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Abstract

Background: Prior work has shown that certain modifiable health, Alzheimer’s disease (AD) 

biomarker, and demographic variables are associated with cognitive performance. However, less 

is known about the relative importance of these different domains of variables in predicting 

longitudinal change in cognition.

Objective: Identify novel relationships between modifiable physical and health variables, AD 

biomarkers, and slope of cognitive change over two years in a cohort of older adults with mild 

cognitive impairment (MCI).

Methods: Metrics of cardiometabolic risk, stress, inflammation, neurotrophic/growth factors, and 

AD pathology were assessed in 123 older adults with MCI at baseline from the Alzheimer’s 

Disease Neuroimaging Initiative (mean age = 73.9; SD = 7.6; mean education = 16.0; SD = 

3.0). Partial least squares regression (PLSR)—a multivariate method which creates components 

that best predict an outcome—was used to identify whether these physiological variables were 

important in predicting slope of change in episodic memory or executive function over two years.

Results: At two-year follow-up, the two PLSR models predicted, respectively, 20.0% and 

19.6% of the variance in change in episodic memory and executive function. Baseline levels 

of AD biomarkers were important in predicting change in both episodic memory and executive 
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function. Baseline education and neurotrophic/growth factors were important in predicting change 

in episodic memory, whereas cardiometabolic variables such as blood pressure and cholesterol 

were important in predicting change in executive function.

Conclusion: These data-driven analyses highlight the impact of AD biomarkers on cognitive 

change and further clarify potential domain specific relationships with predictors of cognitive 

change.
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INTRODUCTION

By the year 2050, the older adult population in the United States is estimated to reach 

87.3 million, a growth doubling the population of adults over 65 years of age in 2012 

[1]. The risk of Alzheimer’s disease (AD) increases with age, and the number of AD 

cases is projected to reach 13.9 million by 2060 [2]. To date, there is no cure for age- 

or AD-related cognitive decline, a problem highlighting the need to identify variables that 

are most strongly associated with preserving cognition. Therefore, identifying variables that 

could serve as targets for intervention to mitigate cognitive decline, particularly among older 

adults with mild cognitive impairment (MCI), who are at the greatest risk for AD, will be 

important in maintaining independence and quality of life in our aging population.

There is substantial variability in aging, and multiple health metrics and biomarkers 

have been shown to positively or negatively influence cognitive decline or conversion to 

dementia. For instance, plasma and cerebrospinal fluid (CSF) biomarkers are associated with 

progression of cognitive impairment in older adults with MCI [3–6]. Lower levels of CSF 

amyloid-β (Aβ42) and higher levels of CSF total tau (t-tau) and phosphorylated tau (p-tau) 

have been associated with higher rates of conversion to AD [4] and clinical progression 

in MCI [5]. Other work has shown that these biomarkers are related to cognition [6, 7]. 

For instance, one study found that lower levels of CSF Aβ42 were associated with poorer 

episodic memory and that higher levels of CSF t-tau were related to poorer global cognition 

[7]. Recent work has further suggested that ratios of CSF t-tau/Aβ42 and CSF p-tau/Aβ42 

may be more sensitive biomarkers for exploring longitudinal cognition in MCI. In older 

adults with MCI, higher t-tau/Aβ42 ratios were associated with poorer episodic memory 

and global cognition [7]. Other work revealed that CSF p-tau/Aβ42 ratios predicted greater 

declines in episodic memory, executive function, and global cognition in MCI [6]. Thus, 

there is substantial evidence that AD biomarkers might be relevant predictors of cognitive 

change in MCI populations.

Other studies have examined the role of neurotrophic/growth factors in the context of 

cognitive decline. Multiple studies have focused on brain-derived neurotrophic factor 

(BDNF). For instance, BDNF in older adults has been linked to age-related memory 

impairment [8] and increased risk of converting to dementia [9]. A recent systematic review 

concluded that BDNF was consistently associated with neuronal plasticity and memory 
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consolidation [10]. Additionally, authors of this review found that decreased BDNF in aging 

was related to memory problems across multiple pathologies [10]. Other growth factors, 

although reported less frequently than BDNF, have also been linked to cognitive and brain 

decline. For instance, vascular endothelial growth factor (VEGF) has been linked to lower 

global cognition and severity of cognitive decline in older adults, and lower levels of 

platelet-derived growth factor (PDGF) might represent more general neuronal loss [11]. In 

sum, there is accumulating evidence that neurotrophic/growth factors are associated with 

cognition in aging and MCI.

There is also an established link demonstrating that cardiometabolic (such as blood 

pressure and cholesterol) and pro-inflammatory variables (such as c-reactive protein and 

interleukin-6) are negatively associated with cognition [12–15]. Several studies have related 

metabolic syndrome—which involves high abdominal adiposity or obesity, high blood 

pressure, high cholesterol, and dyslipidemia, or high amounts of triglycerides, cholesterol 

or fat phospholipids—to future cognitive impairment [15] and progression from MCI 

to dementia [14]. A systematic review also found that those with metabolic syndrome 

consistently had poorer executive function performance on tasks that did not involve 

language ability [16]. Thus, the current literature indicates that modifiable cardiometabolic 

variables might be important predictors of changes in executive function in older adults with 

MCI.

In general, the respective literatures examining AD biomarkers, neurotrophic/growth factors, 

inflammatory markers, and cardiometabolic factors associated with cognition in MCI 

populations have remained largely segregated, exploring either a single variable or a small 

group of variables within a single domain (e.g., examining links between AD biomarkers 

and cognition without consideration of markers of inflammation and cardiometabolic 

function). To better understand the complex relationship between health metrics and 

cognition in MCI, it is important to simultaneously consider an array of physiological 

variables spanning multiple domains of biomarkers. Few studies have implemented such an 

approach. A recent study explored CSF levels of neurotrophic/growth factors, inflammatory 

variables, and AD biomarkers in older adults with and without cognitive impairment [17]. 

Authors found that variables across all three of these domains were significant predictors 

of general cognitive function (but did not examine specific cognitive domains). Recent 

work by our group has further extended the literature by including an additional class of 

health variables (modifiable cardiometabolic health variables), in addition to consideration 

of multiple AD biomarkers, neurotrophic/growth factors, inflammatory markers, and domain 

specific cognitive function. We used a multivariate partial least squares correlation analysis 

(PLSC) [18] to examine these cross-sectional relationships in a cohort of older adults 

with MCI [19]. Our results revealed that variables associated with AD pathology and 

neuroplasticity, as well as education and cortisol (a marker of stress), were largely associated 

with performance in tasks assessing episodic memory, executive function, processing speed, 

and language, but not working memory or premorbid IQ. Specifically, better performance 

on tests within these cognitive domains was associated with increased neurotrophic/growth 

factor levels (BDNF, PDGF, heparin-binding epidermal growth factor-like growth factor), 

less AD pathology (plasma tau, CSF t-tau, CSF p-tau181, CSF Aβ42), lower levels of stress 

(cortisol), and higher education. These findings suggested that variables associated with 
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neuroprotection, neuroplasticity, stress, and AD significantly contribute to declined episodic 

memory, executive function, and processing speed in older adults with MCI.

One limitation of previous studies, including our own, was the cross-sectional approach 

used to examine the relationship between multiple health metrics and cognition in MCI. 

In the current study, we address this limitation and further extend the literature by 

examining change in cognition over two years. Specifically, we employed partial least 

squares regression (PLSR) analysis to assess how these different groups of physiological 

variables might be associated with changes in cognition longitudinally in a cohort of ADNI 

participants with MCI. In PLSR, a large number of predictor variables is used to predict one 

or more outcomes [20, 21]. PLSR creates latent variables, or components, that maximize 

the covariance between the independent (i.e., the predictor) and the dependent (i.e., the 

predicted outcome) variable(s). This is followed by a regression step, where the latent 

variables created from linear combinations of the predictor variables are used to predict the 

outcome(s) [20, 21]. There are several advantages of PLSR, including its ability to analyze 

collinear data and work well with many predictor variables [22]. For this study, separate 

PLSRs were run for two cognitive domains: episodic memory and executive function. These 

cognitive outcomes were selected due to findings from our prior work using cross-sectional 

PLSC described above [19] as well as substantial work showing that episodic memory and 

executive function are particularly susceptible to age-related decline [23, 24].

The aims of the present study were to 1) identify which of these modifiable physical, health 

(i.e., cardiometabolic, inflammation), and AD biomarker metrics predict slope of change 

over two years in either episodic memory or executive function performance; 2) examine 

how these physiological variables were related to one another and 3) assess how gender and 

diagnostic status at two-year follow-up were associated with these physiological variables.

MATERIALS AND METHODS

Participants

Participants with a diagnosis of MCI from the ADNI1 cohort were included in the current 

study. Full participant inclusion/exclusion criteria are available in [25] and are summarized 

here: 6th grade or higher education, fluent in English or Spanish, minimum Mini-Mental 

State Examination (MMSE) of 24, Clinical Dementia Rating of 0.5, subjective memory 

complaint by subject or study partner, impaired episodic memory, and sufficiently preserved 

general cognition and functional performance not meeting criteria for AD. Participants with 

missing data for any variables of interest were excluded, as complete data are necessary 

for PLSR analysis. One participant classified as MCI with an MMSE score of 23 and 

one participant with an extremely high and improbable triglycerides value (2,084.0 mg/dL) 

were excluded. Other ADNI cohorts (ADNIGO, ADNI2, and ADNI3) were excluded from 

the analysis because these data sets did not include numerous biomarkers of interest (e.g., 

neurotrophic and growth factors were not available).

The final sample included 123 participants who had composite neuropsychological data 

available at both baseline and two-year follow-up (age: range = 55.1 – 88.3, M = 73.9, SD 
= 7.6; education: range = 6 – 20 years, M = 16.0, SD = 3.0; 42 females and 81 males; 119 

Stark et al. Page 4

J Alzheimers Dis. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



White, 2 Asian, 2 Black; 121 Non-Hispanic, 2 Hispanic; 54 APOE ε4 negative). Longer 

follow-up times were not assessed due to participant attrition. That is, cognitive composite 

scores were available in N = 97, N = 54, and N = 39 participants at 36-, 48-, and 60-month 

timepoints. Previous studies have demonstrated that significant cognitive decline can occur 

in MCI at one-year [26] or two-year follow-up [27, 28], and the larger dataset available 

at 24-month follow-up provided greater generalizability of our study sample to the broader 

MCI population. Cognitively normal older adults were not included in the present study due 

to a small sample size with biomarkers and neuropsychological data available at baseline 

and cognitive data at two-year follow-up (N = 34). These participants were excluded to 

improve the interpretability of the results, because our goal was to identify the physiological 

variables important for predicting cognitive change in MCI participants. Study procedures 

were approved by site-specific Institutional Review Boards, and all participants and/or 

authorized representatives provided written informed consent consistent with the Declaration 

of Helsinki.

Neuropsychological assessment

Composite scores of episodic memory and executive function published by ADNI were 

examined [29, 30]. For the episodic memory composite score, factor analytic methods and 

item response theory were used to create a score obtained as a weighted set of tests from 

the ADNI neuropsychological battery (for further details, see [29]). This memory composite 

score was determined to have good validity [29]. For the executive function composite score, 

the same statistical techniques were employed, and this score was also determined to have 

good validity (for further details, see [30]).

Cardiometabolic, stress, and inflammation variables

BMI (kg/m2), systolic blood pressure (mmHg), diastolic blood pressure (mmHg), pulse 

rate (per minute), cholesterol (mg/dL), triglycerides (mg/dL), and serum glucose (mg/dL) 

data were obtained. Insulin (uIU/mL), cortisol (ng/mL), CRP (µg/mL), and interleukin-6 

(IL-6) receptor (ng/mL) data were assessed from fasting plasma blood samples. Data were 

normalized and checked for the defined least detectable dose during the quality control 

process.

Growth factors and neurotrophic factors

Insulin-like growth factor binding protein (ng/mL), epidermal growth factor (pg/mL), 

heparin binding epidermal-growth-factor-like growth factor (HB-EGF-like-GF; pg/mL), 

hepatocyte growth factor (ng/mL), platelet-derived growth factor BB (PDGF; pg/mL), 

BDNF (ng/mL), and vascular-endothelial growth factor (pg/mL) were analyzed. Data were 

normalized and checked for the defined least detectable dose during the quality control 

process.

AD biomarkers

Plasma Apolipoprotein E (apoE; µg/mL), plasma tau (pg/mL), CSF t-tau (pg/mL), CSF 

p-tau181 (pg/mL), and CSF Aβ42 (pg/mL) were assessed. Only values within the given 

ranges, which were based on the reported technical limits for each respective assay, were 
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included in the analyses: Aβ42: 200–1700 pg/mL; p-tau181: 8–120 pg/mL; t-tau: 80–1300 

pg/mL.

Data processing and analysis

ADNI1 data were scrubbed using the R-language. Raw data files for all blood- and CSF-

based biomarkers were checked for imputed values published by ADNI. To ensure data 

integrity, all analytes with > 10% imputed values were removed. Participants who had 

missing data or invalid data as indicated by the ADNI manual were excluded.

PLSR R-scripts and functions were developed by co-author H. Abdi and run in R (Version 

3.6.1). Several R-packages were used for data analysis (‘PTCA4CATA’, ‘data4PCCAR’, 

‘ExPosition’ for PLSR functions, and ‘boot’ for bootstrapping PLSR results) and 

visualization (‘corrplot’, ‘tidyverse’, ‘ggplot2’). PLSR combines techniques from principal 

components analysis and multiple linear regression [20]. The goal of a PLSR analysis 

is to decompose the X-matrix (predictor variables) to create orthogonal components (i.e., 

optimal linear combinations of the data) that can best predict the outcome (Y-matrix) 

variable(s). This is done by first creating a correlation matrix between X- and Y-matrices. 

Next, this covariance matrix is decomposed to generate the X-matrix components. This 

process generalizes principal components analysis, where the X-matrix is decomposed 

into optimal linear combinations that are only relevant for the X-matrix, not for both 

the X- and Y-matrices. Finally, the X-matrix components created from the decomposition 

of this correlation matrix are used to predict the outcome (Y-matrix) [20]. This made 

PLSR advantageous over principal components analysis for the present study objectives. 

Additionally, PLSR was preferred over multiple linear regression because it works well 

with a large number of multicollinear predictor variables, and uses this multicollinearity 

to its advantage in its prediction [18, 20]. In multiple linear regression, multicollinear 

predictor variables are problematic for calculation of regression coefficients and must be 

removed. However, in PLSR, the researcher can explore how different groups of variables 

cluster together among different components of the PLSR model. Although PLSR can be 

run with multiple Y-outcome variables [18, 20], this did not align with the objective of 

the current study, because our goal was to assess how different physiological variables 

were weighted and predictive of each cognitive domain (episodic memory and executive 

function). Therefore, separate PLSR analyses were run per cognitive domain where either 

slope of change in composite memory or executive function over two years was the Y-

matrix, or outcome variable. For both models, physical, health, and AD biomarker variables 

measured at baseline were the X-matrix (see Table 1 for full list of variables). This approach 

was implemented to examine how contributions of baseline physiological variables differed 

in predicting slope of change in episodic memory or executive function over two years.

To create the PLSR models, the X- and Y-matrix variables (where the X-matrix columns 

were 29 cardiometabolic, inflammatory, neuroprotective, AD biomarker, and demographic 

variables and the Y-matrices columns were, respectively, change in episodic memory or 

executive function) were normalized to have a mean of zero and standard deviation of one. 

Demographic variables (age and education) were entered as continuous variables. A leave-

one-out cross-validation procedure (LOO, also called a jackknife) was completed to prevent 
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overfitting and improve generalizability of the PLSR model [20, 21]. In this procedure, each 

observation is removed in turn from the X and Y-matrices, and a PLSR model is recreated 

for each of the remaining observations. The model created by the remaining observations 

and the variables is used to predict the left-out observation. The predicted observations are 

stored in a new matrix and a “predicted residual estimated sum of squares” (PRESS) value 

is created to measure the quality of the prediction, where a lower PRESS value indicates 

a better prediction. This procedure is repeated and iteratively uses a different number of 

components (from one to the number of X-matrix predictor variables), and the PRESS value 

is calculated for each possible number of components [20, 21]. The optimal number of 

components for the PLSR model is chosen based on a pseudo-scree plot (where the inertia 

extracted by each of the 29 possible components is plotted using the R-function ‘PlotScree’ 

from PTCA4CATA package) in which the optimal number of components is indicated by an 

inertia value greater than 1 divided by the number of components (see the Supplementary 

Material for pseudo-scree plots). Thus, components with an inertia value greater than 0.034 

(1/29 = 0.034) were retained in the PLSR model. Next, the PLSR model is run using this 

optimal number of components.

PLSR whole-model outcomes

Variable importance on projection scores—Variable importance of projection (VIP) 

scores were calculated for every X-matrix variable. The VIP score summarizes the 

contribution of an X-matrix variable to the model, as it represents a combination of 

the loadings and weights for each X-matrix variable across all components of the PLSR 

model [31]. Variables with a VIP score > 1 are considered important to the PLS model’s 

prediction [32]. In other words, if a variable has a VIP score > 1, removing that variable 

would significantly affect the PLSR model’s prediction. Using outputs from the ‘resPLSR’ 

R-function (package data4PCCAR), the formula for VIP scores from Akarachantachote and 

colleagues was employed [33].

BPLS values—BPLS values are conceptually equivalent to regression coefficients in 

multiple linear regression [20, 21]. BPLS values indicate the strength and directionality 

for each X-matrix variable in relation to the Y-matrix; a higher absolute value means 

that variable has a stronger relationship with the outcome [32]. BPLS values are reliable 

predictors of the outcome if their 95% confidence interval (CI) does not include zero [20, 

21]. In other words, a given X-matrix variable is a reliable predictor of the outcome if its 

BPLS value is significantly different from zero at p < 0.05. To create robust and reliable CIs, 

bootstrapping with replacement was employed using the ‘boot’ function in R (N = 1,500 

iterations). Bootstrapping allowed us to derive standard errors for each BPLS in the model 

nonparametrically [34].

R2 values—The resPLSR function outputs the percent variance explained in X-matrix as 

well as the percent variance explained in the Y-matrix per component in the PLSR model. 

The sum of the percent variance for all components in the model gives the percentage 

of variance explained for the X and Y-matrices for the whole PLSR model. The percent 

variance explained in the Y-matrix is analogous to the R2 of the model in multiple linear 

regression.
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Component-specific outcomes (post-hoc analyses)

Individual components of the PLSR model were also analyzed and interpreted. To do 

this, circles of correlation were produced to explore how the physiological variables were 

correlated with each component. Each predictor variable is then plotted on a standard 

coordinate plane created by two components (i.e., a variable positively correlated with 

both Components 1 and 2 would be in the upper right quadrant of the plot). Circles of 

correlation also show which predictor variables correlate with one another/cluster together. 

Additionally, participant observation maps were created to examine the extent to which 

individual participants were correlated with each component. Participants were either coded 

by gender or diagnosis at two-year follow-up (where ADNI coded whether participants 

remained MCI or converted to AD). Bootstrapping (with N = 1,000 iterations) was used 

to calculate bootstrapped means and bootstrap ratios (BSRs) for each group per component 

[35]. BSRs indicate whether the group mean, on average, had values significantly different 

from 0 (|BSR| ≥ 2.0, corresponding to p < 0.05) on a given component. Bootstrapped means 

and 95% CIs (95% CIs are represented as ellipses plotted around each bootstrapped mean) 

per group (either male/female or remained MCI/converted to AD at two-year follow-up) 

were plotted for each graph. Groups are considered to significantly contribute to a given 

component if their ellipses do not cross 0. If the ellipses of two groups do not overlap along 

a given axis, then these two groups are significantly different from one another for the given 

component.

RESULTS

Descriptive statistics for the 123 participants included in the analysis are presented in Table 

1. At two-year follow-up, 68 participants retained their MCI diagnostic status, and 55 

participants converted from MCI to AD. Descriptive statistics by gender and by diagnostic 

group at two-year follow-up can be found in the Supplemental Material. PLSR analyses 

were used to determine the relationship between 29 different physiological and demographic 

variables and slope of change in episodic memory or executive function at two-year follow-

up.

Whole-model outcomes

Episodic memory—The optimal number of components to include in the model was two 

(see Supplementary Figure 1A). The PLSR model accounted for 20.9% of variance of the X-

matrix, which explained 20.0% of the variance in slope of change in episodic memory over 

two years (Model R2 = 0.200; Fig. 1A). CSF Aβ42 (BPLS = 0.15; 95% CI = [0.01 – 0.29]), 

CSF t-tau/Aβ42 (BPLS=−0.11; 95% CI = [−0.19 – −0.03]), and education (BPLS = 0.17; 

95% CI = [0.01 – 0.34]) had BPLS values that were reliable (BPLS 95% CI did not include 

0; see Supplementary Table 1 for BPLS values for all variables). CSF Aβ42 and education 

were both positively associated with slope of change in episodic memory over two years 

while CSF t-tau/Aβ42 ratio had a negative association (based on their positive and negative 

BPLS values). CSF Aβ42, CSF t-tau/Aβ42, and education were also considered important 

(VIP > 1) to the model, along with several other variables: CSF t-tau, CSF p-tau181, CSF 

p-tau181/Aβ42, APOE ε4 allele status, BDNF, VEGF, and IL-6 receptor (VIP scores for all 

variables displayed in Fig. 1A). This model identified a pattern in the data suggesting that 
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higher levels of CSF Aβ42, lower CSF t-tau/Aβ42 ratio, and higher education were reliable 

and positive predictors of slope of change in episodic memory performance, while baseline 

levels of multiple AD biomarkers, growth factors, education, and an inflammatory marker 

were important to the overall PLSR episodic memory model prediction.

Executive function—The optimal number of components to include in the model was 

three (see Supplementary Figure 1B). The PLSR model accounted for 25.36% of the 

variance in the X-matrix, which explained 19.60% of the variance in slope of change in 

executive function over two years (Model R2 = 0.196; Fig. 1B). CSF t-tau/Aβ42 ratio 

had a BPLS value that was reliably different from 0 (BPLS=−0.14, 95% CI = [−0.25 – 

−0.03]) and was negatively associated with slope of change in executive function over 

two years. CSF t-tau/Aβ42 ratio was also considered important (VIP > 1) to the model, 

along with several other variables: plasma tau, CSF Aβ42, CSF t-tau, CSF p-tau181, CSF 

p-tau181/Aβ42, APOE ε4 allele status, systolic blood pressure, diastolic blood pressure, 

cholesterol, and HB-EGF-like-GF (VIP values displayed in Fig. 1B). Overall, this model 

identified a pattern suggesting that a lower CSF t-tau/Aβ42 ratio was a reliable and positive 

predictor of slope of change in executive function, while baseline levels of multiple AD 

biomarkers, cardiometabolic variables, and a neurotrophic factor were important (VIPs > 1) 

to the overall prediction of the PLSR executive function model.

Component-specific outcomes and post-hoc analyses

Episodic memory—The variance explained per component was, respectively, 13.1% and 

7.9%. In Fig. 2A, Components 1 and 2 are shown, respectively, on the horizontal and 

vertical axes. Input variables to the right of the vertical axis are positively correlated with 

Component 1, while variables to the left of the vertical axis are negatively correlated with 

Component 1. Variables above the horizontal axis are positively correlated with Component 

2, while variables below the horizontal axis are negatively correlated with Component 2. 

Input variables are mapped on the circle (which is a standard coordinate plane) based on 

their correlation values with Components 1 and 2. As visualized in Fig. 2A, Component 

1 was largely associated with AD biomarkers, while Component 2 was largely associated 

with neurotrophic/growth factors, IL-6-receptor, and education. Specifically, CSF t-tau, CSF 

p-tau181, CSF t-tau/Aβ42, CSF p-tau181/Aβ42, and positive APOE ε4 allele status were 

negatively correlated with Component 1, while levels of CSF Aβ42 and negative APOE 
ε4 allele status were positively correlated with Component 1. BDNF, VEGF, epidermal 

growth factor, and PDGF were negatively correlated with Component 2, while IL-6 receptor 

and education were positively correlated with Component 2. Thus, Component 1 represents 

how AD pathology contributes to the model, while Component 2 represents how education 

and neuroprotection contribute to the model. Figure 2A illustrates several AD biomarkers 

and several neurotrophic factors clustering together, showing that these variables are highly 

correlated with one another, but contribute to the model differentially.

Next, BSRs and bootstrapped group means were calculated to explore group comparisons 

between 1) older adults who remained MCI versus converted to AD at two-year follow-up 

and 2) males and females on Components 1 and 2 of the episodic memory model. Post-

hoc analyses revealed that older adults who converted to AD at two-year follow-up were 
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significantly and negatively associated with Component 1 (BSRAD_Comp1 = −2.98; p = 

0.01; Fig. 3A) but not Component 2 (BSRAD_Comp2 = −1.78; p = 0.07; Fig. 3A). Older 

adults who remained MCI at two-year follow-up were not significantly associated with 

Component 1 (BSRMCI_Comp1 = 1.69; p = 0.09; Fig. 3A) or Component 2 (p > 0.05; Fig. 

3A). Together, as shown by the ellipses plotted in Fig. 3A, older adults who remained MCI 

were significantly different from those who converted to AD. Females were significantly and 

negatively associated with Component 1 (BSRFComp1 = −2.24; p = 0.02; Fig. 3B) but not 

Component 2 (p > 0.05; Fig. 3B). Males were not significantly associated with Component 

1 or 2 (all ps > 0.05; Fig. 3B). Males and females were not significantly different from one 

another in this model, as shown by the overlapping ellipses in Fig. 3B. Therefore, females 

and those who converted to AD at two-year follow-up were significantly and negatively 

associated with Component 1, which was largely associated with AD pathology.

Executive function—Variance explained in Y per component was, respectively, 9.7%, 

6.3%, and 3.6%. For brevity and due to the low percentage of variance explained, 

component three was not analyzed further. Figure 2B visualizes how each input variable 

correlated with Components 1 and 2 of the executive function model. Both Components 

1 and 2 were associated with AD biomarkers (as evidenced by a 45° angle on the 

circle of correlation, demonstrating that AD biomarkers were roughly equally correlated 

with both components). Only Component 2 was associated with cardiometabolic variables 

and HB-EGF-like-GF (Fig. 2B). Specifically, CSF t-tau, CSF p-tau181, CSF t-tau/Aβ42, 

CSF p-tau181/Aβ42, and positive APOE ε4 allele status were negatively correlated with 

Component 1 and positively correlated with Component 2. CSF Aβ42 and negative APOE 
ε4 allele status were positively correlated with Component 1 and negatively correlated 

with Component 2. Systolic blood pressure, diastolic blood pressure, and cholesterol were 

correlated with Component 2 negatively while plasma tau, interleukin-6 receptor, and HB-

EGF-like-GF were positively correlated with Component 2. In contrast to the episodic 

memory model, both Components 1 and 2 revealed how AD pathology contributed to 

executive function, while Component 2 also demonstrates how cardiometabolic risk and 

inflammation contribute to the executive function model prediction. Figure 2B shows that 

several AD biomarkers and several cardiometabolic variables clustered together, suggesting 

that these variables are highly correlated with one another, but differentially contribute to the 

model prediction.

BSRs and bootstrapped group means were calculated to explore group comparisons between 

1) older adults who remained MCI versus converted to AD at two-year follow-up and 

2) males and females on Components 1 and 2 of the executive function model. This 

post-hoc analysis revealed that older adults who converted to AD at two-year follow-up 

were significantly and negatively associated with Component 1 (BSRAD_Comp1 = −2.46; p 
= 0.02; Fig. 3C) but not Component 2 (p > 0.05; Fig. 3C). Older adults who remained MCI 

at two-year follow-up were not significantly associated with Components 1 (BSRMCI_Comp1 

= 1.71, p = 0.09; Fig. 3C) or 2 (p > 0.05; Fig. 3C). Those who remained MCI were not 

significantly different from those who converted to AD in this model, as shown by the 

overlapping ellipses in Fig. 3C. Females were significantly and negatively associated with 

Component 1 (BSRFComp1 = −3.01; p = 0.004; Fig. 3D) but not Component 2 (p > 0.05; 
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Fig. 3D). Males were not significantly associated with either Component 1 (BSRM_Comp1 = 

1.94; p = 0.06; Fig. 3D) or 2 (p > 0.05; Fig. 3D). As shown by the bootstrapped CIs plotted 

in Fig. 3D, males and females were significantly different from one another in this model. 

Similar to the episodic memory model, females and those who converted to AD at two-year 

follow-up were significantly and negatively associated with Component 1.

DISCUSSION

To summarize the results, whole-model PLSR analyses explained roughly 20% of the 

variance in slope of change in episodic memory and slope of change in executive 

function performance over two years in older adults with MCI. A critical aspect of 

the current study includes the multivariate, data driven approach used to consider the 

multiple classes of variables and their impact on domain specific changes in cognition 

over two years. The results indicated that AD biomarkers were important for predicting 

cognitive change over two years in both episodic memory and executive function. Other 

variables exhibited domain specific relationships. Variables associated with neural plasticity 

(BDNF, VEGF), inflammation (IL-6-receptor), and education were important predictors for 

change in episodic memory but not executive function. In contrast, variables associated 

with cardiometabolic function (blood pressure, cholesterol) and HB-EGF-like-GF were 

important predictors of change in executive function but not episodic memory. Post-hoc 

analyses revealed that females and those who converted to AD at two-year follow-up 

were significantly and negatively associated with Component 1 in both models, which 

was predominately associated with AD biomarkers in the episodic memory model. Thus, 

participants who negatively load on Component 1 in the episodic memory model were more 

likely to be female, convert to AD at two-year follow-up, and have higher levels of AD 

biomarkers associated with AD pathology (i.e., higher levels of CSF t-tau, CSF p-tau181, 

CSF t-tau/Aβ42, CSF p-tau181/Aβ42, lower levels of CSF Aβ42, and a positive APOE ε4 

allele status).

Episodic memory

Results demonstrated that AD biomarkers were important predictors of slope of change in 

episodic memory at two-year follow-up. Specifically, our finding that higher CSF Aβ42 was 

a positive predictor of change in episodic memory is consistent with prior work showing that 

levels of CSF Aβ42 predicted change in memory over two years in those with early and late 

MCI [36], as well as research showing that older adults with lower CSF Aβ42 had steeper 

declines in memory over a three-year follow-up [37]. This result could be due to underlying 

structural changes in the brain, evidenced by prior work showing that lower CSF Aβ42 at 

baseline was associated with increased rates of brain atrophy and cortical thinning [38], as 

well as significant changes in brain volume over one-year follow-up in MCI subjects [39]. 

Additional work has shown that brain atrophy was a significant mediator between baseline 

levels of CSF Aβ42 and memory declines in older adults with early and late MCI, an effect 

suggesting that brain atrophy, specifically in the medial temporal regions of the brain, may 

be the mechanism underlying changes in cognition associated with baseline levels of CSF 

Aβ42 [36]. This finding also supports our prior work showing that CSF Aβ42 was a positive 
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predictor of multiple domains of cognition, including episodic memory, cross-sectionally 

[19].

Additionally, the CSF t-tau/Aβ42 ratio was a negative predictor of change in episodic 

memory. To our knowledge, this may be one of the first reports linking CSF t-tau/Aβ42 ratio 

to longitudinal change in objective assessment of episodic memory performance in MCI. 

These data strengthen the findings of a recent cross-sectional study, which demonstrated 

that older adults with a higher CSF t-tau/Aβ42 ratio had worse verbal episodic memory 

performance [7], as well as earlier work showing that a higher CSF t-tau/Aβ42 ratio 

predicted change in cognition as assessed by the clinical dementia rating scale [40]. Other 

research exploring plasma rather than levels of CSF t-tau and CSF Aβ42 in those with 

amnestic MCI found that using both of these biomarkers led to better predictions of current 

and future episodic memory performance than exploring either alone, although they did not 

explore the ratio [41]. Multiple studies have shown that CSF t-tau/Aβ42 ratio is a reliable 

predictor of conversion from MCI to AD [42], including one study which found that older 

adults who converted from MCI to AD at two-year follow-up had higher levels of CSF 

t-tau/Aβ42 at baseline [43]. CSF t-tau/Aβ42 ratio may represent a potentially promising 

biomarker for identifying older adults with MCI who are most at risk for a decline in 

episodic memory.

CSF t-tau, CSF p-tau181, CSF p-tau181/Aβ42, and APOE ε4 allele status were additional 

variables related to AD pathology that were considered important (VIP > 1) but not 

reliable (BPLS values not significantly different from zero at p < 0.05) predictors in the 

episodic memory model. This result suggests when explored together, these variables were 

important but not independent predictors of change in episodic memory. Research has 

established that these variables are important in exploring trajectories of normal aging to 

AD [44, 45], and APOE ε4 allele status is a well-known predictor of cognitive decline. 

Additionally, prior cross-sectional work in our laboratory revealed that CSF t-tau and CSF 

p-tau181 were negative predictors of multiple cognitive domains including episodic memory 

[19]. However, our results revealed that when these AD-related variables were explored 

simultaneously, CSF t-tau, CSF p-tau181, CSF p-tau181/Aβ42, and APOE ε4 allele status 

were relatively inferior predictors of change in episodic memory when compared to CSF 

Aβ42 and CSF t-tau/Aβ42.

Post-hoc analyses of episodic memory revealed that participants who were female or 

converted to AD at two-year follow-up significantly and negatively loaded on Component 

1, which was largely correlated with AD biomarkers indicative of worse pathology (Fig. 

2A). This pattern is consistent with current literature exploring AD biomarkers across the 

cognitively normal to AD spectrum, which has found that CSF Aβ42 declines first, then 

CSF t-tau and p-tau181, followed by changes in memory [36, 45]. Thus, one could speculate 

that participants who negatively loaded on Component 1 may have been at a higher risk 

of converting to AD at two-year follow-up due to their baseline AD biomarker values, 

which was potentially followed by brain atrophy leading to steeper declines in memory 

and thus a diagnosis of AD at follow-up [36, 38, 39]. These post-hoc results are also 

consistent with work showing that in older adults with MCI, females with levels of CSF 

Aβ42 and CSF t-tau indicative of worse pathology had steeper declines in memory as well 
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as hippocampal volume when compared to men [46]. This suggests that women may have a 

higher likelihood of converting to AD than men, even with similar levels of pathology.

In addition to AD biomarkers, education was considered an important (VIP > 1) and 

reliable positive (BPLS significantly different from zero at p < 0.05) predictor of slope 

of change in episodic memory. This finding supports recent work showing that higher 

education positively impacted future memory and language declines in White older adults 

without dementia at baseline, as our sample was predominately White [47]. Prior work 

in our laboratory exploring cross-sectional associations between education and cognition 

using PLSC also showed that education was positively related to multiple cognitive domains 

including episodic memory [19]. This result also aligns with multiple studies, including a 

meta-analysis, that show that lower levels of education put participants at greater risk for 

developing dementia [48, 49]. Several studies have shown that education may be used as a 

proxy of cognitive reserve [48, 50]—defined as an individual’s characteristics that preserve 

cognitive function despite age-related or pathology-related brain changes in aging [51]. 

However, education is one of many factors that can contribute to an individual’s cognitive 

reserve [49]. Thus, our finding that education was positively associated with trajectories 

of episodic memory performance suggests that older adults with higher levels of education 

have attenuated decline in episodic memory over two years, even at the MCI stage—an 

effect which may be due to higher education increasing cognitive reserve.

Neurotrophic/growth factors BDNF and VEGF were important (VIP > 1) but not reliable 

(BPLS values not significantly different from zero at p < 0.05) predictors of episodic 

memory. Thus, BDNF and VEGF were not reliable predictors of change in episodic memory 

but are important enough to the model that removing these two markers would affect the 

model prediction. Recent work has suggested that plasma levels of BDNF might not be 

useful to explore in MCI, because plasma BDNF levels could not distinguish between 

healthy older adult and MCI groups, and did not correlate with changes in multiple 

cognitive domains including memory and executive function [52]. The current results were 

inconsistent with these findings, as plasma BDNF was important in predicting episodic 

memory change in MCI. But this finding does align with our prior analysis using PLSC, 

which revealed that plasma BDNF was significantly and positively associated with cognition 

cross-sectionally. Other cross-sectional work has shown that lower serum levels of BDNF 

were associated with memory impairment but not executive dysfunction in community 

dwelling older adults [8]. Our results are consistent with those findings and further 

strengthen and extend this pattern to longitudinal changes, as we found that BDNF was 

important in predicting change in episodic memory but not executive function. Prior work 

has also shown that VEGF was one of six biomarkers in a profile that distinguished AD 

participants from cognitively normal participants and correlated with current but not future 

severity of cognitive impairment [11]. Other work has shown that increased VEGF levels 

in AD were associated with poorer memory and executive function, but only in APOE ε4 

carriers [53]. Thus, our finding that VEGF was an important but not a reliable predictor of 

episodic memory in MCI could be due to differences between APOE ε4 genotype or its 

relevance to cognition in AD, which may create differences in findings for those with MCI 

due to AD rather than MCI due to another type of dementia [53]. Given the conflicting 

results regarding plasma BDNF and VEGF for predicting cognition in MCI, it is clear that 
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additional studies are needed to clarify the relationships between these growth factors and 

decline in episodic memory.

Finally, IL-6 receptor was considered an important (VIP > 1) but not reliable (BPLS value 

did not significantly differ from zero at p < 0.05) predictor of slope of change in episodic 

memory at two-year follow-up. This is consistent with research exploring CSF levels of 

IL-6-receptor in ADNI, which found that three of 83 assessed CSF proteins were significant 

predictors of global cognition in MCI patients at four-year follow-up [54]. However, IL-6-

receptor was no longer significant after controlling for multiple comparisons. Similarly, 

our results show that plasma IL-6 receptor is one of the 12 important variables out of 29 

predictors of change in episodic memory, but did not have a reliable BPLS value, a pattern 

indicating that plasma IL-6 receptor was not a reliable predictor on its own. Other work 

has shown decreases in serum levels of IL-6 receptor in AD patients compared to healthy 

controls, suggesting that higher levels IL-6-receptor may be beneficial [55]. However, few 

studies have explored plasma levels of IL-6-receptor in the context of predicting episodic 

memory or global cognition, highlighting the need to explore this variable further.

Executive function

Our findings demonstrated that AD biomarkers were important and negative predictors 

of slope of change in executive function at two-year follow-up. Specifically, lower CSF 

t-tau/Aβ42 ratio was the only reliable and positive predictor of change in executive function 

(BPLS significantly different from 0 at p < 0.05). Similar to our finding in the episodic 

memory model, we believe this is one of the first reports linking CSF t-tau/Aβ42 ratio 

to longitudinal change in objective assessment of executive function performance in MCI. 

These results support recent work which revealed that in those with late MCI, lower levels 

of CSF Aβ42 and higher CSF t-tau (which would produce a higher ratio) were significant 

predictors of change in executive function, with lateral temporal lobe atrophy mediating 

this relationship [36]. Additionally, recent work in those with subjective cognitive decline 

demonstrated that lower baseline levels of CSF Aβ42 and higher CSF t-tau were associated 

with steeper declines in tests of attention and executive functions [56]. Cross-sectional work 

exploring both CSF t-tau and Aβ42 found that older adults with MCI that had lower CSF t-

tau and higher CSF Aβ42 had better performance in attention tasks, which is a component of 

executive function [57]. Prior research has shown that CSF t-tau/Aβ42 ratio in MCI subjects 

was significantly different between normal and control participants, was significantly and 

negatively related to longitudinal changes in brain volume in age-vulnerable regions [39], 

and predicted conversion from amnestic MCI to dementia [42]. Thus, one could infer that 

participants with a higher baseline CSF t-tau/Aβ42 ratio (indicative of worse AD pathology) 

might have negative slopes of change in executive function at two-year follow-up due to 

being in the later stage of MCI [36], decreases in brain volume [39], or being at greater risk 

of converting to AD [42].

CSF Aβ42, CSF t-tau, CSF p-tau181, CSF p-tau181/Aβ42, and APOE ε4 allele status were 

additional variables related to AD pathology that were considered important (VIP > 1) but 

not reliable (BPLS values not significantly different from zero at p < 0.05) predictors for 

executive function. As noted in the episodic memory model discussion, prior research has 
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shown that these variables were important predictors of change from cognitively normal to 

AD status [44, 45]. Additionally, as discussed in the episodic memory model discussion, 

prior work in our lab using PLSC indicates that CSF Aβ42, CSF t-tau, and CSF p-tau181 

are significantly associated with several cognitive domains including executive function 

cross-sectionally [19]. However, only one executive function task (Trail Making Test Trail 

B) was significant in this prior analysis, an effect which is not as robust as using the ADNI 

executive function composite score employed for the present study. The present findings 

show that, when explored simultaneously, CSF t-tau/Aβ42 is a better predictor of executive 

function than the other explored AD-related variables (CSF Aβ42, CSF t-tau, CSF p-tau181, 

CSF p-tau181/Aβ42, and APOE ε4 allele status).

The executive function model revealed that HB-EGF-like-GF was important (VIP > 1) but 

not reliable (BPLS value not significantly different from zero at p < 0.05) predictor of 

executive function at two-year follow-up. Interestingly, our previous cross-sectional study 

showed that HB-EGF-like-GF was positively associated with multiple cognitive domains, 

including executive function, in a cohort of participants with MCI, a pattern suggesting 

potential neuroprotective benefits [19]. Very few studies have explored HB-EGF-like-GF 

in relation to human aging and cognition [17, 58]. In one study exploring cognitively 

normal and MCI participants, higher levels of CSF HB-EGF-like-GF were associated with 

greater AD pathology, demonstrated by lower levels of CSF Aβ42 and higher levels of 

CSF t-tau [58], which conflicted with our prior finding. Other studies exploring mice 

supported this relationship, demonstrating that HB-EGF-like-GF caused a cascade of 

cellular events leading to neuroinflammation and subsequent increases in Aβ in the brain 

[59, 60]. However, other work exploring mice has shown that lack of HB-EGF-like-GF 

was associated with decreased neurogenesis in the hippocampus, which aligns with our 

prior cross-sectional finding that plasma HB-EGF-like-GF may have a neuroprotective 

effect [61]. The current study showed that HB-EGF-like-GF was not a reliable predictor 

of executive function on its own, although it was important to predicting change in executive 

function in this MCI cohort. Unfortunately, the directionality of this relationship cannot be 

probed further, as the BPLS value was not significantly different from zero, and thus cannot 

be interpreted. The available literature has demonstrated that it is possible that plasma 

HB-EGF-like-GF contributes to cognitive changes in humans, but future human subjects 

research should further explore this biomarker to assess its potential role in predicting 

cognitive change.

Modifiable cardiometabolic variables including diastolic blood pressure, systolic blood 

pressure, and cholesterol were important (VIP > 1) but not reliable (BPLS values not 

significantly different from zero at p < 0.05) predictors of change in executive function 

at two-year follow-up. This is consistent with research showing that metabolic syndrome 

symptoms as a whole, rather than individual symptoms, predicted small but negative effects 

on executive function and language but not episodic memory in community dwelling 

older adults [62]. In terms of individual cardiometabolic variables, a recent longitudinal 

population-based study of those ages 5 to 95 years found that mean systolic blood pressure 

over time was associated with significant declines in executive function at follow-up 

(average of 12.4 years; [63]).
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Post-hoc analyses of executive function revealed that participants who were female or 

converted to AD at two-year follow-up significantly and negatively loaded on Component 

1 (Fig. 2B). AD biomarkers indicative of worse pathology were approximately equally 

correlated with both Components 1 and 2 of this model. However, post-hoc analyses for 

gender and diagnosis at two-year follow-up were not significant for Component 2. Thus, 

there was not a clear interpretation for a significant and negative loading on Component 

1 (females and those converting to AD at two-year follow-up), and as such we will not 

interpret these results further in order to avoid an over-interpretation of the data.

Limitations and strengths

The present study had several limitations. First, the ADNI sample lacks racial diversity 

and is highly educated—a configuration which may limit generalizability. This work also 

did not explore a few biomarkers of interest such as IL-6 (rather than IL-6 receptor) and 

tumor necrosis factor-alpha due to data either not being available in the ADNI sample 

or due to high amounts (> 10%) of imputed biomarker values in the MCI sample who 

had neuropsychological data available. The current report did not explore other modifiable 

cardiometabolic/metabolic syndrome variables of interest in aging such as high-density 

lipoprotein cholesterol, low-density lipoprotein cholesterol, waist circumference, body fat 

percentage, etc., as these data were not available in this cohort. Bidirectional associations 

(e.g., does cognitive decline precede change in a given modifiable variable?) were not 

assessed because several of the biomarkers examined at baseline were either only assessed 

at baseline (cardiometabolic variables such as triglycerides, cholesterol and serum glucose 

and AD biomarker plasma tau) or were only assessed at baseline and 12-month follow-up 

but not 24-month follow up (inflammatory markers such as insulin, interleukin-6 receptor, 

c-reactive protein, and neurotrophic/growth factors such as BDNF and VEGF). However, 

these variables are likely modifiable and not simply a consequence of disease progression 

as several large population-based studies have shown that higher levels of cardiovascular, 

metabolic, and inflammatory variables were predictors of memory decline [64], executive 

function decline [65], and incident dementia at follow-up [64]. In the few studies that have 

assessed bi-directional relationships between modifiable variables and cognition in older 

adults, higher BMI predicted longitudinal declines in cognition, but cognition did not predict 

change in BMI [66]. Lastly, the present study had a relatively small sample size (N = 

123) and a large number of predictors (I = 29), which may limit the generalizability of the 

current findings to the broader MCI population. In particular, important but less reliable 

predictors such as cardiometabolic variables and neurotrophic/growth factors that exhibited 

domain-specific findings for episodic memory and executive function respectively, may not 

generalize to the broader MCI population.

Overall, the current study had multiple strengths. A unique multivariate approach, PLSR, 

was implemented, which allowed for the simultaneous exploration of several physiological 

and demographic variables of interest without violating traditional statistical assumptions 

needed for other multivariate analyses such as multiple linear regression. This approach 

is new relative to much of the extant literature, which examines a single variable or class 

of variables and examines global cognition or a single cognitive domain. This work also 
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explored longitudinal cognitive change in MCI, where older adults are at greatest risk of 

converting to dementia.

Conclusions

In summary, the simultaneous assessment of AD biomarkers, neurotrophic/growth factors, 

cardiometabolic variables, and demographics revealed that AD biomarkers were important 

and reliable negative predictors of change in both episodic memory and executive function 

over two years in older adults with MCI. Specifically, CSF Aβ42, CSF t-tau/Aβ42, 

and education were reliable predictors of change in episodic memory whereas CSF 

t-tau/Aβ42 was a reliable predictor of change in executive function. There was also 

evidence of domain specificity. Variables associated with neuroplasticity and cognitive 

reserve were important for change in episodic memory, whereas variables associated with 

cardiometabolic health were important in predicting executive function. These findings 

provide preliminary evidence for the suggestion that interventions targeting neurotrophic/

growth factors and cognitive reserve may be relatively more effective in slowing decline 

in episodic memory, whereas interventions targeting cardiometabolic health variables may 

be relatively more effective in slowing decline in executive function. Together, variables 

associated with neuroplasticity and modifiable cardiometabolic health variables were 

important for predicting change in episodic memory and executive function respectively but 

were not reliable predictors on their own. AD biomarkers, however, were reliable predictors 

on their own for both cognitive domains, and thus may carry relatively more importance 

in predicting these two cognitive outcomes in older adults with MCI, which should be 

considered when designing future research.
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Fig. 1. 
VIP Scores represent whether a given input variable is an important predictor in the PLSR 

model (across all components). Variables with a VIP score > 1 (highlighted by the black 

horizontal line at VIP value = 1) are considered important to the PLS model’s prediction. 

A) VIP scores for all variables entered in the episodic memory model. B) VIP scores for 

all variables entered in the executive function model. BDNF, brain-derived neurotrophic 

factor; BMI, body mass index; BP, blood pressure; CSF, cerebrospinal fluid; HB-EGF-like-

GF, heparin-binding epidermal growth factor like-growth factor; IL-6, interleukin-6; IGF, 

insulin-like growth factor; p-tau, phosphorylated tau181; t-tau, total tau; VEGF, vascular 

endothelial growth factor.
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Fig. 2. 
Circle of correlation per model. Figures show how each individual input variable (labelled 

1 – 29; see figure legend) is correlated with Components 1 (x-axis) and 2 (y-axis) of each 

model. Each variable is plotted in a standard coordinate plane. For instance, education 

(purple #20, A) is positively correlated with both Components 1 and 2, which places it on 

the right, upper half of the coordinate plane. Education was more highly correlated with 

Component 2, as shown by nearer distance of #20 from the y-axis, relative to the x-axis. 

A variable that is perfectly correlated with a given component would touch the edge (gray 

line) of the circle. A) Episodic Memory: AD biomarkers (orange) are largely associated 

with Component 1, and neurotrophic factors (blue) and education (purple #20) are 

largely associated with Component 2. B) Executive Function: AD biomarkers (orange) are 

associated with both Components 1 and 2, while cardiometabolic variables and HB-EGF-

like-GF (#16) are largely associated with Component 2. BDNF, brain-derived neurotrophic 
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factor; BMI, body mass index; BP, blood pressure; CSF, cerebrospinal fluid; HB-EGF-like-

GF, heparin-binding epidermal growth factor like-growth factor; IL-6, interleukin-6; IGF, 

insulin-like growth factor; p-tau, phosphorylated tau181; t-tau, total tau; VEGF, vascular 

endothelial growth factor.
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Fig. 3. 
Maps of participant loadings for Components 1 and 2. A) Episodic Memory Model: 

participants coded by diagnosis at two-year follow-up. B) Episodic Memory Model: 

participants coded by gender. C) Executive Function Model: participants coded by diagnosis 

at two-year follow-up. D) Executive Function Model: participants coded by gender.
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