Skip to main content
. 2024 Mar 23;10(7):e28387. doi: 10.1016/j.heliyon.2024.e28387

Table 2.

Governing equations of AFPSE.

Modeling of DC motor [12]
VKbdθdt=ReKTTm+L1KTdTmdt (1)
Kinematic relation of slider crank [12]
y=Rm(1cosθ)β+Lwhereβ=L1(RmLsinθ)2 (2)
Dynamic relations of slider crank [12]
{Tm=IeӪIe=Im+IR+IL(Rcosθβ)2+mL[(Rcosθ2)2+(Rsinθ+σL2)2]+mD(Rsinθ+σL)2σ=R2sinθcosθβL (3)
Thermal modeling [12]
{2πhhωspe(THTh)=mrTcThTcTh(lnThvco+Tc(Sdy0+vho)Th(Sdy0+vco)+Tcvho+lnTh(Sdy0+Spx0+vco)+TcvhoTh(Spx0+vco)+Tc(Sdy0+vho))+ΔmrΥ1(ThTc)(1ηreg)2πhcωsde(TCTc)=mrTcThTcTh(lnThvco+Tc(Sdy0+vho)Th(Sdy0+vco)+Tcvho+lnTh(Sdy0+vco)+Tc(Spx0+vhoThvco+Tc(Sdy0+Spx0+vho))+WΔmrΥ1(ThTc)(1ηreg) (4)
Estimated heat transfer coefficient in hot and cold chamber [13]
hh=0.0090Rem1.4892μcp2DhPrhc=0.0035Rem2.0048μcp2DhPr (5)
Pressure equation [12]
p(x,y)=mrThTcTh(sd(y0y)+spx+vh0)+Tc(sdy+vh0) (6)
Mass spring damper mechanism [12]
md2xdt2+cdxdt+kx=(p(x,y)p0)sp (7)
Estimated damping coefficient [13]
C(ω)=0.0618ω71.56ω6+15.79ω580.23ω4+207.11ω3212.50ω288.24ω+270.37 (8)