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Oriented feature pyramid network 
for small and dense wheat heads 
detection and counting
Junwei Yu 1,2*, Weiwei Chen 1,3, Nan Liu 4 & Chao Fan 1,2

Wheat head detection and counting using deep learning techniques has gained considerable attention 
in precision agriculture applications such as wheat growth monitoring, yield estimation, and resource 
allocation. However, the accurate detection of small and dense wheat heads remains challenging 
due to the inherent variations in their size, orientation, appearance, aspect ratios, density, and the 
complexity of imaging conditions. To address these challenges, we propose a novel approach called 
the Oriented Feature Pyramid Network (OFPN) that focuses on detecting rotated wheat heads 
by utilizing oriented bounding boxes. In order to facilitate the development and evaluation of our 
proposed method, we introduce a novel dataset named the Rotated Global Wheat Head Dataset 
(RGWHD). This dataset is constructed by manually annotating images from the Global Wheat Head 
Detection (GWHD) dataset with oriented bounding boxes. Furthermore, we incorporate a Path-
aggregation and Balanced Feature Pyramid Network into our architecture to effectively extract both 
semantic and positional information from the input images. This is achieved by leveraging feature 
fusion techniques at multiple scales, enhancing the detection capabilities for small wheat heads. 
To improve the localization and detection accuracy of dense and overlapping wheat heads, we 
employ the Soft-NMS algorithm to filter the proposed bounding boxes. Experimental results indicate 
the superior performance of the OFPN model, achieving a remarkable mean average precision of 
85.77% in oriented wheat head detection, surpassing six other state-of-the-art models. Moreover, 
we observe a substantial improvement in the accuracy of wheat head counting, with an accuracy of 
93.97%. This represents an increase of 3.12% compared to the Faster R-CNN method. Both qualitative 
and quantitative results demonstrate the effectiveness of the proposed OFPN model in accurately 
localizing and counting wheat heads within various challenging scenarios.

Over the past 50 years, the global population has experienced unprecedented growth, posing a significant chal-
lenge in ensuring food security through increased yields of major cereals such as wheat, rice, and  maize1. Wheat, 
as a staple in the human diet and a primary food source for domesticated animals worldwide, plays a critical 
role. Given the ongoing urbanization and upgrading of consumption patterns, it is predicted that a 60% increase 
in wheat production will be required by 2050. Recently, there has been a growing focus among scientists on 
studying wheat growth monitoring, health assessment, and plant breeding. In the breeding process, the number 
of wheat heads per unit area is a key trait that directly impacts yield  potential2. However, accurately counting 
wheat heads in the wild is a labor-intensive and time-consuming task that still relies on manual observation. 
Therefore, the need for accurate detection and automated counting of wheat heads with new technologies has 
become crucial. With the rapid advancements in deep learning and computer vision, image detection based on 
artificial neural networks shows tremendous potential in providing fast, accurate, and cost-effective solutions 
for wheat head detection and counting.

The emergence of smartphones, unmanned aerial vehicles (UAV) equipped with affordable digital cameras 
has made in-field images more readily available. Consequently, several large and well-annotated wheat head 
datasets for wheat head detection and yield estimation have been proposed. Deep learning methods offer an 
alternative solution to the traditional manual measurement. Utilizing the Global Wheat Datasets, two worldwide 
competitions have been conducted: the Global Wheat Head Detection 2020 powered by Kaggle and the Global 
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Wheat Challenge 2021 powered by AI crowd. These competitions attracted 2245 and 563 teams respectively, 
resulting in the development of more accurate and robust algorithms. The majority of these solutions rely on 
common computer vision methods for object detection, using horizontal bounding box annotation for each 
wheat head. Models developed for wheat head detection involve one-stage and two-stage detectors. One-stage 
detectors, such as YOLO (You Only Look Once)3 and SSD (Single Shot MultiBox Detector)4, directly predicts the 
bounding boxes and class probabilities of objects in a single pass of the input image. One-stage detectors tend 
to be faster and suitable for real-time applications, but they may sacrifice accuracy for small and overlapping 
objects. On the other hand, two-stage detector such as R-CNN and Faster R-CNN first generates a set of region 
proposals, then refines them with bounding box regression and classifies them into different categories using a 
convolutional neural network (CNN). Two-stage detectors typically achieve higher accuracy by leveraging more 
complex architectures and multi-stage processing pipeline but are slower in comparison.

With the active contributions of competition participants, significant progress has been made in wheat head 
detection using algorithms based on horizontal bounding boxes. However, there are still challenges in precise 
object representation and robust detection of wheat heads. These challenges are illustrated in Fig. 1 and arise 
due to multiple factors.

(1) Orientation: Wheat heads tend to grow towards the sunlight or in a specific direction influenced by pho-
totropism or natural wind. Additionally, the wind generated by UAVs during image acquisition can also 
impact the orientation of wheat heads. To accurately detect wheat heads, it is necessary to employ oriented 
object detection algorithms that can account for their orientation and enhance the accuracy of detection 
algorithms.

(2) Aspect ratio and overlap: Wheat heads have a distinctive aspect ratio and often overlap with each other. 
They typically have a long and narrow shape, resulting in a high aspect ratio. Wheat heads often grow in 
dense clusters, causing them to overlap with each other. Figure 1b displays different annotations using hori-
zontal bounding boxes and oriented bounding boxes. Traditional detection methods based on horizontal 
bounding boxes may struggle to accurately locate oriented wheat heads, leading to the inclusion of more 
background regions and imprecise representation of elongated wheat heads.

(3) Variations: There are various variations in wheat varieties, illumination conditions, and maturity stages, 
all of which impact wheat head detection. Wheat varieties worldwide exhibit variations in shape, size, and 
color. Different illumination conditions, such as shadows, uneven illumination, or varying intensities, can 
make traditional detection methods less reliable. Additionally, the appearance of wheat heads is influenced 
by their maturity stages, introducing challenges for accurate detection and counting.

To address the aforementioned challenging issues, it is crucial to explore alternative methods for object detec-
tion that effectively address the complexities associated with wheat head detection. Notably, wheat heads in field 
images, as well as ships and vehicles in aerial images, exemplify small and densely packed rotated objects with 
a large aspect ratio. Drawing inspiration from oriented object detection in aerial  images5. we advocate for the 

Figure 1.  The challenging wheat scenarios due to diverse factors: (a) orientation by phototropism or wind, 
(b) boxes location and overlap of bounding boxes, the wheat targets are labeled with red horizontal and blue 
oriented boxes, respectively; (c) variations of variety, illumination and maturity.
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utilization of oriented bounding boxes in wheat head detection. This approach offers a more precise representa-
tion of objects by incorporating orientation information into the detection process, facilitating accurate identifi-
cation and localization of wheat heads. By leveraging oriented object detection techniques, farmers and research-
ers can make informed decisions pertaining to crop management, yield estimation, and resource allocation.

Research has demonstrated that improving the size, diversity, and quality of the dataset proves more effec-
tive than increasing the complexity and depth of the  network6. Given that the detection of wheat heads extends 
beyond a single region or country, it is imperative to develop a model capable of identifying them across vari-
ous environments. In this study, we undertake the re-annotation of wheat images from the GWHD  dataset7 by 
incorporating oriented bounding boxes. This approach allows for precise localization of the wheat heads while 
excluding unnecessary background or unrelated objects that might impede accurate wheat identification.

The main contributions are summarized in the following points:

(1) A large-scale rotated wheat heads dataset RGWHD is introduced and the images are manually annotated 
using oriented bounding boxes(OBB). The RGWHD dataset provides a benchmark for small and dense 
rotated wheat heads detection.

(2) We propsoe a novel wheat head detection model named the Oriented Feature Pyramid Network (OFPN). 
This model incorporates ResNeXt as the backbone for feature extraction, and utilizes Path-aggregation and 
Balanced Feature Pyramid Network (PBFPN) for effective fusion of multi-scale features. Additionally, the 
OFPN network employs a Soft-NMS algorithm to filter and refine proposal bounding boxes, improving 
detection performance in cases of overlapping wheat heads.

(3) We conduct extensive experiments to compare our OFPN network with six state-of-the-art rotated object 
detection networks. Experimental results demonstrate the superiority of our proposed OFPN network in 
terms of rotated object detection accuracy, wheat category recognition, and wheat heads counting.

Related work
Object detection based on horizontal bounding boxes
Object detection is a fundamental task in computer vision that involves identifying and locating objects of interest 
within images. In addition to recognizing the presence of objects, accurate localization is achieved by marking 
their boundaries with horizontal bounding boxes. Object detection algorithms can be broadly classified into two 
types: one-stage8 and two-stage9. Two-stage algorithms, such as Faster R-CNN10, first generate a set of object 
candidates called object proposals using a dedicated proposal generator of Region Proposal Network (RPN)11. 
Subsequently, the classification and bounding box regression processes are performed. On the other hand, one-
stage algorithms such as YOLO and SSD skip the intermediate step of generating object candidates. Instead, 
they directly employ a convolutional neural network to extract features for object classification and bounding 
box regression. Although one-stage algorithms are faster, they typically exhibit lower accuracy compared to 
two-stage algorithms.

Convolutional Neural Networks (CNNs) are deep learning algorithms specifically designed for image rec-
ognition and analysis. Their application has revolutionized the field of precision agriculture. Researchers have 
successfully utilized CNNs to automatically count and monitor wheat heads. And this process is crucial for esti-
mating crop yield and making informed decisions about irrigation, fertilization, and  harvesting12. Lu proposed 
 TasselNet13, a deep convolutional neural network for accurately counting maize tassels in unconstrained field-
based environments. TasselNet utilizes a local counts regression network architecture to address challenges such 
as in-field variations, resulting in excellent adaptability and high precision in maize tassel counting.

Fares  Fourati14 developed a robust model that combines the Faster R-CNN and EfficientDet architectures, 
giving more prominence to the proposed final architectures and leveraging semi-supervised learning techniques 
to enhance previous models of objection detection. Fourati’s approach was submitted in response to the Global 
Wheat Challenge on GWHD, and their method achieved a top 6% ranking in the competition. In order to 
address the limitation of labor-intensive data collection in wheat breeding, S.  Khaki15 proposed a lightweight 
model WheatNet which utilizes a truncated MobileNetV2 and point-level annotations. WheatNet is robust and 
accurate in counting and localizing wheat heads across different environmental conditions.

M.  Hasan16 proposed a region-based convolutional neural network model to accurately detect, count, and 
analyze wheat spikes for yield estimation subjected to three fertilizer treatments. They tested their approach on 
an annotated wheat dataset called SPIKE comprising 10 wheat varieties with images captured by high definition 
RGB cameras mounted on a land-based imaging platform.  Wen17 utilized the GWHD dataset and introduced a 
novel wheat head detector named SpikeRetinaNet, which achieved outstanding detection performance.

Based on the GWHD dataset, the WheatLFANet model proposed by Ye,  J18 is able to operate efficiently on 
low-end devices while maintaining high accuracy and utility. Jun  S19 proposed a WHCnet model utilizing the 
Augmented Feature Pyramid Networks (AugFPN) to aggregate feature information and using cascaded Inter-
section over Union (IoU) threshold to remove negative samples to improve the training effect, and finally using 
a novel detection pipeline object counting method to count wheat sheaves from the top view in the field. Zhou, 
 Q20 proposed the NWSwin Transformer to extract multiscale features and used a Wheat Intersection over Union 
loss by incorporating Euclidean distance, area overlapping, and aspect ratio, thereby leading to better detection 
accuracy. Wang,  Y21 introduced the convolutional block attention module (CBAM) into the backbone network 
to make the model pay more attention to the target region of wheat ears and improve the detection results.

However, the solutions above were primarily based on horizontal bounding boxes, limiting their capabilities 
and robustness in detecting small and dense wheat heads with varying orientations.More importantly, they are 
not concerned about the fusion of feature information between non-adjacent feature maps, resulting in the loss 
of some feature information.
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Object detection based on oriented bounding boxes
In contrast to detection methods using horizontal bounding boxes, object detection techniques based on oriented 
bounding boxes offer advantages in terms of improved accuracy and better representation. Oriented object detec-
tion has numerous applications in computer vision and image analysis, proving valuable in various scenarios such 
as text detection and recognition, object detection in aerial imagery, autonomous driving, and medical imaging.

Oriented object detection algorithms can be categorized into anchor-based, which use a number of anchors 
with fixed scales and aspect ratios, and anchor-free, which are based on points. The anchor-based approach is 
utilized in the following models. Y.  Jiang22 developed R2CNN for text detection, an innovative model based on 
Faster R-CNN. It extracts features using different pooled sizes while simultaneously predicting the text score, 
axis-aligned box, and inclined minimum area box. X.  Xie23 proposed a novel RPN called oriented R-CNN, which 
generates high-quality oriented proposals rapidly while maintaining high detection accuracy and efficiency 
comparable to one-stage oriented detectors.

The models mentioned below are all based on anchor-free boxes. G.  Cheng24 designed the Anchor-free 
Oriented Proposal Generator (AOPG), which generates oriented proposals instead of using sliding fixed-shape 
anchors on images. X.  Wang25 developed PP-YOLOE-R, an efficient anchor-free rotated object detector. It incor-
porates several tricks to improve detection accuracy, including  ProbIoU26 and a decoupled angle prediction head.

Zhonghua  Li27 introduced FCOSR, an innovative rotated target detector that builds upon  FCOS28 and utilizes 
a 2-dimensional Gaussian distribution to enable rapid and accurate prediction of objects. Drawing inspiration 
from object detection methods employing oriented bounding boxes, we anticipate that this approach will effec-
tively address challenging aspects of wheat head detection, including the handling of oriented wheat heads and 
the overlap between predicted bounding boxes.

Datasets
The available public datasets for wheat head detection include GWHD, SPIKE,  ACID29,  UWHD30,  WED31. The 
GWHD dataset is a comprehensive collection of well-annotated wheat head images, compiled by nine research 
institutions across seven countries. It serves as a valuable resource for training robust models to accurately esti-
mate the location and density of wheat heads in seven categories. The GWHD dataset can be accessed at https:// 
www. kaggle. com/ compe titio ns/ global- wheat- detec tion/ data. The SPIKE dataset comprises 335 images captured 
at three distinct growth stages, covering ten different wheat varieties. The UWHD dataset consists of 550 images 
captured by a drone at an altitude of 10 m. The ACID dataset consists of 520 images taken in controlled green-
house conditions, featuring 4158 labeled wheat heads with point annotations. The WED dataset contains 236 
high resolution images with 30,729 wheat heads and derived the  WEDU32 dataset with more accurate labeling 
information. For the specifics of each dataset, please refer to Table 1.

In order to address the challenges posed by oriented wheat heads, we constructed a new dataset named 
RGWHD based on GWHD, as the majority of existing datasets are labeled using horizontal bounding boxes. To 
achieve this, we randomly selected 100 images from seven categories within the GWHD dataset, resulting in a 
total of 700 images. RGWHD is comparable in size to most existing wheat head datasets. Given the complexity of 
image annotation, we relabeled the partially sampled images from GWHD, while leaving the remaining images 
for future research using weakly supervised learning. The roLabelImg annotation tool was utilized to annotate 
each image with oriented bounding boxes, using five parameters: (x, y, w, h, θ). Here, x and y represent the coor-
dinates of the center point, w and h denote the width and height of the wheat head, and θ indicates the rotation 
angle of the bounding box.The constructed oriented bounding boxes labeled RGWHD was randomly divided 
into training, validation and test sets in the ratio of 8:2.The number of wheat ears included in the training-test 
dataset respectively is shown in Table 2.

The dataset proposed in this study, RGWHD, provides a more accurate representation of the wheat head by 
utilizing tighter bounding boxes. To assess this difference quantitatively, we compared the average area occupied 
by horizontal and oriented bounding boxes in all RGWHD images. The notable contrast in area between the 
two types of bounding boxes is presented in Table 2, while Fig. 2 visually illustrates the horizontal and oriented 
annotations. The average area is calculated using the following formula, providing a standardized measure for 
comparison.

(1)A =
Ta

N

Table 1.  Specifics of public wheat head datasets and the proposed RGWHD: Most of the existing public wheat 
datasets are mainly labeled with horizontal bounding boxing, and our proposed RGWHD dataset is labeled 
with oriented bounding boxes as the labeling information.

Dataset Release Environment Resolution Numbers Instances Annotation

GWHD 2020 Field 1024 × 1024 3422 188,445 Horizontal bounding box

SPIKE 2018 Lab 2001 × 1501 335 25,000 Horizontal bounding box

ACID 2017 Greenhouse 1956 × 1530 520 4158 Point

UWHD 2022 Field(UAV) 1120 × 1120 550 30,500 Horizontal bounding box

WEDU 2019 Field 6000 × 4000 236 30,729 Horizontal bounding box

RGWHD 2023 Field 1024 × 1024 700 25,677 Oriented bounding box

https://www.kaggle.com/competitions/global-wheat-detection/data
https://www.kaggle.com/competitions/global-wheat-detection/data
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where, A represents the average area (in pixels) of each bounding box, N is the number of bounding boxes, and 
Ta is the total area of all the bounding boxes in this image.

The statistical results presented in Table 3 demonstrate a significant reduction in the average area occupied by 
the oriented bounding box (OBB) compared to the area occupied by the horizontal bounding box (HBB) across 
the seven wheat categories. Among these categories, the average relative proportion of area reduction reaches 

Table 2.  Details of training-test set division.

Category Train Test Total

arvalis_1 3495 824 4319

arvalis_2 1650 389 2039

arvalis_3 2280 506 2786

ethz_1 5564 1469 7033

inrae_1 1693 371 2064

rres_1 3607 901 4508

usask_1 2314 614 2928

Total 20,603 5074 25,677

Figure 2.  Visualization of the difference in area between horizontal and oriented bounding boxes: (a) original 
image, (b) annotated with horizontal bounding boxes, (c) annotated with oriented bounding boxes, (d) 
annotated with both horizontal and oriented bounding boxes.

Table 3.  Average area comparison of horizontal and oriented bounding box for wheat heads in RGWHD: 
Quantitative comparison of the difference in the area of wheat ears between oriented and horizontal frames 
under the same conditions.

Category Average area(HBB) Average area(OBB) Area reduction (HBB—OBB)/HBB

arvalis_1 4442.3 1961.4 55.85%

arvalis_2 5918.8 2212.1 62.63%

arvalis_3 9851.0 5568.7 43.47%

ethz_1 3334.5 2315.0 30.57%

inrae_1 14,867.3 6164.4 58.54%

rres_1 6140.4 3816.4 37.85%

usask_1 12,790.2 5412.4 57.68%
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49.51%, with arvalis_2 showing the highest proportion of area reduction at 62.63%. These findings highlight the 
effectiveness of using oriented bounding boxes in mitigating the challenges posed by overlapping objects and 
achieving a more accurate representation of the wheat head.

Methods
Network architecture
In light of the challenging field conditions for wheat head detection, this study adopts the two-stage high-
precision algorithm Faster R-CNN as its foundation. Figure 3 depicts the oriented feature pyramid network 
(OFPN) built upon Faster R-CNN. The OFPN comprises three interconnected components designed to detect 
oriented wheat heads within an image: Feature Extraction Network, Region Proposal Network, and Detection 
Network. The feature extraction network performs as the feature extractor, utilizing a convolutional neural 
network (backbone) to produce multi-scale features from the input image. To improve the representation of 
small and densely-packed wheat heads, a feature fusion module called PBFPN has been integrated to merge 
features from various levels. The region proposal network generates oriented proposals employing a regression 
branch, while a classification branch determines whether the proposals represent foreground objects. For the 
final classification and refinement of proposal positions, the detection network applies an oriented R-CNN head.

Orientation box definition
In practice, an oriented bounding box is visually depicted as a slimmer horizontal bounding box that rotates 
either clockwise or counterclockwise around its center. Along with the corner coordinates, a rotation angle is 
provided to represent the extent of rotation. Consequently, detecting rotated objects can be achieved through 
parametric regression of oriented bounding boxes. There are two main methods for representing oriented bound-
ing boxes: the five-parameter method, which utilizes an explicit rotation angle, and the eight-parameter method, 
which employs the coordinates of the four vertices of a quadrilateral as implicit rotation parameters. This study 
adopts the five-parameter method with the long-side definition, as illustrated in Fig. 4. In this method, the 
center coordinates of the oriented bounding box are denoted as x and y, while the width and height are repre-
sented by w and h, respectively, with w being greater than h. The rotation angle θ is determined by the long side 
(width) and the x-axis, with clockwise being considered the positive direction, and the angle range is specified 
as [−π

/

2, π
/

2).

Backbone
In this study, the ResNeXt was chosen as the backbone due to its powerful and efficient  design33 ResNeXt intro-
duced innovative techniques such as group convolution and the cardinality block. Group convolution employs 
independent kernels for each group of input channels, enabling parallel computation and reducing computa-
tional complexity. The cardinality block aggregates a set of transformations with the same topology, increasing 
parallel pathways within each block. These parallel pathways allow ResNeXt to learn more diverse and complex 
features. The key difference between ResNet and ResNeXt lies in the structure of their repeatable residual blocks, 
as illustrated in Table 4.

ResNeXt PBFPN

Feature Extraction

1st stage

Region Proposal Network

2nd stage

Input 

Detection Network
Output 

9 anchors

Sliding windows

Regression

Classification

Feature Map

Proposals

ROI AlignFCs

Regression

Classification

(x,y,w,h,θ)
Count

Figure 3.  Architecture of the Oriented Feature Pyramid Network (OFPN): Leveraging ResNeXt as the 
backbone, PBFPN as the feature fusion module, and Soft-NMS for proposal bounding box filtering.
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Multi-scale feature fusion balanced pyramid (PBFPN)
Feature pyramid networks (FPN)34 have become a common module in object detection for their ability to detect 
objects at various scales. By fusing feature maps from different scales, the model can gather more information 
on the object’s position and semantics, thereby significantly enhancing detection accuracy.

In the case of wheat head detection, the uneven distribution and overlap of wheat heads within an image 
present challenges for extracting and representing wheat heads’ features. Consequently, this adversely affects 
the accuracy and performance of object detection models. To tackle this issue, we propose PBFPN, an enhanced 
FPN network, which is based on the Path Aggregation Network (PANet) and Balanced Features Pyramid (BFP).

Firstly, PBFPN constructs two parallel network pathways to effectively capture multi-scale features. The top-
down pathway gradually upsamples the feature maps extracted by the backbone from high-level to low-level. 
The bottom-up pathway aggregates features from higher to lower resolutions and combines its own features with 
the corresponding higher-level features from the bottom-up pathway through a lateral connection. Prior to the 
final level in the bottom-up pathway, we employ the Atrous Spatial Pyramid Pooling (ASPP) module to expand 
the receptive field using different dilation rates. This enables the network to develop a better understanding of 
the wheat heads at various scales, resulting in improved object detection accuracy and robustness.

Next, we introduce the Balanced Features Pyramid (BFP) module to tackle the challenges related to fusing 
features across non-adjacent levels. BFP takes the resulting multi-level features from PANet as inputs, using 
Interpolation and Max-Pooling to generate feature maps of different scales scaled to medium size, then Integrate 
the feature maps, and finally re-scaled the resulting features using the same, but reversed, process to enhance the 
original features. The formula is as follows:

(2)C =
1

L

lmax
∑

l=lmin

Cl

Figure 4.  Oriented bounding box representation with long-side definition: Use the long side as the width of the 
bounding box.

Table 4.  Block structure of ResNet and ResNeXt (cardinality = 32). ResNeXt incorporates a group convolution 
with a group size of 32 in the repeatable residual block structure.

Stage ResNet-50 ResNeXt-50(32 × 4d)

conv1 7 × 7, 64, stride 2 7 × 7, 64, stride 2

conv2 3 × 3 max pool, stride 2 3 × 3 max pool, stride 2
[

1× 1, 64

3× 3, 64

1× 1, 256

]

× 3

[

1× 1, 128

3× 3, 128

1× 1, 256

,C = 32

]

× 3

conv3

[

1× 1, 128

3× 3, 128

1× 1, 512

]

× 4

[

1× 1, 256

3× 3, 256

1× 1, 512
,C = 32

]

× 4

Conv4

[

1× 1, 256

3× 3, 256

1× 1, 1024

]

× 6

[

1× 1, 512

3× 3, 512

1× 1, 1024
,C = 32

]

× 6

Conv5

[

1× 1, 512

3× 3, 512

1× 1, 2048

]

× 3

[

1× 1, 1024

3× 3, 1024

1× 1, 2048
,C = 32

]

× 6
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where Cl denotes the resolution of the lth layer of the feature map and L denotes the total number of layers of the 
feature map, This module ensures a balanced consideration of the importance of multi-level features generated 
by PANet, resulting in improved performance in detecting objects of different sizes and scales. In summary, we 
propose a more efficient feature pyramid network named PBFPN, as illustrated in Fig. 5.

Soft-NMS
The accurate detection of wheat heads in the presence of overlaps presents a significant challenge, particularly 
when selecting proposal bounding boxes. In dense wheat head detection scenarios, the presence of overlaps, clut-
tered backgrounds, and variations in wheat appearance may lead to the generation of multiple bounding boxes 
for the same wheat head. Traditionally, the NMS (Non-Maximum Suppression) algorithm has been employed 
to select the bounding box with the highest confidence score while suppressing all other proposals. However, 
this approach may discard potentially valid bounding boxes. To address this limitation, the Soft-NMS algorithm 
proposed by  Bodla35, assigns lower scores to overlapping bounding boxes instead of directly eliminating them. 
By reducing the scores of overlapping proposals, Soft-NMS retains more bounding boxes, allowing for better 
coverage of objects and minimizing the risk of discarding valuable detections. The degree of suppression increases 
as the Intersection over Union (IoU) of the proposal bounding boxes with the highest score increases, allowing 
for a more nuanced selection process in object detection.

B represents the initial detection boxes, S is the set of scores for each detection box, and D corresponds to 
the set of final detection boxes. Nt is the IoU threshold. bm signifies the prediction box with the highest score 
among all prediction boxes.

The NMS algorithm employs the following function to re-score the neighbor proposal of the detection M 
with the highest score:

Soft-NMS uses a Gaussian function to reduce the confidence scores of the overlapped boxes as follows:

The equation illustrates that the efficacy of the penalty function depends on the IoU of the prediction bound-
ing boxes. When the intersection ratio is lower than the threshold, the penalty function remains inactive. How-
ever, if the intersection ratio exceeds the threshold, the penalty function diminishes the confidence score of the 
corresponding prediction bounding box.

Loss
During the RPN phase, positive and negative proposals are represented by 1 and 0, respectively. A positive pro-
posal must meet either of the following conditions: (i) an anchor has an Intersection over Union (IoU) exceeding 
0.7 with any ground-truth bounding box, or (ii) an anchor has the highest IoU with a ground-truth bounding 
box, and the IoU is greater than 0.3. Negative proposals are anchors with an IoU value less than 0.3 in relation 
to the ground-truth bounding box. Invalid samples, which are neither positive nor negative, are ignored during 
the training process. In the second stage for Region of Interest (ROI), a proposal is considered positive if its IoU 
with the true bounding box is greater than 0.5, and negative if its IoU is less than 0.5. The multi-task loss func-
tion for each proposal is then defined as:

(3)si =

{

si , iou(M, bi) < Nt

0, iou(M, bi) ≥ Nt

(4)si =

{

si , iou(M, bi) < Nt

si(1− iou(M, bi)), iou(M, bi) ≥ Nt

(5)si = sie
−

iou(M,bi )
2

∂ , ∀bi /∈ D

Figure 5.  Structure of PBFPN: Incorporating ASPP structure in PANet and combining it with BFP module to 
enhance object features across multiple scales.
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where, N is the number of proposal bounding boxes, Fcls is the cross entropy loss for the classification task. pn 
is the prediction probability generated by the softmax function, indicating whether the anchor is wheat head or 
background. The variable tn denotes the anchor’s class label, which can take values of either 0 or 1.

Freg is the smoothL1 loss for the localization regression task. The trade-off between two terms is controlled by 
the balancing parameter �.

where, v = ( vx , vy , vw , vh , vθ ) is a ground truth bounding box regression tuple containing the coordinates of the 
center point, the width and height, and the angle of rotation. v∗ = ( v∗x , v∗y , v∗w , v∗h , v∗

θ
 ) is the predicted tuple for 

the target.

Experiments
We conducted comprehensive experiments on the RGWHD dataset to evaluate the performance of the proposed 
model, comparing it with state-of-the-art (SOTA) models.It is worth noting that the resolution of the training 
images is 1024 × 1024.

Experimental setup
All experiments are conducted on the deep learning framework PyTorch with Python 3.7 as the programming 
language. All models were trained for 30 epochs. The initial learning rate is set to 0.005 and then decreased 
at epochs 8. The models were trained and tested on a desktop computer with an Intel Core i7-8700 CPU @3. 
20 GHz × 6, 24 GB of RAM and a GeForce GTX 1080Ti GPU, running Ubuntu 18.04.5 LTS.

Evaluation metrics
In this study, we evaluated the model’s accuracy in terms of the mean Average Precision (mAP) metric, which 
combines four key measures: True Positive (TP), False Positive (FP), False Negative (FN), and True Negative 
(TN). True Positive (TP) indicates the correct prediction of a wheat head. False Positive (FP) refers to the 
incorrect prediction of a wheat head that is not present in the image. False Negative (FN) represents the missed 
prediction of an actual wheat head. True Negative (TN) represents the correct prediction of an object that is not 
present in the image.

The aforementioned measures are widely utilized in the computation of evaluation metrics, including pre-
cision, recall, Average Precision (AP), and mAP, which offer valuable insights into the performance of object 
detection models.

Intersection over Union (IoU) is a crucial metric that quantifies the extent of overlap between the predicted 
bounding box and the ground truth bounding box. It is computed as the ratio of the intersection area to the 
union area of the two bounding boxes. In object detection tasks, a specific IoU threshold is commonly defined 
to to determine TP and FP.

Precision: the percentage of true positives detected by the model among all the objects predicted.

Recall: the percentage of true positives detected by the model among all the ground truth objects.

AP (average precision): the average precision at different recall levels. It is computed by integrating the preci-
sion values along the Precision-Recall (PR) curve.

mAP: the average of AP across all categories.

(6)F(p, t, v, v∗) =
1

N

N
∑

n=1

Fcls
(

pn, tn
)

+ �
1

N

N
∑

n=1

Freg
(

vn, v
∗
n

)

(7)Fcls
(

pn, tn
)

= − log pn

(8)Freg
(

vn, v
∗
n

)

=
∑

i∈{x,y,w,h,θ}

smoothL1(vi − v∗i )

(9)smoothL1(x) =

{

0.5x2

|x| − 0.5
if |x| < 1
otherwise

(10)IoU =
S∩

S∪

(11)P =
TP

TP + FP

(12)R =
TP

TP + FN

(13)AP =

∫ 1

0
P(R)dR
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Ablation study
We conducted ablation experiments to assess the impact of individual components within the proposed OFPN. 
The modules examined included ResNeXt, PBFPN, and Soft-NMS. The base model was constructed using the 
Rotated Faster RCNN with ResNet50 as its backbone. Various configurations were then applied for training 
and validation on the RGWHD dataset. The experimental results successfully demonstrated the effectiveness 
of combining these three modules in enhancing the overall performance of OFPN. Table 5 presents the results, 
indicating a notable 4.14% improvement in detection accuracy (mAP) compared to the base model.

Wheat heads detection results
We conducted experiments on the RGWHD dataset and evaluated the performance of Oriented Feature Pyramid 
Network (OFPN) in terms of mAP. For each catogory, the dataset is split into training, validation, and testing 
sets in a ratio of 7:1:2. Figure 6 presents the visualization of prediction results for the seven wheat categories. 
The proposed model accurately predicts the oriented bounding boxes for the wheat heads in each test image, 
while also providing additional information including the total count of detected heads and the classification 
probability for each detection.

The size of the RGWHD image is 1024 × 1024 pixels, which makes the bounding boxes in Fig. 7 difficult to 
discern. In order to provide a more detailed demonstration of the oriented object detection results, we evalu-
ated two similar models based on R-CNN. The zoomed details of the same image can be seen in Fig. 7. Using 

(14)mAP =

∑N
i=1 APi

N

Table 5.  Ablation study results of the proposed model OFPN on the RGWHD dataset, where bold numbers 
represent the best result.

Method ResNeXt PBFPN Soft-NMS arvalis_1 arvalis_2 arvalis_3 ethz_1 inrae_1 rres_1 usask_1 mAP/% Recall/%

base 0.894 0.657 0.792 0.808 0.872 0.898 0.793 81.63 88.57

√ 0.896 0.699 0.819 0.805 0.878 0. 898 0.795 82.62 89.68

√ 0.895 0.736 0.863 0.808 0.887 0. 902 0.795 84.09 90.45

√ 0.892 0.724 0.827 0.878 0.859 0. 899 0.855 84.78 91.26

OFPN √ √ √ 0.895 0.755 0.851 0.886 0.873 0. 899 0.865 85.77 92.54

Figure 6.  Wheat heads detection results with OFPN on RGWHD: (a) arvalis_1, (b) arvalis_2, (c) arvalis_3, (d) 
ethz_1, (e) inrae_1, (f) rres_1, (g) usask_1.
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the same settings for the threshold of IoU and bounding box score, the proposed OFPN detected an additional 
5 small and overlapping wheat heads compared to Faster RCNN.

We conduct a comparative analysis of our Oriented Feature Pyramid Network (OFPN) with six state-of-the-
arts oriented object detection models on the RGWHD dataset. These models include both one-stage detection 
models, such as Rotated  RetinaNet36,  R3Det37,  S2ANet38, Rotated FCOS, as well as two-stage detection mod-
els including Faster RCNN-OBB10, Oriented  RCNN23. The results, which are presented in Table 6 and Fig. 8, 
demonstrate that the two-stage detection models perform better compared to the one-stage detection models. 
Among the seven categories of wheat, the detection tasks for varieties arvalis_2, arvalis_3, usask_1 are more 
challenging for all the models we compared. However, our model exhibits the best performance compared to 
all the other state-of-the-art models. For the rest wheat varieties, OFPN achieves almost equivalent accuracy 
with the best model Faster RCNN. Furthermore, Fig. 9 shows the validation mAP of all the comparative models 
during the training process.

Classification results
To assess the model’s object recognition capabilities, we compared the performance of the proposed OFPN 
with the high-performance Faster R-CNN using their respective confusion matrices. Figure 9 illustrates the 
prediction probabilities for different wheat categories in the test set, with rows representing actual classes and 
columns representing predicted classes. The analysis of Fig. 10 reveals that Faster R-CNN tends to misclassify 
the arvalis_2 and arvalis_3 categories. In contrast, OFPN significantly enhances the classification capability 
for all wheat categories. These results indicate that our proposed model effectively extracts aggregated features 
from the images, thereby mitigating the influence of factors such as an appearance on wheat head classification.

Wheat head counting
To evaluate the counting performance of wheat head detection models, we established a threshold of 0.7 for the 
confidence score of prediction proposals across all comparative models. Among the 140 images in the test set, 
a total of 5074 ground truth bounding boxes were identified. Table 7 presents the results, indicating that OFPN 
achieved a wheat head counting accuracy of 93.97%, surpassing Faster R-CNN by 3.13%. It is worth noting that 
both Faster R-CNN and OFPN exhibited subpar counting performance for wheat arvalis_2. This can be attrib-
uted to the challenging lighting conditions under which the arvalis_2 images were captured, making it difficult 
to distinguish wheat heads from the background.

Figure 7.  Enlarged detail of the same prediction result image: (a) Faster R-CNN, (b) OFPN.

Table 6.  Comparison results with state-of-the-art oriented object detection models on the RGWHD dataset, 
where bold numbers represent the best result.

Method arvalis_1 arvalis_2 arvalis_3 ethz_1 inrae_1 rres_1 usask_1 mAP/% Recall/% GFlOPs Parameters/M

One-Stage

RetinaNet-OBB 0.747 0.519 0.435 0.759 0.487 0.595 0.264 54.38 86.07 212.29 36.25

R3Det 0.854 0.458 0.209 0.793 0.796 0.641 0.398 59.27 86.79 331.72 41.72

S2ANet 0.892 0.699 0.750 0.804 0.826 0.894 0.783 80.68 88.52 197.62 38.6

Rotated FCOS 0.895 0.749 0.799 0.804 0.878 0.896 0.782 82.91 89.68 206.5 31.9

Two-Stage

Faster RCNN-OBB 0.894 0.657 0.792 0.808 0.872 0.898 0.793 81.63 88.57 211.29 41.13

Oriented R-CNN 0.898 0.742 0.843 0.888 0.892 0.899 0.795 85.08 90.43 211.42 41.13

OFPN(Ours) 0.895 0.755 0.851 0.886 0.873 0.899 0.865 85.77 92.54 242.87 46.65
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Conclusion
Wheat heads detection and counting are significant for various purposes, including visual object detection, 
wheat yield estimation and planting management. Similar to ships in aerial images, wheat heads often appear 
with arbitrary orientations in field images. Motivated by the oriented object detection in DOTA dataset, we 
propose a new Rotated Global Wheat Head Dataset (RGWHD). We also present an Oriented Feature Pyramid 
Network (OFPN) for the detection of small and dense wheat heads. OFPN enhances the representation of small 
wheat heads through the utilization of a multi-scale feature fusion network known as PBFPN. Furthermore, it 
handles the detection of dense wheat heads with a Soft-NMS by assigning lower scores to overlapping boxes. 
OFPN performs well in the tasks of oriented wheat heads detection, category recognition and wheat heads 
number prediction. Considering the extensive distribution and diverse varieties of wheat, as well as the chal-
lenges associated with dataset collection, our future research will focus on wheat detection models under weakly 
supervised conditions.

Figure 8.  Comparison of different model predictions: using the green box to enclose targets missed by the 
model.

Figure 9.  mAP during training for all comparative models.
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Data availability
The datasets generated and analysed during the current study are available in RGWHD (https:// pan. baidu. com/s/ 
1Fy3H pIfAe QhRef_ ZuKu4 iw) and the extraction code is vbiy. The datasets generated during and/or analyzed 
during the current study areavailable from the corresponding author on reasonable request. The scripts to run 
all experiments are publicly available through our GitHub page https:// github. com/ cwr08 21/ OFPN.
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