M: A statistical method for the
measurement of muscle activation intervals from surface
myoelectric signal during gait. I.E.E.E. Trans. Biomed. Eng. 1998; 45:
287–299.
Publisher Full Text

29. Staude G, Wolf W, Appel U: Automatic event detection in surface
EMG of rhythmically activated muscles. Proceedings of 17th
International Conference of the Engineering in Medicine and Biology
Society. Vol. 2. 1995; pp. 1351–1352.

30. Lidierth M: A computer based method for automated
measurement of the periods of muscular activity from an EMG
and its application to locomotor EMGs. Electroencephalogr. Clin.
Neurophysiol. 1986; 64: 378–380.
PubMed Abstract|Publisher Full Text

31. Staude G, Wolf W, Appel U: Automatic event detection in surface
EMG of rhythmically activated muscles. Annual International
Conference of the IEEE Engineering in Medicine and Biology -
Proceedings. Vol. 17. 1995; pp. 1351–1352.

32. VaismanL, Zariffa J, PopovicMR:Applicationof singular spectrum-
based change-point analysis to EMG-onset detection.
J. Electromyogr. Kinesiol. 2010; 20: 750–760.
PubMed Abstract|Publisher Full Text

33. Yuvaraj M: 1608Moni/EMG_detectors: A systematic investigation
of detectors for low sig-nal-to-noise ratio EMG signals (v1.0.0).
[Code]. Zenodo. 2023.
Publisher Full Text

34. Yuvaraj M, Raja P, David A, et al. : Supplementary material:
A Systematic Investigation of Detectors for Low Signal-to-Noise
Ratio EMG Signals.docx. [Data]. figshare. Figure. 2023.
Publisher Full Text

35. Yuvaraj M, Raja P, David A, et al.: Dataset: A systematic investigation
of detectors for low signal-to-noise ratio EMG signals. [Data].
figshare. 2023.
Publisher Full Text

36. Wen W: Does delay in feedback diminish sense of agency?
A review. Conscious Cogn. 2019; 73: 102759.
PubMed Abstract|Publisher Full Text

37. Hu XL, et al. : The effects of post-stroke upper-limb training with
an electromyography (EMG)-driven hand robot. J. Electromyogr.
Kinesiol. 2013; 23: 1065–1074.
PubMed Abstract|Publisher Full Text

Page 17 of 32

F1000Research 2024, 12:429 Last updated: 18 APR 2024

https://doi.org/10.1016/S1474-4422(09)70150-4
http://www.ncbi.nlm.nih.gov/pubmed/17218714
https://doi.org/10.1136/bmj.39059.456794.68
https://doi.org/10.1136/bmj.39059.456794.68
https://doi.org/10.1136/bmj.39059.456794.68
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767284
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767284
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767284
http://www.ncbi.nlm.nih.gov/pubmed/25827275
https://doi.org/10.1016/j.conb.2015.03.007
https://doi.org/10.1016/j.conb.2015.03.007
https://doi.org/10.1016/j.conb.2015.03.007
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523462
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523462
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523462
http://www.ncbi.nlm.nih.gov/pubmed/20675187
https://doi.org/10.1016/j.clinph.2010.07.010
https://doi.org/10.1016/j.clinph.2010.07.010
https://doi.org/10.1016/j.clinph.2010.07.010
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558611
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558611
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558611
http://www.ncbi.nlm.nih.gov/pubmed/11561664
https://doi.org/10.1109/7333.948456
https://doi.org/10.1109/7333.948456
https://doi.org/10.1109/7333.948456
https://doi.org/10.1016/j.bspc.2016.12.014
http://www.ncbi.nlm.nih.gov/pubmed/20303784
https://doi.org/10.1016/j.jelekin.2010.02.010
https://doi.org/10.1016/j.jelekin.2010.02.010
https://doi.org/10.1016/j.jelekin.2010.02.010
http://www.ncbi.nlm.nih.gov/pubmed/19032000
https://doi.org/10.1109/TBME.2003.808829
http://www.ncbi.nlm.nih.gov/pubmed/22800657
https://doi.org/10.1016/j.jelekin.2012.06.005
https://doi.org/10.1016/j.jelekin.2012.06.005
https://doi.org/10.1016/j.jelekin.2012.06.005
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514830
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514830
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514830
http://www.ncbi.nlm.nih.gov/pubmed/23494615
https://doi.org/10.1002/ana.23879
https://doi.org/10.1002/ana.23879
https://doi.org/10.1002/ana.23879
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700597
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700597
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700597
https://doi.org/10.1109/IEMBS.2011.6091027
https://doi.org/10.1007/978-3-319-46669-9_29
http://www.ncbi.nlm.nih.gov/pubmed/19531605
https://doi.org/10.1177/1545968309338191
https://doi.org/10.1177/1545968309338191
https://doi.org/10.1177/1545968309338191
https://doi.org/10.1123/jab.13.2.135
http://www.ncbi.nlm.nih.gov/pubmed/20719694
https://doi.org/10.1016/S1050-6411(96)00024-7
https://doi.org/10.1016/S1050-6411(96)00024-7
https://doi.org/10.1016/S1050-6411(96)00024-7
https://doi.org/10.1109/PROC.1977.10545
http://www.ncbi.nlm.nih.gov/pubmed/7666682
https://doi.org/10.1007/BF02510518
https://doi.org/10.1007/BF02510518
https://doi.org/10.1007/BF02510518
https://doi.org/10.1109/TBME.1977.326175
https://doi.org/10.1109/10.764949
https://doi.org/10.1109/10.764948
https://doi.org/10.1109/10.284927
https://doi.org/10.1109/10.661154
http://www.ncbi.nlm.nih.gov/pubmed/2428587
https://doi.org/10.1016/0013-4694(86)90163-X
https://doi.org/10.1016/0013-4694(86)90163-X
https://doi.org/10.1016/0013-4694(86)90163-X
http://www.ncbi.nlm.nih.gov/pubmed/20303784
https://doi.org/10.1016/j.jelekin.2010.02.010
https://doi.org/10.1016/j.jelekin.2010.02.010
https://doi.org/10.1016/j.jelekin.2010.02.010
https://doi.org/10.5281/zenodo.7750951
https://doi.org/10.6084/m9.figshare.22232527.v3
https://doi.org/10.6084/m9.figshare.22317658.v2
http://www.ncbi.nlm.nih.gov/pubmed/31173998
https://doi.org/10.1016/j.concog.2019.05.007
https://doi.org/10.1016/j.concog.2019.05.007
https://doi.org/10.1016/j.concog.2019.05.007
http://www.ncbi.nlm.nih.gov/pubmed/23932795
https://doi.org/10.1016/j.jelekin.2013.07.007
https://doi.org/10.1016/j.jelekin.2013.07.007
https://doi.org/10.1016/j.jelekin.2013.07.007


Open Peer Review
Current Peer Review Status:   

Version 3

Reviewer Report 05 April 2024

https://doi.org/10.5256/f1000research.164086.r258897

© 2024 Wolf W. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Werner Wolf  
1 Universitat der Bundeswehr Munchen, Neubiberg, Bavaria, Germany 
2 Universitat der Bundeswehr Munchen, Neubiberg, Bavaria, Germany 

The manuscript is now in shape, even some points (e.g. the cost definition) can be discussed 
critically. 
One point can be solved easily: it sounds really inconsistant to measure a sEMG at no residual 
movement. EMG activity shows muscle activity and muscle activity means force at a joint. No 
residual movement at EMG activity can be caused by 
- resolution of the movement measurement is limited 
- friction of the joint to high or isometric condition 
- cocontraction (which is probably in stroke) 
The authors should mention this point shortly and they should use the term "no visible 
movement" as they do on page 15 para 4, line 3. Use this formulation always. 
Maybe, references 7, 9 and 33 need formal corrections.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biosignal processing, human motor control

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 2

Reviewer Report 16 February 2024

https://doi.org/10.5256/f1000research.161421.r242339

 
Page 18 of 32

F1000Research 2024, 12:429 Last updated: 18 APR 2024

https://doi.org/10.5256/f1000research.164086.r258897
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5256/f1000research.161421.r242339


© 2024 Crocher V. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Vincent Crocher  
1 The University of Melbourne, Melbourne, Victoria, Australia 
2 The University of Melbourne, Melbourne, Victoria, Australia 
3 The University of Melbourne, Melbourne, Victoria, Australia 

I have no more comments.
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Rehabilitation robotics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 19 February 2024

https://doi.org/10.5256/f1000research.145296.r223113

© 2024 Wolf W. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Werner Wolf  
1 Universitat der Bundeswehr Munchen, Neubiberg, Bavaria, Germany 
2 Universitat der Bundeswehr Munchen, Neubiberg, Bavaria, Germany 
3 Universitat der Bundeswehr Munchen, Neubiberg, Bavaria, Germany 
4 Universitat der Bundeswehr Munchen, Neubiberg, Bavaria, Germany 

First of all, I would like to confirm the detailled review of Vincent Crocher. But I would like to 
underline his criticism on the lengthy elaboration of the rehabilitation issue. The manuscript 
focusses on event detection in stochastic signals and, therefore, it can be mapped to the biosignal 
processing field. The EMG processing  is only specificly addressed by the inclusion of the 
biophysical signal model. And the topic „robots in rehalitation“ is a separate field not really related 
main issue of this manuscrpt. 
Thus, the total rehabilitation part – not only the BCI passages -  can be reduced – as Vincent 
already states – to a single sentence and a removal of about 25 references. 
It sounds also contradicting to refer to the case „without residual movement“ but to measure 
surface EMG. What presumably is addressed by the manuscript are combined muscle excitations; 
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i.e. to generate stiffness in the arm when fingers are grasping an object. But such a stiffness in the 
forearm is ambiguous, because the same stiffness will be generated with different finger 
movements. I will not continue this rehabilitation issue, because it is not the concern of this 
manuscript. – as mentioned above. 
Summarizing: The main results are interesting and they should be provided in a compressed form.
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1. Summary 
 
Thank you very much for taking the time to review this manuscript. Please find the detailed 
responses below and the corresponding revisions/corrections highlighted/in track changes 
in the re-submitted files. 
 
2. Point-by-point response to Comments and Suggestions for Authors 
 
In the following, the reviewer’s comments are in Italics which is followed by our response.

First of all, I would like to confirm the detailled review of Vincent Crocher. But I would like 
to underline his criticism on the lengthy elaboration of the rehabilitation issue. The 
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manuscript focusses on event detection in stochastic signals and, therefore, it can be 
mapped to the biosignal processing field. The EMG processing  is only specificly addressed 
by the inclusion of the biophysical signal model. And the topic „robots in rehalitation“ is a 
separate field not really related main issue of this manuscrpt. Thus, the total rehabilitation 
part – not only the BCI passages -  can be reduced – as Vincent already states – to a single 
sentence and a removal of about 25 references.

 
Response: Our primary goal is to identify a suitable EMG detector for on-off control of 
robotic assistance during therapy. This paper focusses on the problem of event detection of 
EMG signals as this is the first step towards implementing an effective closed loop control of 
robotic assistance using EMG. The result of this analysis identifies the most promising 
detectors for application in EMG-driven robot assisted therapy. The “cost” for identifying the 
detectors is also designed accordingly. Therefore, in the introduction we have given the 
background about the necessity to identify the best detector that works well with low SNR 
EMG signals. However, we have reduced the introduction and discussion section which now 
highlights only the need for identifying the best detector for application such as EMG driven 
robot assisted therapy. 
 
Original text: Substantial recovery of sensory-motor function after a stroke is possible with 
high-intensity and high-dosage movement training. 1 Rehabilitation robots can facilitate 
such high-intensity movement training while providing physical assistance to the user for 
completing movements consistently and precisely. About 30% of stroke survivors are 
severely impaired 2 , 3 and require physical assistance to actively engage in movement 
training. While physical assistance from a robot can motivate such subjects to attempt and 
train movements, they can also provide inappropriately timed or too much assistance 4 , 5 

leading to slacking, where patients reduce their voluntary effort and exploit robotic 
assistance to perform the movements. Inappropriately timed robotic assistance also alters 
the patient’s sense of agency or subjective awareness of control. This could lead to a lack of 
intrinsic motivation and attention, affecting motor learning and performance. 6 Positive 
therapeutic effects have been observed only when patients actively engage in therapy. 7 – 10 

Jo et al. 11 reported no improvement in clinical scales with passive range of motion therapy. 
Thus, active patient participation during movement therapy is an essential ingredient for 
sensorimotor recovery. Robotic assistance contingent on a subject’s intention to move is an 
effective way to guide neuroplasticity. 
 
Reduced text in the manuscript: 
 
Active patient participation during movement therapy is an essential ingredient for 
sensorimotor recovery after a stroke. About 30% of stroke survivors are severely impaired 2 
, 3 and require physical assistance to actively engage in movement training. Robotic 
assistance can motivate such subjects to attempt and train movements and when it is 
contingent on the intention to move it may be an effective way to guide neuroplasticity. 12 
 

It sounds also contradicting to refer to the case „without residual movement“ but to 
measure surface EMG. What presumably is addressed by the manuscript are combined 
muscle excitations; i.e. to generate stiffness in the arm when fingers are grasping an 
object. But such a stiffness in the forearm is ambiguous, because the same stiffness will be 

○
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generated with different finger movements. I will not continue this rehabilitation issue, 
because it is not the concern of this manuscript. – as mentioned above.
Summarizing: The main results are interesting, and they should be provided in a 
compressed form.

○

 
Response: The study by Balasubramanian et al [1], about 70% of severely impaired stroke 
patients without residual movement in fingers and wrist had residual EMG. 
 
The lack of residual movements despite the presence of EMG in stroke patients could be 
because of several reasons, one such is co-contraction in which case we could still pick up 
residual EMG. We agree with the reviewer that the same stiffness can be generated with 
different finger movements. However, our objective is not to decode stiffness, but to see if 
there is EMG activity in a muscle of interest – a muscle the patient is trying to activate while 
attempting a movement. 
 
The patient could be activating other (antagonists or unrelated) muscles as well, but this is 
not relevant to the question of whether the muscle of interest displays EMG activity when it 
is being activated. We are primarily interested in the most appropriate detector for low SNR 
EMG from any given muscle, irrespective of what happens with other muscles. Once such a 
detector is identified, different forms of therapeutic interventions become possible, where 
patients could be asked to attempt activation of certain muscles while suppressing others.  

Competing Interests: No competing interests were disclosed.
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The authors propose to evaluate and compare 13 sEMG onset detectors specifically on low signal-
to-noise EMG (0db and -3db). The authors propose a thorough work and use an appropriate 
methodology (including generation of simulated EMG signals, wide range of detectors and tuning, 
outcome evaluation cost and analysis) which is aligned with the objective of the paper and the 
application (the use of EMG onset for rehabilitation robotics control). 
 
The paper is clearly of interest in the field of neuro-rehabilitation robotics and I believe that both 
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the results and the methodology used (and associated code provided, which is reasonably 
documented) are of direct interest to the field. 
 
Specific comments: 
 
Introduction:

The part on BCI drawbacks can be shorten into a simple sentence to keep the introduction 
more straightforward (this is not the focus of the paper). 
 

○

"In this paper, EMG always refers to surface-recorded muscle": this indeed makes sense for 
the neuro-rehabilitation application of interest here and even more generally given the 
wider adoption and ease of use of surface EMG.I would thus suggest to bring this statement 
as early as in the introduction and adopt the sEMG acronym across the paper as this is an 
unambiguous terminology widely used.

○

Methods:
In the "Simulation of surface EMG signal" section, I would suggest to move the part of the 
last paragraph ("The phenomenological models were based on the work of De Luca...") to 
the next section to ease the reading. This part is relative to the Phenomenological models 
only. 
 

○

Figure 1 presenting examples of the three types of generated signals show the biophysical 
signal of a smaller (20 times) than the phenomenological ones. While the absolute 
amplitude likely does not affect the detectors, this is slightly confusing. Is there any valid 
reason for this difference or can these three signals be equalised to the same amplitude? 
 

○

In Table 1, authors refer to 'Weights' for \alpha whereas it appears that there is only a single 
value for each detector. Please clarify. 
 

○

In Table 1, while RMS and Lidierth detectors do use a filter for the conditioning, those filters 
cut-off frequencies are not listed as parameters. Do authors intentionally chose fixed, non-
optimised, frequencies for those (and if so, why)? or is this a simple oversight in the table? 
 

○

After Eq 12, authors should clearly introduce \alpha and refer to it as weight as this is the 
fist time it is properly introduced. I would also recommend to explicit it earlier on, as the 
Weight (weights?) are introduced in Table 1 earlier and earlier in the text but without 
explanation making it hard to follow.

○

Methods: On the cost definition:
According to Eq. 16, f(deltat) is 0 (ideal) when the detection happens before the actual onset: 
\deltat<0ms and so is effectively a False positive. While I understand that this cannot be 
avoided with the chosen structure of the cost: this suggests that the within the overall cost, 
the latency and the false negative rates are more redundant whereas the false negative rate 
is quite independent of the other two. 
 

○

More generally, as the authors show that most detectors already behave quite poorly for 
such low SNR sEMG, the chosen cost bounds, and especially the 20% seems quite high for 
actual use. Given the application in mind where the objective is to detect one true onset as 
quickly as possible (and 50ms appears reasonable for a robotics assistance), I wonder if a 
cost accounting for a more strict false negative rate and more tolerant (if accounted at all) 

○
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for false positive would make more sense. Indeed, only the earliest positive detection after 
onset can be considered useful for an application using this signal as a trigger. Wouldn't it 
make sense to also train and evaluate the detectors on a cost based solely on a very strict 
false positive rate (5%?) and not included FN in the cost (given that only the earliest 
detection after true onset matters)? Regarding the FP and FN rates, those are also 
calculated per trial, meaning that 20% (or even 5%) can mean that each trial has at least 
several FP before onset and not that 20% (or 5%) of the trials do have a FP. This is this latest 
figure that is of direct interest for the application. Authors should clearly discuss this point 
on how these results translate to real scenarios and provide results showing in what 
percentage of test trials FP detection happens before onset.

Discussion:
It could be interesting to discuss the possibility that the signal processing (detectors) might 
not be necessarily implemented at the same frequency than the one the sEMG data is 
collected. Indeed it is common in existing systems to have an EMG acquisition faster than 
the robotic controller (typically a >2kHz EMG sampling for a 1kHz controller). Does authors 
have clues on how that might differently affect the different detectors? 
 

○

While the use of simulated (generated) EMG signals to evaluate the performance of the 
detector is appropriate and allows for robust and repeatable outcomes, it would be an 
interesting addition to also perform a short evaluation on actual low signal-to-noise EMG 
datasets. 
 
On that point of potential difference with actual EMG signals, authors rightly point that they 
here test the optimal behaviour of the detectors, i.e. they would likely all perform worst on 
actual signals, especially when muscle activation is not constant over a long period. Can 
authors infer and discuss some difference in performance between the detectors for short 
activation (typically flickers that can be encountered in rehabilitation applications)? Some 
detectors are based on relatively long windows of 150ms, and while authors explain in the 
discussion that the best detectors have a latency of <50ms and so likely suitable for short 
activation bursts, how this would affect the detectors with longer window? Could they be 
likely be optimised differently for such signals?

○

Minor/typos:
 "Devasahayam S43"  => "Devasahayam43" 
 

○

 In Table 2, some window sizes are in (ms) some in (s)○

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly
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expertise to confirm that it is of an acceptable scientific standard, however I have 
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1. Summary 
Thank you very much for taking the time to review this manuscript. Please find the detailed 
responses below and the corresponding revisions/corrections highlighted/in track changes 
in the re-submitted files. 
 
2. Point-by-point response to Comments and Suggestions for Authors 
 
In the following, the reviewer’s comments are in Italics. Each comment has the response 
and The changes in the manuscript are presented by first showing verbatima segment of 
the text from the previous manuscript  followed by the modified text. Please find the 
response as a PDF file here. 
 
The authors propose to evaluate and compare 13 sEMG onset detectors specifically on low 
signal-to-noise EMG (0db and -3db). The authors propose a thorough work and use an 
appropriate methodology (including generation of simulated EMG signals, wide range of 
detectors and tuning, outcome evaluation cost and analysis) which is aligned with the 
objective of the paper and the application (the use of EMG onset for rehabilitation robotics 
control). The paper is clearly of interest in the field of neuro-rehabilitation robotics and I 
believe that both the results and the methodology used (and associated code provided, 
which is reasonably documented) are of direct interest to the field. 
 
Introduction:

The part on BCI drawbacks can be shorten into a simple sentence to keep the introduction 
more straightforward (this is not the focus of the paper).

○

 
Response: We have shortened this segment in the introduction section as suggested. 
 
Original text: 
They have a poor signal-to-noise ratio (SNR) with large trial-to-trial intra-subject variability. 
20 The use of sophisticated signal processing techniques can increase the delay in intent 
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detection, which can result in inappropriately timed robotic assistance leading to 
suboptimal recovery 12 , 21  
EEG-BCI modalities do not precisely identify which limb segment is intended to move due to 
its low information rate. 21  
Event-related desynchronization of the EEG sensorimotor rhythm may not necessarily 
reflect movement intention. 22  
Critical for practical use, current EEG-BCI systems are too complex and time-consuming for 
clinical work. 23 
 
Change in the manuscript: They often exhibit a poor signal-to-noise ratio, with significant 
trial-to-trial intra-subject variability [20]. Unlike EMG systems, EEG-BCI modalities lack task 
specificity [21]. Moreover, their complexity and time-consuming nature prevent their 
routine clinical use [23].

"In this paper, EMG always refers to surface-recorded muscle": this indeed makes sense for 
the neuro-rehabilitation application of interest here and even more generally given the 
wider adoption and ease of use of surface EMG. I would thus suggest to bring this 
statement as early as in the introduction and adopt the sEMG acronym across the paper as 
this is an unambiguous terminology widely used.

○

Response: 
We have moved the sentence to the introduction and used “sEMG” throughout the paper. 
 
Change in the manuscript: 
In this paper, we consider surface-recorded muscle electromyogram activity (sEMG), as this 
modality will most likely be employed in routine robot-assisted therapy. sEMG could be used 
as a viable alternative to address the drawbacks of EEG-BCI for robot-assisted therapy. 
 
Methods:

In the "Simulation of surface EMG signal" section, I would suggest to move the part of the 
last paragraph ("The phenomenological models were based on the work of De Luca...") to 
the next section to ease the reading. This part is relative to the Phenomenological models 
only.

○

Response: We have moved the paragraph to the phenomenological models’ section as 
suggested. 
  
Change in the manuscript: 
“ The phenomenological models were based on the work of De Luca 37 where an sEMG signal 
from a muscle activated at a fixed level can be treated as zero-mean white noise followed by a 
shaping filter (electrode properties); this model is widely accepted in the literature. 24, 38 – 41… 
The first step in this model is the generation of the zero-mean unit-variance white Gaussian and 
Laplacian noise …”

Figure 1 presenting examples of the three types of generated signals show the biophysical 
signal of a smaller (20 times) than the phenomenological ones. While the absolute 
amplitude likely does not affect the detectors, this is slightly confusing. Is there any valid 
reason for this difference or can these three signals be equalised to the same amplitude

○

Response: 
The amplitude of biophysical model is in mV since it is modelled using physics of the EMG 
generation and recording process. Whereas with the phenomenological model the EMG 
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signal is generated as bandpass filtered white noise, and thus its amplitude is in arbitrary 
units. We have now addressed this issue by scaling the biophysical models to have similar 
amplitudes to that of the phenomenological models to avoid any confusion.

In Table 1, authors refer to 'Weights' for \alpha whereas it appears that there is only a 
single value for each detector. Please clarify.

○

Response: 
The optimal parameter for each detector type is selected by doing search over a range of 
values for each parameter. The performance of a detector is tested with different weights in 
the range α ∈{1,2,3,4,5}.  However, only one value by detector is used for computing the 
threshold. “Weights” in Table 1 has been modified as “Weight”.

In Table 1, while RMS and Lidierth detectors do use a filter for the conditioning, those 
filters cut-off frequencies are not listed as parameters. Do authors intentionally chose 
fixed, non-optimised, frequencies for those (and if so, why)? or is this a simple oversight in 
the table?

○

Response: 
The Lidierth detector utilizes rectification for signal conditioning and does not incorporate a 
low-pass filter. This oversight in the table has been rectified. On the other hand, the RMS 
detector, as per the original paper, employed a band-pass filter between 10 Hz and 250 Hz 
(fs/2) on recoded raw EMG data to obtain the EMG signal within the required frequency 
spectrum. However, in this analysis, simulated data was generated by band-pass filtering 
white noise between 10 and 450 Hz. Therefore, the band-pass filter for signal conditioning 
in the RMS detector was redundant. Hence, we implemented the detector without the band-
pass filter and achieved similar results.

After Eq 12, authors should clearly introduce \alpha and refer to it as weight as this is the 
first time it is properly introduced. I would also recommend to explicit it earlier on, as the 
Weight (weights?) are introduced in Table 1 earlier and earlier in the text but without 
explanation making it hard to follow.

○

Response: 
Thank you, we have followed this suggestion as follows: 
Change in the manuscript: 
The threshold h is adaptive and is calculated for each trial by adding α times the standard 
deviation of first 3 seconds data (Figure 3) to the mean. α is termed as weight for threshold 
in this paper.  
 
Methods: On the cost definition:

According to Eq. 16, f(deltat) is 0 (ideal) when the detection happens before the actual 
onset: \deltat<0ms and so is effectively a False positive. While I understand that this cannot 
be avoided with the chosen structure of the cost: this suggests that the within the overall 
cost, the latency and the false negative rates are more redundant whereas the false 
negative rate is quite independent of the other two.

○

Response: 
The response is with the understanding that the reviewer's comment is as follows: “This 
suggests that the within the overall cost, the latency and the false negative rates are more 
redundant whereas the false positive rate is quite independent of the other two.” 
We performed a correlation analysis between false negative rate and the latency, which 
showed that:

Moderate positive correlation between false negative rate and latency with 0 dB SNR ○
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signal of Gaussian and biophysical model (Figure 1).
No correlation between FNR and latency with -3 dB SNR across all three models 
(Figure 2).

○

Therefore, the three factors are independent at lower SNR and there is a need to account 
for them separately in order to evaluate the performance of the detector. Scatter plots of 
FNR vs. latency at both 0dB and -3dB for one of the detector Hodges are presented in 
Figures 1 and 2, respectively. Similar results are observed for all other detectors. 
Fig.1. Correlation plot of false negative rate vs. latency of Hodges detector tested on the three 
signals model (from left: Gaussian, Laplacian and Biophysical) with 0dB SNR. 
Fig.2: Correlation plot of false negative rate v.s latency of Hodges detector tested on the three 
signal model (from left: Gaussian, Laplacian and Biophysical) with -3 dB SNR. 
The figures can be found here

More generally, as the authors show that most detectors already behave quite poorly for 
such low SNR sEMG, the chosen cost bounds, and especially the 20% seems quite high for 
actual use. Given the application in mind where the objective is to detect one true onset as 
quickly as possible (and 50ms appears reasonable for a robotics assistance), I wonder if a 
cost accounting for a more strict false negative rate and more tolerant (if accounted at all) 
for false positive would make more sense. Indeed, only the earliest positive detection after 
onset can be considered useful for an application using this signal as a trigger. Wouldn't it 
make sense to also train and evaluate the detectors on a cost based solely on a very strict 
false positive rate (5%?) and not included FN in the cost (given that only the earliest 
detection after true onset matters)? Regarding the FP and FN rates, those are also 
calculated per trial, meaning that 20% (or even 5%) can mean that each trial has at least 
several FP before onset and not that 20% (or 5%) of the trials do have a FP. This is this 
latest figure that is of direct interest for the application. Authors should clearly discuss this 
point on how these results translate to real scenarios and provide results showing in what 
percentage of test trials FP detection happens before onset.

○

Response: 
Firstly, we have modified the term EMG-triggered robot-assisted therapy  to EMG-driven 
robot-assisted therapy to emphasise that we are interested in implementing a therapy 
modality where the robot-assisted movement is contingent on the presence or absence of 
sEMG. Continued assistance required the continued presence of sEMG. This has been 
modified in the manuscript. We have also changed “sEMG-triggered” to “sEMG-driven”. 
 
Original text: 
In sEMG-triggered robot-assisted therapy, robotic assistance is triggered whenever sEMG is 
detected in real-time in the target muscle during the move phase of a trial. 
 
Change in the manuscript: 
In sEMG-driven robot-assisted therapy, the robot remains inactive during the rest phase, 
while in the move phase the robot-assisted movement is contingent upon the presence or 
absence of sEMG at any given time, thus continued sEMG is required to continuously 
receive robotic assistance. 
 
Response: 
Making robot-assistance contingent on continued presence of sEMG is important to keep 
the subject actively involved during the entire duration of a task, and thus avoid slacking. 
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Such a modality requires both the rejection of false positives, quick detection of sEMG 
onset, and the continued detection of sEMG when it is present (i.e. low false negatives). Low 
false negative rates may be essential for the user’s motivation and sense of agency. 
For higher SNR signals, the presence of the false negative rate may not be important in the 
cost function, but it is crucial for low SNR signals (0dB or -3dB) including the false negative 
rate. 
Also, the sample entropy, SSA and CWT detectors that performed worse across all three 
models had acceptable false positive rate and latency, but the false negative rate alone was 
more than 20% which contributed to higher cost. These detectors will also be considered 
suitable for application in robot assisted therapy if the false negative rate is not included in 
the cost. This suggest that it is important to optimised for false negative rate as well since 
we are looking at low SNR EMG signals. 
We have now included a short paragraph explaining why the three terms are included in the 
cost function: 
 
Original text: 
The performance of a detector must consider the accuracy (false positive and false negative 
rate) and the detection latency. 
 
Change in the manuscript: 
An optimal EMG detector designed for use in EMG-driven robot-assisted therapy should 
possess the capability to quickly identify the onset of sEMG, efficiently eliminate false 
positives, and consistently detect sEMG when it is present (lower false negatives). Such a 
detector is essential for maintaining user’s motivation and sense of agency.  
 
Response: 
We agree that the 20% false positive rate might be too high. But since we are looking at very 
low SNR signal a strict FPR of 5% might decide all the detectors as not suitable for 
application in robot-assisted therapy. Also optimising for such low FPR could lead to 
parameter choices that compromise the true positive rate and latency since we are working 
with low SNR signals. Therefore, we have decided to use a more sensitive detector.

We do not think that choosing a sensitive detector is a problem because the output of 
the detector will not be used to directly drive robot-assistance. Some form of low-pass 
filtering, or time-based filtering will be employed to smooth out jittery outputs from 
the detector before activating robotic-assistance. Such filtering operations on the 
detector output is commonly employed (e.g. Ramos-Murguialday et al., 2013). This 
can help filter out most short-duration false-positive pulses from activating robotic 
assistance. This filtering operation will increase the latency, which can impact the 
sense of agency and the perception of the user about the system’s responsiveness. 
Previous work indicates that a 200-300ms delay is well tolerated when reporting 
agency. Starting with a sensitive detector, we can experiment with different levels of 
filtering of the output with feedback from patients to yield an optimal detector. 
Individualising the detector and the filtering block is likely to favour patients to feel in 
control of their own movements.

○

We have now included this in the Discussion to explain the 20% cut-off choice for 
determining a good detector. 
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Change in the manuscript: 
In this analysis, a cost of 0.2 was selected for the application in sEMG-driven robot-assisted 
therap, corresponding to a 50 ms latency, 20% FPR or 20% FNR.  Permitting up to a 20% 
false positive rate might be too high, leading to the selection of a highly sensitive detector 
as the best choice. However, we  believe that choosing a sensitive detector  is not a 
problem, because the raw output of this detector is unlikely to be used directly to drive the 
robot-assistance. Some form of low-pass or time-based filtering (like the one employed by 
Ramos-Murguialday et al.1) will be employed to filter out show false positives/negative 
pulses before using it to drive robotic assistance. This filtering operation reduce the FPR and 
FNR at the expense of introducing an additional latency; a delay of 200-300ms are well 
tolerated when reporting for sense of agency2. The choice of amount of filtering of the 
chose detector’s output will need to be done through feedback from patients/users of the 
system. 
A 20% false positive rate does not imply that 20% of the trials have a false positive rate. 
Instead, we assessed the consistency of the detectors by determining the number of test 
trials with a cost less than 0.2. A suitable detector is identified as one that has 80% of test 
trials with a cost less than 0.2, as indicated by the grey boxes in Table 3. These highlighted 
detectors exhibit more than 80% of test trials with at most a 20% false positive rate. This 
means that every trial could have false positives, and in our analysis the best detectors are 
the ones that consistently show less than 20% false positives in each test trial. 
 
Discussion:

It could be interesting to discuss the possibility that the signal processing (detectors) might 
not be necessarily implemented at the same frequency than the one the sEMG data is 
collected. Indeed, it is common in existing systems to have an EMG acquisition faster than 
the robotic controller (typically a >2kHz EMG sampling for a 1kHz controller). Do authors 
have clues on how that might differently affect the different detectors?

○

Response: 
Although the EMG acquisition happens at faster rate when compared to the robotic 
controller, the performance of the different detectors is likely to be not affected by the 
sampling rate. Consider that the EMG detectors are implemented at the same frequency as 
the EMG acquisition system (1 kHz) but the robotic controller is running at lower sampling 
frequency of 100 Hz. Then the output of the EMG detector is to be down sampled to match 
the frequency of the robotic controller which might lead to increase in latency by few 
milliseconds (10 ms) which might not affect the overall behaviour of the EMG-triggered 
robot assistance system.

While the use of simulated (generated) EMG signals to evaluate the performance of the 
detector is appropriate and allows for robust and repeatable outcomes, it would be an 
interesting addition to also perform a short evaluation on actual low signal-to-noise EMG 
datasets.

○

Response: 
We believe that evaluating the performance of the detector with real EMG datasets is 
outside the scope of this paper, in part as the same analysis approach cannot be applied 
with real data since we do not have full control over the amplitude and timing of the real 
EMG data, and we might not always have the ground truth. However, we are investigating if 
the outcomes of this study are supported by real data from patients from a previously 
concluded study.
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On that point of potential difference with actual EMG signals, authors rightly point that 
they here test the optimal behaviour of the detectors, i.e. they would likely all perform 
worst on actual signals, especially when muscle activation is not constant over a long 
period. Can authors infer and discuss some difference in performance between the 
detectors for short activation (typically flickers that can be encountered in rehabilitation 
applications)? Some detectors are based on relatively long windows of 150ms, and while 
authors explain in the discussion that the best detectors have a latency of <50ms and so 
likely suitable for short activation bursts, how this would affect the detectors with longer 
window? Could they be likely be optimised differently for such signals?

○

Response: 
From Table 3, we can see that the detectors that have more than 80% validation trials with 
cost consistently lower than 0.2 (latency < 50ms) have a window size of less than or equal to 
100 ms as the optimised parameter (Table 2). AGLR-G detector under biophysical model 
(0dB and -3dB) and Laplacian model (-3dB) with window size of 150 ms do not fall under the 
detectors with acceptable cost. This shows that detectors with a larger window size are less 
likely suitable for short activation bursts. However, on an average across all three models 
AGLR-G detector had reasonable percentage of validation trials with cost less than 0.2, thus 
we have mentioned in the Discussion that it is also one of the detectors that is likely to pick 
up short bursts. 
We conducted an analysis on EMG signals with short pulses of 500 ms duration. The results 
indicated that optimised parameters differed for the step EMG and pulse EMG. We also 
included the offset time in evaluating the performance of the detector. When optimising for 
offset time, higher weights for the threshold and a greater cut-off frequency for the low-
pass filter (smaller window sizes) were selected to minimise the offset time latency. Hence, 
the detectors that were optimised with step EMG with relatively longer window size may 
exhibit suboptimal performance on EMG, with intermittent muscle activity as they might 
miss to detect the short activation burst. 
 
Minor/typos:

 "Devasahayam S43"  => "Devasahayam43" 
 

○

 In Table 2, some window sizes are in (ms) some in (s)○

Response: 
These have been corrected in the manuscript.  

Competing Interests: No competing interests were disclosed.
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