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Abstract

Small data are often used in scientific and engineering research due to the presence of 

various constraints, such as time, cost, ethics, privacy, security, and technical limitations in 

data acquisition. However, big data have been the focus for the past decade, small data and 

their challenges have received little attention, even though they are technically more severe 

in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge 

is often compounded by issues, such as data diversity, imputation, noise, imbalance, and 

high-dimensionality. Fortunately, the current big data era is characterized by technological 

breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific 

discovery, and many advanced ML and DL technologies developed for big data have inadvertently 

provided solutions for small data problems. As a result, significant progress has been made in ML 

and DL for small data challenges in the past decade. In this review, we summarize and analyze 

several emerging potential solutions to small data challenges in molecular science, including 

chemical and biological sciences. We review both basic machine learning algorithms, such as 

linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine 

(SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more 

advanced techniques, including artificial neural network (ANN), convolutional neural network 

(CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-

term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based 

semi-supervised learning, combining deep learning with traditional machine learning, and physical 

model-based data augmentation. We also briefly discuss the latest advances in these methods. 

Finally, we conclude the survey with a discussion of promising trends in small data challenges in 

molecular science.
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1. INTRODUCTION

In recent years, machine learning (ML), including deep learning (DL), has made remarkable 

advancements in a wide range of research fields, including science, engineering, technology, 

medicine, and industry,1–4 marking a significant milestone in data-driven discovery. 

Sophisticated algorithms, such as graph convolutional networks (GCNs),5 convolutional 

neural networks (CNNs),6 recurrent neural networks (RNNs),7 and Generative Adversarial 

Networks (GANs),8 are aided by powerful computing resources, such as graphics processing 

units (GPUs), to achieve success in ML and DL. The main reason behind these achievements 

is the ability to accurately estimate the behavior in unknown domains by quantitatively 

learning patterns from a sufficient number of training samples. However, in scientific fields, 

it is often challenging to obtain large labeled training samples due to various restrictions 

or limitations such as privacy, security, ethics, high cost, and time constraints. Fields such 

as computer vision,9 language translation,10 speech recognition,11 and game playing12 may 

have large-scale data sets with billions or even trillions of data points, but this is typically 

not the case in scientific research. For example, in drug discovery,13,14 the discovery of 

properties of new molecules to identify useful ones as new drugs is constrained by toxicity, 

potency, side effect, partition coefficient (log P), solubility (log S), and various other 

pharmacokinetics and pharmacodynamics metrics. As a result, there are few records of 

successful clinical candidates for a given target. When the number of training samples is 

very small, the ability of ML-based or DL-based models to learn from observed data sharply 
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decreases, resulting in poor predictive performance. Therefore, it is very important for the 

scientific community to learn and generalize effectively the data from very few training 

samples.

Efficiently learning from very few training samples holds great theoretical and practical 

significance in the fields of ML and DL. First, it can help avoid the prohibitively high cost 

of acquiring data and performing costly annotations in certain data-intensive applications. 

Second, it can enable the construction of a low-cost and speedy model for an emerging 

task that only has a few temporarily available samples, which can illuminate potential laws 

earlier in the exploration process. Driven by these promising advantages and the practical 

need for affordable learning, learning from very few training samples has become a popular 

research topic. However, despite related ML approaches such as small or one-sample 

learning, zero-shot learning,15 one-shot,16 or few-shot learning,17,18 the research progress on 

this problem has been slower in the past decade compared to that of large sample learning, 

due to its intrinsic difficulty. For instance, if a learning algorithm is executed on a task 

with very few training samples using just vanilla learning techniques without any advanced 

learning strategies or specific model design, serious overfitting may occur, significantly 

reducing the predictive power of the model.19

Overall, there are several viable strategies to improve the predictive power of ML or DL 

models when dealing with small scientific data sets. Commonly used strategies include 

transfer learning,20,21 combining DL and ML,22,23 GANs,24,25 variational autoencoder 

(VAE),26,27 self-supervised learning (SSL),28,29 long short-term memory (LSTM),30,31 data 

augmentation based on physical models,32,33 active learning (AL),34,35 and semi-supervised 

learning.36,37 However, no paper has provided an organized taxonomy linking these 

techniques. Therefore, in this review, we conduct a survey on ML or DL prediction using 

small scientific data sets and aim to create a taxonomy that connects these techniques.

The remaining sections of this paper are organized as follows. ML preliminaries are 

presented in section 2. Section 3 provides a brief overview of several of the main methods 

used for dealing with data scarcity. Section 3.11 details the theory of transfer learning 

and its applications in the context of small data sets. Sections 4.1 and 3.7 discuss the 

methods of combining DL with traditional learning and those based on GANs, respectively. 

In section 3.8, we outline VAE-based methods for dealing with small training set sizes. 

Section 3.9 surveys the approach of SSL to small data sets. Sections 3.6 and 3.12 

cover LSTM techniques and AL methods, respectively. In sections 3.13 and 4.2, we 

delineate the Merriman–Bence–Osher method and physical model-based data enlargement, 

respectively. Section 4 discusses several perspectives for dealing with small data challenges 

in molecular science, including combining DL with traditional ML, physical model-based 

data augmentation, natural language processing (NLP), and generative networks. Finally, 

section 5 offers an outlook on future developments.
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2. MACHINE LEARNING PRELIMINARIES

2.1. Supervised, Unsupervised, Semi-Supervised, and Self-Supervised Learning 
Strategies

In supervised learning,38,39 a data set containing input and output pairs is used to train a 

function that maps feature vectors (input) to labels (output). The data set is split into a 

training set and a test set, with the former used to adjust the model parameters for accurately 

predicting the outputs for the input examples in the training set. After the model is trained, 

its generalization ability is evaluated by testing its performance in the test set.

Supervised learning encompasses various types, including classification, regression, naïve 

Bayes (NB) models, 40 random forest (RF) models,41 support vector machines (SVM),42 

and neural networks (NNs),8 among others. These algorithms have found widespread 

application in biological and chemical fields. For instance, Lazarovits et al.43 constructed 

NN models to investigate the mechanism of liver and spleen uptake by nanoparticles, finding 

that it was due to protein adsorption on their surfaces. Sandfort et al.44 concatenated 24 

fingerprint representations into a 71 375 dimensional vector, which was then used for 

various supervised learning tasks related to chemical reactivity. Additionally, there is a 

growing interest in applying supervised learning techniques to predict drug side effects.45 

Munoz et al.46 used different models, including logistic regression, RF, decision trees, and 

others, to predict the side effects of biological molecules. Similarly, Zhou et al.47 applied 

boosted RF classifiers to predict the side effects of protein targets, therapeutics, transport 

proteins, enzymes, pathways, and chemical structures of drugs.

In unsupervised learning, the available data set does not have labeled training examples, 

and the objective is to uncover patterns or relationships in the data.48,49 One of the most 

common types of unsupervised learning are clustering, which involves grouping unlabeled 

data points based on their similarities and differences. This process aims to group data 

points into clusters in such a way that those in the same group have the highest similarity 

to each other while points in different groups have little or no similarities. Another type 

of unsupervised learning is data compression or dimensionality reduction,50 which aims to 

represent high-dimensional data in a lower-dimensional space while preserving as much 

information as possible. This technique can significantly reduce computing or storage 

costs while making the ML model run much faster. Unsupervised learning has become a 

crucial tool for handling the increasing amount of data generated by atomic and molecular 

simulations in biochemistry. Glielmo et al.51 provided a discussion of the latest algorithms 

for feature representation of molecular systems used in downscaling and clustering models. 

Basdogan et al.52 employed a nonlinear dimensionality reduction algorithm to create a 

two-dimensional visual representation of the similarity between solute environments in 

microsolvation clusters of different sizes.

Semi-supervised learning53 involves a data set that includes both labeled and unlabeled 

examples. The objective is to learn a function that can predict the labels for the unlabeled 

samples using the labeled ones. Semi-supervised learning can be used for various tasks, such 

as classification, regression, clustering, and association, and offers the benefit of reducing 

expenses on manual annotation and data preparation time. There are several approaches to 
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semi-supervised learning, including self-training,54 cotraining,55 and multiview learning,56 

with the selection of a specific approach depending on the data set’s properties and the 

task requirements. MicroRNAs are noncoding RNAs closely associated with many human 

diseases in the biomedical field. Ji et al.57 treated MicroRNAs disease association prediction 

as a semi-supervised learning problem and proposed a novel method to predict potential 

MicroRNA-disease associations, a new method for predicting potential MicroRNAs-disease 

associations. In healthcare, Yin et al.58 introduced deep forest and semi-supervised self-

training to address disease classification and gene selection for different types of diseases. 

Experimental results demonstrated that the proposed model could achieve good results in 

both disease classification and causative gene identification.

SSL, also known as predictive or pretext learning, is an ML process where a model trains 

itself to learn one part of the input from another part of the input.59 The goal is to learn 

useful representations from unlabeled data that can help with downstream learning tasks 

such as classification or object detection. In SSL, the unsupervised problem is transformed 

into a supervised problem by autogenerating the labels. To make use of the huge quantity 

of unlabeled data, it is crucial to set the right learning objectives to get supervision from 

the data itself. Hence, SSL is particularly useful for tasks where it is difficult to obtain 

labeled data or where the amount of labeled data is limited. Some common SSL tasks 

include predicting missing elements in data,60 reconstructing data from corruptions or 

perturbations,61 and so on. SSL has recently achieved tremendous success in the fields of 

biology and chemistry. Wang et al.62 proposed a cloze-style SSL model, MolCloze, in 2021 

to obtain a generic information representation for molecular property prediction tasks. In 

2022, Zhang et al.63 introduced the concept of SSL to develop HelixADMET, a robust and 

end point scalable absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

system. HelixADMET generated a pretrained model to efficiently screen out unwanted drug 

candidates in the early stages of drug discovery.

2.2. Regression, Classification, Clustering, and Dimensionality Reduction Tasks

Regression ML is used to understand the relationship between dependent and independent 

variables and commonly predicts a continuous value based on the input variables. The 

main goal of regression problems is to estimate a mapping function based on the input and 

output variables. There are various types of regression algorithms that are widely used in 

the biochemical domain, including linear regression,64 decision tree regression,65 principal 

components regression,66 RF regression,67 support vector regression,68 and polynomial 

regression.69 For example, in computer-aided drug design, multiple linear regression models 

are often used for pattern recognition, structural similarity, and binding energy prediction 

to screen promising drug candidates for COVID-19 therapy and quantitative structure–

activity relationships when assessing the structural stability and densification of drugs in 

complex with the major protease of SARS-CoV-2.70 Yan et al.71 used multiple linear 

regression model and SVM methods to predict the inhibitory activity of 117 Aurora-A 

kinase inhibitors, respectively. Additionally, Ye et al.72 applied the established molecular 

docking-based SVM regression model to the design of new NF-B-inducing kinase inhibitors.
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Classification predictive modeling involves approximation of a mapping function from 

input variables to discrete output variables, which are typically labeled or categorized. The 

mapping function is used to predict the class or category for a given observation. In many 

cases, classification algorithms predict a continuous value as the probability of an example 

belonging to each output class. These probabilities can be interpreted as the likelihood or 

confidence of an example belonging to a particular class. Common classification algorithms 

include linear classifiers, SVMs, decision tree classification, k-nearest neighbor (KNN), and 

RF classification, among others.40,73,74 There are numerous applications of these methods in 

biology and chemistry. For instance, Arian et al.75 utilized the KNN algorithm to distinguish 

between active and inactive protein kinase inhibitors and evaluated the performance of the 

model using SVM and NB classification methods.

Clustering or cluster analysis76,77 is the task of grouping a set of objects into homogeneous 

groups or clusters while ensuring that objects in different groups are dissimilar. Clustering 

can be considered an unsupervised task, as it aims to describe the hidden structure of the 

objects. Each object is described by a set of features. The key step in dividing objects 

into clusters is to define the similarity or distance between the different objects. There are 

many clustering algorithms, including hierarchical clustering,78 centroid-based clustering,79 

distribution-based clustering,80 density-based clustering,81 and grid-based clustering.82 In 

order to improve the classification of primary breast cancer and identify disease subgroups 

relevant to patient management, Ferro et al.83,84 used four different clustering methods. 

Their findings showed that applying unsupervised learning to primary breast cancer data 

was a promising approach to enhance the classification of primary breast cancer and define 

subclasses of treated patients.

Dimensionality reduction85 is the process of reducing the number of random variables in a 

data set while retaining as much relevant information as possible. The goal of dimensionality 

reduction is to transform high-dimensional data into data of lower dimensions, making them 

easier to analyze, visualize, and understand. Dimensionality reduction is commonly used as 

a preprocessing step before supervised learning and to remove noise in the data. There 

are several common dimensionality reduction methods, including principal component 

analysis,86 factor analysis,87 t-distributed stochastic neighbor embedding (t-SNE),88 the 

uniform manifold approximation and projection,89 and residue-similarity scores,90 among 

others. Several applications of biochemistry have utilized ML techniques. For example, to 

investigate the structure and binding interactions of HIV-1 protease and P2 ligands, Karnati 

et al.91 performed principal component analysis to identify differences in conformational 

changes induced by inhibitor binding. In 2021, Bort et al.92 used t-SNE to explore the 

structure of bioactive organic molecule data sets.

3. METHODS FOR SMALL MOLECULAR DATA CHALLENGES

3.1. Basic Machine Learning Algorithms

Since Arthur Samuel proposed the concept of ML in 1956,93 a large number of algorithms 

have been developed. Some of the most traditional algorithms include KNN, which was 

proposed by COVER in 1968,94 SVM, which was introduced in 1995 by Cortes,95 and RF 

which was also proposed in 1995 by Ho.96 These classic and fundamental algorithms have 
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been widely applied in various fields such as data mining,97–99 statistical learning,100,101 

and computer vision.102,103 ML is becoming increasingly popular in the fields of biological 

medicine and chemistry, particularly in healthcare and COVID-19 research.104–106 This 

is due to its potential to aid in disease diagnosis,107 data pattern detection,108,109 patient 

management,110 and other areas. In this context, basic ML algorithms will be introduced in 

the field of small molecules. Special algorithms like CNNs and artificial neural networks 

(ANN) will be discussed in detail later.

In the field of drug–target interaction, traditional chemical experiments can be both 

expensive and time-consuming. Although many methods based on different principles 

have been developed to measure the similarity of drugs or targets, their results are often 

unsatisfactory. In 2018, Chen et al. proposed a new method for identifying drug–target 

interaction using the Gradient Boosted Decision Trees (GBDT) ML algorithm.40 This 

method combined drug and protein identifiers, descriptors, and negative information to 

predict drug–target interactions. The data set used in the experiment consisted of 4950 

drugs and 2313 human protein interactions, with 609 drug characteristics and 1819 protein 

characteristics. The GBDT algorithm was compared to six other methods in the experiment, 

and the results are shown in Table 1. The experimental results indicated that the GBDT 

algorithm outperformed other advanced methods, particularly when the data set was small.

Drug-induced toxicity is a significant side effect that requires consideration during drug 

development. However, current experimental methods used to evaluate drug-induced toxicity 

are often time-consuming and expensive, which make them unsuitable for large-scale 

assessments during the early stages of drug discovery. In 2014, Zhou et al. proposed a 

computational prediction model of drug-induced toxicity based on SVM.111 The study 

included 572 samples from a small toxicity data set, and to compare the performance of 

the proposed model, the researchers applied NB112 and recursive partitioning113 methods 

to the same data set. Among all the prediction models, drug-induced toxicity based on 

SVM achieved the best performance, with prediction accuracies of 85.33% and 83.05% for 

the two independent test sets, respectively.111 In comparison, the Bayesian model yielded 

prediction accuracies of 76.09% and 74.58% in the two independent test sets, while the 

recursive partitioning model resulted in prediction accuracies of 79.89% and 77.97% in 

the same two independent test sets. Based on these experimental results, the drug-induced 

toxicity based on the SVM model outperformed the other two models.

There is growing interest in the application of ML and DL across the life sciences, including 

drug discovery. In 2022, Siemers et al. identified the minimal data requirements for learning 

with activity-based composite classification, which serves as an example application.114 ML 

binary classification models were constructed using increasingly larger training sets, starting 

from a minimal set that included only one active compound (and two inactive compounds) 

and extending up to a training set containing 600 active compounds (and 1200 inactive 

compounds), which was used for model construction. In chemical informatics, message-

passing neural networks are increasingly used for the deep representational learning of 

molecular diagrams and the prediction of molecular properties. As a control, a simple KNN 

classifier was used. To explore the sustained high performance of the KNN classifier, the 

researchers systematically extracted simulated sequences from 20 randomly selected activity 
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classes using the composite core relation algorithm. The calculation protocol is shown in 

Figure 1. The results of the control calculations showed an increasing size of the training 

set consisting of the same number of active and inactive instances.114 This work has the 

potential to impact the prospective use of prediction models, particularly for emerging 

targets where there are typically limited compound data.

MicroRNAs play a crucial role in many pathological processes by inhibiting translation 

through interaction with specific target mRNAs. These miRNAs can act as either oncogenes 

or tumor suppressors. In 2022, Yu et al. used a variety of ML algorithms to build models 

predicting up–down and up–down pairs on the training parts of data set1 and data set2, 

respectively.115 The flowchart of this study is illustrated in Figure 2. A model was 

constructed using data set1 (2096 positive pairs and 2096 manually constructed negative 

pairs) to predict upregulated pairs of small molecules and MicroRNAs. Similarly, data 

set2, with 1591 positive and 1591 negative pairs, was used to build a model for predicting 

down-regulated pairs. The RF algorithm showed the best performance. On the test data 

set, the maximum area under the curve (AUC) value of the up-regulated model was 0.911, 

and that of the down-regulated model was 0.896. Additionally, the accuracy values of the 

down-regulated and upregulated models on independent verification pairs were 0.91 and 

0.90, respectively.115 This study is expected to have implications in identifying potential 

therapeutic targets for the development of antitumor drugs.

As ML continues to evolve, its various methods have future directions in various fields. 

Currently, probabilistic graphical models, neural networks, and other methods based on 

probability are research hotspots, in addition to the NB algorithm.116 NB models have stable 

classification efficiency and perform well on small-scale data, handle multiclassification 

tasks, and are suitable for incremental training. However, it can lead to poor predictions due 

to the assumed prior model or classification decision errors. Similarly, SVM has developed 

rapidly in finite dimensions, but further research is needed in infinite dimensions,117 and its 

robustness118 also needs improvement. RF is capable of efficiently operating on large data 

sets119 but sometimes results in a large number of decision trees, which enlarges the space 

and time required for training.120 Fortunately, RF will play a significant role in this era of 

increasing data volume. Later, we will discuss some special ML algorithms that are suitable 

for small sample applications.

3.2. Artificial Neural Networks

With the continuous development of AI, significant progress has been made in the field 

of AI. However, in some complex research areas, AI cannot completely replace the 

human brain in solving complex problems. With increasing exploration by researchers, 

ANN has proven to be effective in replacing the human brain to solve difficult problems. 

In 1943, McCulloch et al.121 proposed the first ANN computational model, called the 

M-P model, which promoted the development of ANN research. ANN, which is also 

known as a collection of connected units of artificial neurons, is a framework for many 

different algorithms from ML. A basic ANN structure usually contains three parts: an 

input layer, a hidden layer, and an output layer. Due to their advantages of self-learning 

and powerful computing power, ANNs have been widely used in various fields, such 
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as face recognition,122–124 medical diagnosis,125–127 and speech recognition.128,129 The 

generalization ability of neural networks is mainly dependent on the size of the training set 

and the network architecture. Generally, the performance of the neural network improves as 

the number of samples in the data set increases. In recent years, ANNs have played a vital 

role in small data set research in the fields of biology and chemistry.130 Researchers have 

applied neural networks to obtain the optimal experimental results. In the following section, 

we will summarize and analyze the research on ANNs in small data sets.

In the field of drug design, researchers have used ANNs to develop predictors for log P. 

For instance, Chen et al.131 developed a predictor for log P using a fully connected ANN 

model. This study is expected to contribute to the identification of potential therapeutic 

targets for antitumor drug development. This, in turn, can help reduce time, effort, costs, 

and attrition rates in drug discovery by enabling the rejection or prioritization of compounds 

without the need for synthesis and testing. While, in order to explore anticancer properties of 

thioguanine, Hoseini et al.132 applied an ANN approach to generate quantitative structure–

property relationships models for log P prediction. Additionally, Dadfar et al.133 developed 

genetic algorithm–multiple linear regressions (GA-MLR) and genetic algorithm–artificial 

neural network (GA-ANN) models to predict the log P of sulfonamides. Sulfonamides are 

compounds with a wide range of biological activities and serve as the basis for several 

groups of drugs.

In clinical practice, predicting blood-to-plasma concentration ratios is crucial for 

determining drug administration regimens. However, only a few studies have investigated 

methods for predicting concentration ratios. In 2021, Mamada et al. developed an 

concentration ratios prediction model incorporating typical human pharmacokinetics 

parameters.134 They compiled experimental concentration ratio values for 289 compounds, 

providing reliable predictions by extending the range of application. The authors used 

human pharmacokinetics parameters, including the volume of distribution, clearance, mean 

residence time, and plasma protein binding rate calculated from plasma drug concentration 

and 2702 molecular descriptors to construct a quantitative structure–pharmacokinetics 

relationship model for concentration ratios. Among the algorithms analyzed, the ANN 

algorithm had the best performance. After optimizing with six molecular descriptors and log 

Vd, the correlation coefficient of the model is 0.64, and the root-meansquare error (RMSE) 

is 0.205, which is better than other concentration ratio prediction methods reported in the 

past.

In 2022, Mayer et al. investigated the nucleation of dislocations in homogeneous lattices, 

which is related to small-scale plasticity or ultrafast loading.135 They prepared training 

data using molecular dynamics (MD) simulations and performed polynomial extrapolation 

beyond the nucleation limit to improve the accuracy of the trained ANN and make 

theoretical predictions more accurate. The authors considered atomic configurations 

observed during dislocation nucleation and subsequent development and presented an 

approximation method that required smaller and simpler MD data for training. Their method 

gave a strain rate dependence for the nucleation threshold that was close to that of a rigorous 

theory of dislocation nucleation. A schematic diagram is shown in Figure 3.
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The performance of small molecule receptors in organic solar cells is determined by their 

chemical structure. To avoid trial-and-error based design, multiscale simulation is necessary, 

which can ultimately save time and resources. In 2022, Mahmood et al.136 collected data on 

164 small molecule nonfullerene acceptors from the literature. Computational analysis is a 

quick and efficient way to narrow down potential candidates for synthesis. This work shows 

that properly regulating sp2-hybrid nitrogen substitution is an effective way to tune the 

properties of the electron acceptors. This study also demonstrates the potential of multiscale 

theoretical modeling, which makes it possible to envision structural changes from atomic to 

molecular levels.

In the future, ANNs will be more frequently applied to neurobiology,137 enabling 

researchers to derive testable insights and predictions from neurobiological experiments. 

ANNs have already been integrated with other advanced methods, such as fuzzy logic138 

and wavelet analysis,139 to enhance their ability for data interpretation and modeling, as well 

as to avoid subjectivity in the operation of the training algorithm.140 ANNs are expected to 

show their talents in more fields in the future, mainly due to their powerful data processing 

capabilities. They can outperform almost all other ML algorithms in some cases, such as 

cancer detection, which is a demanding task,141 where better performance can lead to more 

people being treated. However, one of the disadvantages of ANNs is data gluttony, as they 

generally require more data than traditional ML algorithms. Additionally, ANNs have other 

downsides such as the classic black box problem,142 as well as being time-consuming and 

labor-intensive in their training.

3.3. Convolutional Neural Networks

CNN is a valuable tool in the analysis of biological data143 and is a type of DL algorithm 

inspired by the natural visual perception mechanism in biology.144 LeCun et al. proposed 

LeNet-5 in 1998 for standard handwritten character recognition.145 The network structure 

is relatively complete, which is one of the fundamental components of modern CNNs, 

making LeNet-5 the beginning of the class of CNNs. Over time, Krizhevsky et al. came 

up with AlexNet,146 which performed exceptionally well in image classification. Later, 

VGG-Net147 and GoogLeNet148 were created in the same year and achieved remarkable 

performance in the ImageNet classification task. It is worth mentioning that ResNet9 made a 

significant innovation in the network structure and pioneering work in computer vision and 

DL. In addition, DenseNet149 was proposed, a CNN with dense connections, which further 

improved the network’s performance. Next, we introduce the CNN structure. CNNs are a 

collection of neurons organized in interconnected layers, with convolutional, pooling, and 

fully connected layers.143 The convolution layer is used to extract local features, the pooling 

layer is responsible for significantly reducing parameter size, and the fully connected layer 

is used to output the desired results, similar to the traditional neural network part.150 In 

fact, CNNs have been applied in various fields and have yielded remarkable results, such 

as image processing,151–154 action classification,155–157 NLP,158–161 physics,162–164 and 

more. CNNs are popular in the fields of biology and chemistry for studying quantitative 

conformational relationships (QSAR). For example, Hu et al.165 proposed an end-to-end 

encoder-decoder model and CNN architecture for QSAR prediction, and Karpov et al.166 

constructed a transformer–CNN framework for generating higher quality, interpretable 
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QSAR models. Additionally, Hamza et al.167 used a CNN model for bioactivity prediction. 

We next focus on how CNNs excel in predicting biochemical molecules on small data sets.

Drug-induced liver injury poses a significant challenge in drug development and 

postmarketing safety monitoring, as it can cause clinical trial failures and drug withdrawals. 

Traditional safety testing methods are inadequate to address this pharmacological problem 

due to their limited predictive capabilities. In 2020, Nguyen-Vo et al.168 proposed a novel 

NLP-inspired computational framework using CNN and molecular fingerprint embedding 

features to address this issue. The construction of their model is illustrated in Figure 4. Their 

development set included 1597 samples, consisting of 946 DILI compounds and 651 non-

DILI compounds, while their independent test set included 322 samples, including 128 DILI 

compounds and 194 non-DILI compounds. The study achieved an average accuracy of 0.89, 

a Matthews correlation coefficient (MCC) of 0.80, and an AUC of 0.96. The results indicate 

that the proposed model significantly outperformed the latest and best model with a 6.67% 

improvement in AUC from 0.90 to 0.96. Additionally, the findings suggest that molecular 

fingerprint embedding features are an effective method for molecular representation in 

biological research, complementing traditional molecular fingerprinting applications.

Quantitative structure–activity relationships (QSARs) play important roles in the 

environmental field. In 2021, Zhong et al.169 used molecular images combined with 

CNN to develop QSARs to predict the rate constants of hydroxyl radical generation from 

compounds. The data set contained 1159 organic compounds, which were initially classified 

into 357 classes based on all functional groups. However, 250 of the 357 classes contained 

fewer than three compounds and could not be divided into the training, validation, and 

test data sets. Therefore, based on functional group similarity, they merged classes with 

less than 3–4 compounds with larger groups to form 98 classes.170 The study developed 

molecular image-CNN models using transfer learning and data augmentation techniques. 

These techniques greatly improve the robustness of the model and prediction performance. 

Experimental results show that the proposed model has a better prediction performance than 

the model based on molecular fingerprints.

MD simulations are effective in analyzing the transport characteristics of liquids on solid 

surfaces with different nanometer-scale roughness, but they require high computational 

costs.171 In 2022, Li et al. proposed a DL encoder-decoder CNN to predict the adsorption 

density distribution of atoms and organic liquids at various molecular-scale surface 

roughnesses.172 The data set consisted of monatomic liquids (sample size: 384) and 

polyatomic liquids (sample size: 384), with 344 samples in the training set and 40 samples 

in the test set for both single atoms and multiple atoms. The CNN structure and parameter 

settings are shown in Figure 5. The proposed method achieved high accuracy in predicting 

adsorption densities at different microinterfaces with a small data set. The experimental 

results show that MD and DL methods have good coupling, which can help in designing 

surface geometry to obtain ideal molecular liquid interface transport characteristics and 

complement the nanoscale model system for interactive visualization.

In summary, CNN is a great approach for solving small data set problems in various 

fields, such as pharmacology,168,173,174 chemical efficacy testing,175 and protein structure 
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prediction.143,176 One of the most significant advantages of CNN177–179 is its ability 

to identify important features without human supervision. Additionally, CNN is highly 

accurate at image recognition and classification.180 Another major advantage of CNN is its 

weight sharing property, which reduces the amount of computation required compared with 

regular neural networks. However, CNN also has some drawbacks.181 First, it fails to encode 

the position and orientation of objects.182 Second, CNN’s effectiveness depends on having 

a large amount of training data. Third, CNN tends to be slower due to operations such as 

maxpool.183 Finally, because CNN is made up of multiple layers, the training process can 

take a long time if the computer lacks a powerful GPU. Despite these drawbacks, CNN 

has shown promising results when applied to small data sets of biochemical molecules. 

Nevertheless, researchers need to consider issues such as efficiency, experimental costs, 

and result generation. After years of research and application, CNN has become one of 

the representative DL algorithms, reflecting its powerful functions in many aspects. In the 

future, CNN will have more applications in the field of small molecules and will play a 

greater role. Thus, further research and exploration are necessary to improve CNN.

3.4. U-Net

Semantic segmentation has been successfully used in various fields, including geological 

detection, automatic driving,184,185 and agriculture.186 It is a fundamental task in computer 

vision, and its first model, a fully convolutional network, was proposed by187 in 2015. Since 

then, several other models have been introduced, such as the U-Net model,188 SegNet,189 

dilated convolutions,190 and Deeplab.191 In particular, we focus on U-Net and its application 

to small data sets in the biochemical molecular field. U-Net belongs to the Encoder–Decoder 

structure,192 and its framework is shown in Figure 6c.193 The original intention of U-Net 

was to solve problems in biomedical images.194 Because of its excellent performance, U-Net 

has been widely used in the fields of biology and chemistry, such as drug and material 

design,195 protein structure prediction,196,197 as well as other topics such as satellite image 

segmentation198 and industrial defect detection.199

In the molecular field, the U-Net model has shown promising results for small data sets. In 

2021, Nazem et al.200 developed a 3D U-Net model based on voxels for predicting binding 

sites in protein structures. The algorithm was trained and validated on a subset of scPDB, 

which is the largest and highest quality binding site database selected from the PDB. To 

test the model’s performance, the authors used three data sets: Chen11, B210, and DT198. 

Chen11 contains 251 structures with the maximum number of relevant pockets; B210 is a 

set of 210 protein structures in the bound state from LIGSITE-csc, and DT198 contains 198 

drug target complex structures. The model was also assessed on the B48/U48 database to 

show its performance on the apo structures of proteins. The evaluation metric used was the 

F1-score, and the F1-scores for the three data sets were: B210 (0.41), DT198 (0.40), and 

Chen11 (0.37). All of these scores were higher than those achieved by the LIGSITE-csc and 

DeepSite methods.

In 2021, Kotowski et al.201 proposed a single-sequence-based protein prediction method, 

called ProteinUnet, which leveraged the U-Net convolutional network architecture. The 

article aimed to predict protein function and structure from sequence and used protein data 
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sets from CullPDB and named them TR9993 and TS1199. Specifically, TR9993 consists 

of 9993 different chains from 9622 proteins as the training set, and the test set TS1199 

consists of 1199 chains from 1187 different proteins. The authors concluded that their 

model had better classification accuracy compared to the SPIDER3-single model, and more 

detailed results are shown in Table 2. This table provides the mean accuracies of Q3 and Q8 

predictions at the sequence level in TS1197 and CASP13, along with the standard deviations 

and p-values of the two-sided Wilcoxon signed-rank test between the models.

In 2021, Prasad et al.202 developed an automatic liver parenchyma segmentation network 

based on the U-Net architecture. The authors used a data set consisting of highly variable 

venous phase enhanced computed tomography (CT) volumes, with 10 males and 10 females 

as the source, 75% of whom had liver tumors. However, due to the small size of the data set, 

the model was overfitting, and the authors had to take some measures, such as reducing the 

convolution and dropout layers. They also added Gaussian noise to prevent overfitting and 

solved the problem of inconsistent intensity by pixel normalization. To build a model with 

better performance, it was important to choose an appropriate loss function. The authors 

evaluated four loss functions: Dice loss, binary cross-entropy loss, Tversky loss, and focal 

Tversky loss, and we found that the Dice loss function performed the best, achieving a score 

of 94.5%. Their work may play a crucial role in assisting oncologists and surgeons with 

accurate analysis of various pathological conditions, ultimately saving time.

As an improved version of the fully convolutional network model, U-Net has several 

characteristics that make it suitable for large medical image segmentation.203 These include 

multiscale capability,204 simple structure,205 and the use of skip links.206 However, U-Net 

also has some drawbacks, such as slow running efficiency207 and the limitation of being 

able to predict on a single scale.208 In the future, supervised,38,39 semi-supervised,53,209 and 

unsupervised learning48,49 could be potential areas of research for U-Net, as medical image 

data often lacks sufficient labeled examples. Additionally, the combination of U-Net and 

AL210,211 could also be a promising direction for addressing the challenge of data labeling.

3.5. Graph Neural Networks

In recent years, graph neural networks (GNN) have become powerful and practical tools 

for ML tasks in graph domains. The GNN model was first introduced by Gori et al.212 and 

Scarselli et al.213 and Micheli et al.214 developed and improved upon the algorithm. The 

success of GNN in many domains such as recommender systems,215,216 computer vision,217 

and NLP218,219 is attributed in part to its effectiveness in extracting latent representations 

from Euclidean data. However, as data are increasingly represented in the form of graphs, 

including non-Euclidean domains such as e-commerce,220,221 chemistry,222,223 and citation 

networks,224,225 there is a growing need for GNNs. Additionally, molecular property 

prediction is a popular application of GNNs, as molecules can be represented as topological 

graphs, with atoms as nodes and bonds as edges. Currently, the most advanced GNNs can 

be categorized as GCNs,226 graph autoencoders,227 recurrent GNNs, and spatial-temporal 

GNNs.228 It is worth noting that there are still open questions about how GNNs handle small 

data on molecular science or small molecular data that need to be addressed.
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In 2021, Yaqing Wang et al.229 proposed property-aware relation networks which are 

compatible with existing graph-based molecular encoders to address the limitations of 

quantitative structure–property relationships and the issue of existing works failing to 

leverage related graphs among molecules. The overall architecture of property-aware 

relation networks is shown in Figure 7. The authors conducted experiments on widely used 

benchmark few-shot molecular property prediction data sets from MoleculeNet:230 Tox21, 

SIDER, MUV, and ToxCast, which consist of 8014, 1427, 93127, and 8615 molecules, 

respectively. The article used the ROC-AUC metric to evaluate the model performance 

on these benchmark molecular property prediction data sets. Empirical results consistently 

showed that property-aware relation networks achieved state-of-the-art performance on the 

few-shot molecular property prediction problem.

In 2020, Pappu and colleagues231 investigated the use of pretraining and the meta-learning 

technique MAML (as well as variants FO-MAML and ANIL) to enhance the performance 

of GNNs via transfer learning from related tasks, allowing for their use even in settings 

with limited data availability. The authors created a new data set comprising 645 binary 

classification tasks from the ChEMBL database, filtered for five distinct task types. The 

study found that the performance of the GNN model was initially lower than fingerprint 

methods but significantly improved with the use of MAML and FO-MAML, outperforming 

both fingerprint and pretraining methods as measured by the area under the precision-recall 

curve of the models. The results suggested that meta-learning can improve the use of GNNs 

in low-data settings compared to fingerprint methods.

Generally, existing DL methods for molecular property prediction require large training 

data sets for each property, which limits their performance in cases where there is only a 

limited amount of experimental data, especially for new molecular properties. To address 

this issue, Zhichun Guo et al. proposed Meta-MGNN, a novel model for few-shot molecular 

property prediction in 2021.232 Meta-MGNN’s skeleton framework can be seen in Figure 

8. To evaluate the performance of Meta-MGNN, the authors used the Tox21 and Sider data 

sets, which consist of 7831 and 1427 samples, respectively. The overall performance of all 

methods was evaluated using the AUC metric, and the results showed that Meta-MGNN 

outperformed all baseline models on both the Tox21 and Sider data sets. Specifically, for 

1-shot learning, the average improvements were +1.04% and +1.80% on the Tox21 and 

Sider data sets, respectively, and +0.84% and +1.87% for 5-shot learning.

GNNs have become widely used not only in the fields of biology and chemistry, such 

as protein–protein interaction networks,233 protein structure prediction,234 and chemical 

property estimation235 but also in various other ML applications such as reinforcement 

learning,236,237 semi-supervised,238,239 and unsupervised240,241 learning. However, due to 

the complexity of the graph structures, GNN models are not always effective in all graph 

conditions. To address this issue, several future research directions have been proposed. For 

instance, the robustness of GNN models should be enhanced because they are vulnerable to 

adversarial attacks.242 Moreover, because GNN models are often treated as black-boxes, 

there is a need for improved interpretability on graphs. Thus, research in generating 

example-level explanations for GNN models has been proposed.243,244 Additionally, graph 

pretraining245 and the challenges associated with complex graph structures are also 
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important research directions. Nonetheless, GNNs also have certain limitations such as 

their performance being limited by their depth and width,246 their inability to work with 

insufficient data,247 and issues related to high computational costs.

3.6. Long Short-Term Memory

LSTM is a type of RNN that addresses the vanishing gradient problem during training and 

is capable of learning long-term dependencies. It was introduced by Hochreiter et al.248 

in 1997 and has been refined and applied in various fields. Unlike other DL models, the 

LSTM is specifically designed to handle long-term information without incurring significant 

cost. LSTM employs back-propagation as its main parameter training algorithm, which 

involves four steps: forward pass to calculate the output values, error computation using 

a loss function, backward error propagation among the neurons, and weight parameter 

updates. LSTM has been successful in a variety of biological and chemical fields, including 

chemical–protein relation extraction,249 chemical substance classification,250 and drug 

molecular design.251 Additionally, it has been used in fields like imaging,252,253 speech 

recognition,254,255 NLP,256 and more. However, when the data set is small or has few 

labeled samples, using LSTM may not always yield desired results. This is particularly 

relevant in bioinformatics, biochemistry,257 and other fields where data sets typically have 

fewer than 5000 elements.

In the field of protein research, predicting the structure of proteins is essential for 

understanding their function and designing drugs. Traditional techniques for protein 

structure prediction are often time-consuming and expensive, and developing new advanced 

methods remains a major challenge. The secondary structure of proteins is critical for 

analyzing protein function and designing drugs. Various computational methods have been 

proposed to improve the performance of protein secondary structure prediction. In 2019, 

Guo et al.258 proposed a novel deep neural network approach called deep asymmetric 

convolutional LSTM neural network (DeepACLSTM) for predicting protein secondary 

structure from protein sequence features and profile features. DeepACLSTM utilized the 

eigenvector dimension of the protein feature matrix to effectively combine asymmetric 

CNNs259 and bidirectional LSTM (BLSTM) neural networks to predict protein secondary 

structure. It comprised three main modules. In this paper, DeepACLSTM was compared 

with several methods such as SSpro8,260 conditional neural field (CNF), DeepCNF 

(CNF based on DL),261 and CBRNN.262 To evaluate the performance of DeepACLSTM, 

experiments were conducted on three publicly available data sets: CB513, CASP10, and 

CASP11. The results demonstrated that DeepACLSTM outperformed the state-of-the-art 

baseline on all three data sets.

In the field of medicinal science, cancer remains a significant threat to human health. 

Anticancer peptides (ACPs) present a promising avenue for cancer treatment and offer many 

advantages. However, traditional experimental methods for identifying novel anticancer 

peptides can be costly and inefficient. In 2019, Yi et al.263 proposed a DL-LSTM neural 

network model, ACP-DL, for effectively identifying new anticancer peptides. The authors 

combined binary contour features and a k-mer sparse matrix of simplified amino acid letter 

features to construct an efficient feature representation that maximized the use of peptide 
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sequence information. Additionally, a deep LSTM model was utilized to automatically learn 

to discriminate between anticancer and ordinary peptides. The workflow of this approach is 

shown in Figure 9. To evaluate the performance of the method, the authors used the ACP740 

(with a sample size of 740) and ACP240 (with a sample size of 240) data sets and compared 

the results using 5-fold cross-validation, which verified the state-of-the-art performance of 

ACP-DL.

In 2017, Li et al.264 proposed a predictive model called ProDec-BLSTM for investigating 

protein remote homology detection. The model included an input layer, a BLSTM layer, 

a time-distributed dense layer, and an output layer. The framework diagram for ProDec-

BLSTM is shown in Figure. 10. The performance of the model was evaluated using the 

SCOP data set, which had a sample size of 4019. ProDec-BLSTM was compared with 

GPkernel,265 GPextended,265 GPboost,265 SVM-Pairwise,266 Mismatch, eMOTIF,267 LA-

kernel,268 PSI-BLAST,269 and LSTM270 on the same data set. ProDec-BLSTM achieved a 

mean receiver operating characteristic curve (ROC) of 0.969 on the evaluation metric, which 

was higher than those of the other methods.

In addition to the previously mentioned applications of LSTM, successful applications have 

been documented in the fields of biophysics and bioinformatics. Various variant models have 

also been proposed by combining LSTM techniques to improve accuracy, such as the flow-

based LSTM model proposed by Gers et al.271 in 2000. Recently, Zhu et al.272 proposed a 

variant model called ACP-check, which utilized BLSTM networks and multifeature fusion. 

The model extracted time-dependent information features from peptide sequences by using 

a BLSTM network and combined them with amino acid sequence features. To validate the 

performance of the model, six benchmark data sets were selected, including ACPred-Fuse, 

ACPred-FL, ACP240, ACP740, main, and alternate data sets of AntiCP2.0. ACP-check 

achieved prediction accuracies of 0.91, 0.91, 0.90, 0.87, 0.78, and 0.93, respectively, with 

improvements ranging from 1% to 49%. These results demonstrated the excellent predictive 

performance of ACP-check. Other improved models, such as Bidirectional LSTM,273 have 

also been proposed for short-term load forecasting. These successful examples of LSTM-

based variant models indicate that the use of LSTM techniques is not only effective in 

improving experimental results but also has a wide range of applications. However, further 

research is needed to determine the optimal method for combining LSTM with small data 

sets.

3.7. Generative Adversarial Networks

Although DL has made significant breakthroughs in various research fields, the quality and 

quantity of data often affect its results. In 2014, Goodfellow et al. proposed an innovative 

GAN model.274 Unlike other DL algorithms, GAN has a discriminant model composed 

of two main parts: the generator and the discriminator. The generator is responsible for 

creating synthetic data samples, while the discriminator tries to differentiate between real 

and synthetic samples. These two parts compete against each other during the training 

phase, where the generative model learns the distribution of the sample data. Note that the 

discriminative model is often a dichotomous classifier used to distinguish between real and 

generated data. The flowchart of the GAN framework is shown in Figure 11.
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With the rapid development of GAN, many generalizations have been proposed to improve 

the original method. Examples of these include AdaGAN,275 MADGAN,276 PacGAN,277 

D2GAN,278 SGAN,279 and DCGAN.280 GAN and its extensions are often used to augment 

data sets and mitigate overfitting issues in downstream ML and DL tasks. In the following 

sections, we summarize how GANs have been utilized in small data sets of chemical and 

biological molecules.

In 2019, Han et al.281 proposed protein log S generative adversarial nets (ProGAN), a 

data augmentation method to address the issue of insufficient data for protein log S 
prediction. The data set comprised 3148 samples from the ESOL database,282 and the 

evaluation metric used was the coefficient of determination, R2. ProGAN was employed 

solely for data augmentation and combined with the DNN method to enhance the prediction 

performance. The optimal results were achieved using the sigmoid activation function.283 

The test set R2 for DNN was 0.40 ± 0.0074, and for DNN+ProGAN, it was 0.42 ± 

0.0067. The DNN+ProGAN method with the sigmoid activation function yielded the highest 

experimental result, with an R2 of 0.45 ± 0.0018. The results of this work have the potential 

to enhance the production yield of recombinant proteins in biocatalysis applications.

In 2019, Liu et al.284 developed a model that combined GAN and deep neural networks 

(DNN) for multiple classifications with small cancer-staging sample sizes. First, the original 

data were split into a training set and a test set, and the GAN was trained using the training 

set to generate synthetic samples that expanded the training set. Then, the DNN classifier 

was trained using the synthetic samples, and the classifier was tested with the test set 

using different metrics to verify the effectiveness of the method. The data set used in the 

experiment had less than 100 samples, which were divided into a training set (60%) and a 

test set (40%). Classical ML methods such as RF285 and NB were used as a comparison, and 

the SMOTE286 method was used to generate oversampled samples to train the classifiers. 

In the WGAN-based framework, a large number of synthetic samples generated by WGAN 

were used to train the classifiers, and then the classifiers were validated with real samples. 

The experimental results were presented in Table 3. The evaluation metrics used were 

accuracy, F-measure (the harmonic mean of precision and recall),287 and the geometric 

mean of recall,288 which demonstrated that the proposed method substantially improved the 

results of the classification experiments under the condition of increasing the number of 

synthetic samples.

In the field of cancer research, the issue of insufficient data often leads to poor performance 

of ML models. To address this problem, Wei et al. proposed Gene-GAN in 2022,74 a model 

for classifying cancer data. As the data set contained less than 500 samples, they used 

GAN to augment the data and employed the reconstruction loss to stabilize model training, 

resulting in high-quality generated samples. The excellent performance of Gene-GAN was 

demonstrated by comparing it with different classifiers in Table 4, which also highlighted 

the importance of data augmentation using GAN. In the table, Gene-GAN (mixed) indicated 

that the generated data was used in combination with the original data, while Gene-GAN 

(nonamplified) meant that the augmented data was not used. The experimental results 

confirm that the generative model is an effective solution to the problem of insufficient 

sample size.
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In 2020, Hsu et al.289 proposed the Wasserstein-based data augmentation algorithm, which 

utilized GANs to augment data during model training. The authors conducted experiments 

on a breast cancer data set containing 582 samples. The results of Wasserstein-based data 

augmentation demonstrated higher accuracy, AUC, and concordance index values compared 

to those of the data augmentation algorithm. Specifically, the accuracy value was 0.6726 ± 

0.0278, the AUC value was 0.7538 ± 0.0328, and the concordance index value was 0.6507 

± 0.0248. The results suggest that GANs can be effectively used to train deep models in 

medical applications, even when limited data is available.

In 2021, Li et al.290 presented a derivative model, BrainNetGAN, based on GAN for 

the synthesis of conditional brain networks. The brain network matrix was used as input 

to generate a fake brain network connection matrix through BrainNetGAN, and then, 

the potential distribution and topological characteristics of real brain network data were 

inferred. The experiments evaluated the data augmentation performance of BrainNetGAN 

and compared its results with the experimental results of Baseline without augmented 

data. Specifically, BrainNetGAN attained an accuracy of 0.812, which was higher than the 

baseline of 0.791.

The experiment conducted by Lin et al.291 in 2021 aimed to develop a sequence-based 

binary classifier to determine whether short peptides exhibited antiviral activity. The 

antiviral data set used in the experiment consisted of 2934 samples. To address the issue 

of imbalanced data, the authors employed a GAN model to augment the number of positive 

data samples, which were then added to the original data set. As a result, the model achieved 

an accuracy of 84% in the final prediction, which outperformed the accuracy achieved using 

the original data set without augmenting the data generated by the GAN method.

Nowadays, GAN has gained popularity in both academia and industry due to its numerous 

applications, not only in the fields of peptide and protein design,292 chemical material 

design,293,294 and medicine,295–297 but also in image genersion, among others. These 

studies demonstrate the broad range of applications of the GAN methods. Despite their 

significant success, GANs still have shortcomings in various research fields. For example, 

the interpretability and controllability of GANs have not been fully understood, and further 

research on these aspects will remain crucial in the future. Additionally, GANs often suffer 

from poor stability, which can lead to model collapse.307 Therefore, future research on how 

to prevent model collapse during GANs training will be important.

3.8. Autoencoders

In recent years, NLP models have become increasingly popular. Among them, (variational) 

autoencoder (VAE) is considered to be one of the most promising techniques for 

unsupervised learning. VAE was proposed by Kingma et al.308 in 2013. It not only 

plays an important role in generating data but also has a wide range of applications 

in imaging and other fields. With the continuous development of VAE, its structure 

has become more flexible, and derivative models based on variational autoencoder-based 

models have emerged. For example, the conditional variational autoencoder was proposed 

by Makhzani et al.309 in 2015. In 2017, Bao et al.310 proposed a model conditional 

variational autoencoder-GAN combining VAE and GAN for synthesizing images in fine-
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grained categories, such as faces of a specific person or objects in a category. Other 

examples include a variational loss autoencoder,311 multistage variational autoencoder,312 

and Wasserstein autoencoder.313

In the field of molecular generation, various generative models based on variational 

autoencoders have been proposed, such as Graph Flow-Variational Autoencoder (GF-

VAE),314 which combines VAE and the normalized model to generate molecular maps at 

once. Through the use of variant models of the variational autoencoder, it is evident that 

VAE has been extensively applied in many research fields. While traditional autoencoders 

describe the difference of the latent space using numerical methods, VAE models the 

difference of the latent space using probabilistic distributions. It models the relationship 

between latent variables and input data from a probabilistic perspective to complete the 

task of data generation and solve the problem with very few training samples. The model 

structure of VAE is mainly composed of two parts: the inference network (i.e., encoder) 

and the generation network (i.e., decoder). The basic process is to map the samples to 

the latent variables of the low-dimensional space through the encoding process and then 

restore the hidden variables to the reconstructed samples through the decoding process. The 

following section summarizes the applications of (variational) autoencoders to small data 

sets in scientific research.

In 2019, Ohno et al.64 used variable self-sorting encoders as a generative model for data 

augmentation to address the problem of small data volumes in regression tasks. The study 

utilized seven small data sets of regression type. First, the original data were divided into 

training and test data, and the generated model was trained on the training data. Next, 

sampling was carried out using generative models based on ratios. The generated samples 

were then trained on the regression model along with the original training data. Finally, the 

RMSE of the test data on the regression model was calculated. Several models were set up 

for comparison, including kernel density estimation using Gaussian kernel function (KDE), 

Variational autoencoder (single task learning (VAE)), VAE with linear regression (multitask 

learning), VAE with nonlinear regression (multitask learning), and denoising autoencoder 

with MCMC. In evaluating the test data, samples generated by the model were used, with 

the sample size to training data size ratio ranging from 0 to 1. Changes in the RMSE were 

evaluated according to the increase in the size of the training data. The experimental results 

for the ION data set were used as an example in the paper. The RMSE values of the KDE, 

VAE with linear regression, VAE with linear regression, VAE with nonlinear regression, and 

DAE-A models were 0.83080, 0.86738, 0.86181, 0.86258, and 1.07335, respectively. The 

RMSE values for the four models improved with the increasing ratio, except for DAE-A, 

which may be because the generated samples were highly similar to those in the training 

data.

In chemistry and biophysics, an issue frequently encountered is the imbalance between the 

number of available training and test samples. In 2022, Wei et al.41 proposed a solution 

that combined a variable self-division encoder and GAN algorithm for data augmentation 

to address this problem. The authors demonstrated that the R2 values of several models 

including ANN, VAE+ANN, GAN+ANN, RF, VAE+RF, and GAN+RF were 0.57, 0.71, 

0.59, 0.89, 0.94, and 0.59, respectively. These results suggest that the proposed approach can 
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improve the performance of the task by enhancing the balance between training and test data 

sets.

In 2021, Feng et al.315 developed a network analysis of cocaine dependence targets 

that involved more than 450 proteins, including dopamine (DAT), serotonin (SERT), and 

norepinephrine (NET) transporters. However, the available ligand binding data sets for many 

of these targets were limited. To improve the accuracy of their ML/DL models, the authors 

constructed autoencoder-assisted multitask ANN models, as depicted in Figure 12. This 

method was employed to facilitate drug repositioning and side effect analysis.

Nowadays, variational autoencoders are widely used not only in the field of generative 

models for sample design of chemical molecules316–318 but also in other areas such as 

imaging319 and text generation.320,321 Variational self-encoders are commonly used in 

image and biomolecular research to generate new molecular samples. However, there are 

still some issues with VAEs, such as the generation of noisy data. Additionally, most 

VAE structures struggle with generating high-resolution image samples, making them less 

effective in this area compared with GAN-based generative models. As a result, VAEs 

are often used as feature extractors in image and molecular science.315 However, in NLP, 

VAE-like models are capable of generating more coherent language samples than GANs and 

require only simple structures to produce fluent language, highlighting the advantages of 

VAEs in this field.

3.9. Transformers

SSL322 is a type of unsupervised learning that extracts supervised signals from unlabeled 

data, which can be used to learn intrinsic constitutional rules and obtain desirable 

representations using neural networks. Because the supervised information in SSL is not 

manually annotated, it can be considered a branch of unsupervised learning. SSL is often 

the first choice for researchers to avoid the high cost of data annotation and the poor 

performance of traditional unsupervised learning. SSL was initially applied in computer 

vision and NLP323,324 that requires large data sets for accurate representation learning. As 

SSL advances, it has been utilized to predict molecular properties.325,326 For example, it can 

extract features from unlabeled molecular data.28,327 Likewise, SSL can also extract features 

from genome data328 to predict genome function. Recently, many studies have shown 

that SSL can alleviate the problem of few samples or insufficient supervised information, 

making it widely applicable in image classification,329,330 recommender systems,331 protein 

analysis and design,332 speech recognition,333 and other fields. For small data sets of 

biochemical molecules, many researchers have proposed SSL methods to process them.334 

In the following discussion, we will focus on the applications of SSL to small data sets of 

biochemical molecules.

In recent years, SSL methods have gained popularity in drug discovery.336,337 In 2020, Shen 

et al.335 proposed an SSL method called Motif Learning GNN (MoLGNN), which was 

trained on unlabeled chemical data to improve drug screening performance. The method 

was tested on three data sets, JAK1, JAK2, and JAK3, and compared to the results of three 

other methods in Table 5. “Non-MoLGNN” referred to a network trained using standard 

supervised classification methods without pretraining, ”GINVAE” indicated a procedure that 
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pretrained the network using GINVAE and then fine-tuned it, and ”Motif Only” meant a 

procedure that pretrained and then fine-tuned the network using a Motif learning network. 

From the table, it was found that the MoLGNN method produced superior results compared 

with the other methods. The results also suggested that MoLGNN can be applied to a range 

of machine learning tasks in chemistry, even in scenarios where high-quality labeled data 

was limited.

In 2021, Chen et al.334 proposed an algebraic graph-assisted bidirectional transformer model 

for predicting molecular properties. The model was composed of four modules: an AG-FP 

generator (represented by the blue rectangle), a BT-FP generator (represented by the orange 

rectangle), a feature combination module using RF (represented by the green rectangle), 

and a downstream ML module (represented by the pink rectangle), as shown in Figure 13. 

The creation of BT-FPs involved two steps: training based on SSL (with a large amount 

of unlabeled input data) and task-specific fine-tuning. The RF algorithm was utilized to 

compute and rank the importance of the combined features, providing optimal features for 

the downstream ML algorithms. Experimental results demonstrated that the model proposed 

obtained the best predictions on the data sets LD50, LC50 and FDA, compared to existing 

advanced models, like ESTDS,338 MACCS,339 FP2,339 HybridModel,340 BTAMDL2,341 

ESTD-1,342 Daylight-MTDNN,339 XLOGP3,343 and Estate2,339 as indicated by the squared 

value of the Pearson correlation coefficient (R2).

In 2022, Yang et al.344 proposed a multitask SSL framework called SSLDR to tackle 

the label sparsity problem in computational drug repositioning and accelerate the drug 

development process. The experiments were conducted on three real-world data sets, 

namely, Gottlieb, Cdata set, and DNdatase.345 The prediction results demonstrate that 

SSLDR not only enhances the generalization performance of the ”drug-disease association 

prediction” task but also leverages a multi-input decoder to improve the autoencoder’s 

capability to discover potential factors of drugs or diseases. Additionally, the results reveal 

that the SSLDR model outperforms other methods on all three data sets.

SSL has gained popularity not only in the prediction of chemical molecule properties, as 

evidenced by several studies,346–348 but also in other fields such as protein349,350 and drug 

design.351 Uncovering valuable information from unlabeled data has been a vital research 

area, and SSL has played a critical role in this endeavor. The most significant advantage of 

SSL is its ability to achieve good performance without a vast number of labeled samples, 

which reduces labeling costs and saves time. However, SSL often requires significant 

memory resources during training and demands high hardware requirements. Moreover, SSL 

is faced with numerous challenges, such as extracting intrinsic representations from large 

quantities of unlabeled data and evaluating the accuracy of such representations, which are 

essential directions for future SSL research.

3.10. Reinforcement Learning

ML has become a ubiquitous computational method in research, and reinforcement learning 

(RL)352,353 plays a significant role in it. RL studies the way natural and artificial systems 

can learn to predict the consequences of and optimize their behavior in environments where 

actions lead them from one state or situation to the next and can lead to rewards and 
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punishments. A common model for RL is the standard Markov Decision Process.354,355 RL 

can be divided into model-based RL356 and model-free RL,357,358 as well as active RL359 

and passive RL.360 DL models can also be used in RL to form deep RL (DRL).361,362 

These methods have been applied to diverse fields in biology and chemistry, including 

drug discovery,363,364 protein design,365,366 and chemical engineering.367,368 They have also 

been used in image recognition369,370 and financial markets.371 Next, we will summarize 

how RL can be applied to the study of biochemical molecules in the context of small data 

sets.

In the field of drug discovery, evaluating compounds from libraries is one of the most 

time-consuming tasks. In 2022, Dou et al.372 proposed a ML model suitable for small data 

sets to predict the inhibition constant (Ki) and half-maximal inhibitory concentration (IC50) 

of compounds. The prediction task was first transformed into a simple binary classification 

task, and then the training data set was expanded as the original sample size was small. The 

paper also employed the reinforcement learning method for feature selection, as illustrated 

in Figure 14. Lastly, the authors used a particle swarm optimized SVM for the binary 

classification task, denoted as SVM+. The sample size of the Ki-related data set was 44, and 

that of the IC50-related data set was 36. Among the classification results, the accuracy of 

SVM+ on the Ki data set was 0.8074, while the accuracy of traditional SVM, Gaussian NB 

(GNB), KNN, and RF were 0.7942, 0.7150, 0.7467, and 0.7309, respectively. Moreover, the 

accuracy of SVM+ on the IC50 data set was 0.8262, while the accuracy of traditional SVM, 

GNB, KNN, and RF were 0.7943, 0.7411, 0.7731, and 0.7304, respectively. Based on the 

experimental results, the proposed model outperformed other comparison methods.

In the field of RNA research, it is important to determine the relationship between 

MicroRNA and diseases to improve the treatment of complex diseases. In 2021, Cui et 

al.373 presented the RFLMDA model by combining the Q-learning algorithm374 and RL. 

The RFLMDA model fused three submodels, namely CMF,375 NRLMF,376 and LapRLS,377 

together by the Q-learning algorithm to obtain the optimal weights S. The data sets used 

in the experiments included MicroRNAs (with 495 samples), diseases (with 383 samples), 

and MiRNA–disease associations (with 5430 samples). The performance of RFLMDA was 

evaluated using 5-fold cross-validation and local validation in the experiments. Finally, the 

RFLMDA model was compared with other methods using the evaluation indexes AUC 

and AUPR. The experimental results showed that the AUC value of RFLMDA reached 

0.9416, while the AUC values of CMF, NRLMF, and LapRLS were 0.9091, 0.9315, and 

0.9367, respectively. These results demonstrate that the RL-based approach can achieve 

good performance on small data sets.

In 2021, Pereira et al.378 introduced a new approach to optimize the generation of 

compounds that considered their biological properties and bioavailability through a DRL 

framework. The framework, illustrated in Figure 15, integrated several technologies, such 

as DL, multiobjective selection, and RL, with RL being the cornerstone. The RL algorithm 

updated the properties of the generated molecules by maximizing the reward function. 

A blood–brain barrier predictor was trained with a data set of 4534 molecules collected 

from various sources, and canonicalized SMILES were used to represent the molecules. 

Two descriptors were combined with two different oversampling methods to evaluate 
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the performance of the model’s performance. The accuracy of SMILES+ADASYN and 

SMILES+SMOTE was 0.924 and 0.913, respectively, while the accuracy of extended-

connectivity fingerprint (ECFP)+ADA-SYN and ECFP+SMOTE was 0.935 and 0.944, 

respectively. The experiments demonstrated that this approach can achieve excellent 

performance, even with a small number of samples.

In addition, in the field of cancer research, molecular-based cancer classification has become 

a hot research topic. In 2022, Prathik et al.379 proposed a DRL model for efficient analysis 

of gene expression data to identify cancer types. The DRL model can easily predict cancer 

types from gene data sets, even with multiple classification labels. Each class was identified 

by the deep neural network and continuous estimation using the Q-learning method in 

RL. Three gene expression data sets were used in this study: glioblastoma data set (with 

50 samples), brain tumor data set (with 40 samples), and lung cancer data set (with 34 

samples). The principal component analysis algorithm380 was used to analyze the data sets 

and extract the features, and then the DRL model was used for classification experiments. 

The DRL model was also compared with other classifiers such as ANN, RF, and SVM. The 

accuracy of the DRL model in the breast cancer, glioblastoma, and Llung cancer data sets 

was 98.3%, 99.2%, and 97.34%, respectively, which outperformed the other classifiers. The 

experimental results are summarized in Table 6, indicating that the DRL model is a useful 

tool in cancer classification tasks.

RL is a versatile method with applications in various fields, including ethics,381 drug 

design,382,383 psychology,384,385 and control theory.386,387 RL has garnered interest from 

researchers due to its ability to solve complex scenarios that cannot be tackled by traditional 

methods, as many problems can be converted to a Markov decision process and solved by 

using RL. However, RL also has some drawbacks. First, the learning efficiency of RL can be 

low, as seen in algorithms such as OpenAI Five388 and AlphaZero.389 These issues can be 

addressed using transfer learning390 or replay buffers (also known as experiential replay).391 

Second, RL often requires high-quality data and involves a large number of computational 

processes. Lastly, RL’s greatest feature is its generality, with a generic algorithm capable of 

learning almost anything. Despite the challenges associated with RL, continued research and 

development in this field will ensure its widespread use in various research domains.

3.11. Transfer Learning

One possible solution for scarce training data is transfer learning. This technique can 

address the problem of difficult label acquisition. The term ”transfer learning” was formally 

introduced by the U.S. Department of Defense Advanced Research Projects Agency in 

2005 and has been used earlier under different names in various research areas. Yang et 

al.392 later provided a detailed introduction to the development, definition, classification, and 

application of transfer learning. Overall, transfer learning is the application of knowledge, 

patterns, or distributions learned on one task to different but related tasks,393 which includes 

two important concepts: domain and task. The domain could be seen as a particular field 

at a given moment in time, and the task is to determine what needs to be done. Transfer 

learning is usually suitable for situations where the source domain has a relatively large 

amount of data, and the target domain has a small amount of data. The stronger the 
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correlation between the source and target domains, the better the predictive performance 

will be obtained. This technique reduces the need and effort to (re)collect a large training 

set, thus mitigating the limitation of small data sizes. In 2019, Jang et al.394 addressed the 

question of what content to migrate and where to migrate it for transfer learning. As the 

application of transfer learning continues to expand, it is being used in many areas such 

as computer vision,395–397 human–computer interaction,398 text classification,399–401 target 

recognition,402,403 protein analysis,404,405 and others. Transfer learning has proven to be 

a powerful technique in biology and chemistry, with applications in gene expression data 

analysis406,407 and neuroscience research.408 Researchers use their data sets to train transfer 

learning models and study their structure and function. In addition, drug molecular data can 

be used to predict the properties and activities of drug molecules, which can lead to the 

discovery of new drugs.409,410 Fields that suffer from insufficient data or inadequate data 

annotation include research areas for rare diseases such as acute promyelocytic leukemia 

and acromegaly.411 Below, we summarize how transfer learning can be applied to predict 

biochemical molecules with small data sets.

In 2019, Ye et al.412 proposed a method that combines transfer learning and multitask 

learning (DeepPharm) to enhance the generalization ability of the model for scarce training 

data sets. The authors utilized four different data sets with small sample sizes: oral 

bioavailability (sample size: 410), plasma protein binding rate (sample size: 769), apparent 

volume of distribution at steady-state (VDss) (sample size: 412), and elimination half-life 

(sample size: 969). The predictive performance of DeepPharm was compared with other 

methods, such as SVM. The SVM method achieved an accuracy of 23% and a mean 

absolute error (MAE) value of 0.34 for the bioavailability data set. In contrast, DeepPharm 

increased the accuracy to 28% and decreased the MAE value to 0.31, which suggests that 

DeepPharm can be further employed in drug discovery and development.

In 2020, Sharifi-Noghabi et al.413 introduced an adversarial inductive transfer learning 

technique, which combined adversarial training with inductive transfer learning, for solving 

problems in pharmacogenomics applications that required adaptation in both input and 

output spaces. The GDSC and GSE28796 data sets used in this study had small sample 

sizes of 829 and 12, respectively. Impressively, the adversarial inductive transfer learning 

technique improved the AUROC value up to 51% and 45% compared to the ProtoNet414 and 

ADDA method,415 respectively.

In addition, Bai et al.416 developed a sequence-to-sequence (seq2seq) transfer learning 

method that introduced transfer learning into reverse synthesis analysis, as illustrated in 

Figure 16. The method utilized an unclassified large data set, USPTO 380K, for pretraining 

the model, followed by continuous training and reverse synthesis testing on the small 

data set USPTO-50K. Then, the transfer learning was combined with the seq2seq or 

transformer model for validation. The accuracy value obtained using the seq2seq-transfer 

learning method was 72.1%, which was higher than 65.9% obtained using the seq2seq 

baseline.417 The experimental results demonstrated the feasibility of transferring learning 

between models that operated with different chemical data sets.
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In 2021, Chen et al.418 presented a neural network-based predictor of log P, named 

MRLogP, for predicting the lipophilicity of small molecules using transfer learning 

techniques. MRLogP achieved an average RMSE of 0.988 and 0.715 when tested on 

druglike molecules from Reaxys and PHYSPROP, respectively. This work demonstrates 

that the application of transfer learning techniques enables accurate log P prediction even 

with small experimental training data sets.

In 2017, Cang and Wei built an algebraic topology-based multitask and multichannel CNN 

model for predicting protein stability changes upon mutations.419 As shown in Figure 17, 

this model shared and transformed algebraic topological invariants for transfer learning 

to the impact of mutations on protein stability. The large globular protein data set of 

2648 samples was shared and simultaneously trained with a small membrane protein 

data set of 223 samples, which improved the prediction correlation from 0.52 to 0.57. 

The performances also indicated that the proposed model holds significant potential for 

predicting protein–ligand binding affinities and mutation-induced protein stability changes.

Transfer learning is an effective strategy for dealing with small data sets, as it can improve 

the accuracy of models for specific tasks. Transfer learning has been used in various fields, 

including activity prediction,420 protein domain,421,422 drug prediction,412,423,424 image 

classification,425–427 text sentiment classification,428–430 and multilingual text classification. 

Although transfer learning has been extensively applied in many fields, its application in 

small molecule data sets is still in the early stages. Further research is needed to investigate 

related theoretical aspects such as the issue of transferability and the importance of data 

similarity and task correlation in achieving success.

Additionally, quantifying the correlation between different tasks is a challenge for transfer 

learning. The migration performance may depend on the source and target tasks, where the 

correlation of the tasks is often more important than the size of the data. Transfer learning 

faces various challenges, such as transfer boundaries, even though it is mainly applied in 

small and less fluctuating data sets.431 Effectively transferring knowledge from one task 

to another simply and clearly is a significant challenge. Furthermore, using the theory of 

transfer learning in multitask or multidomain situations is also a question, as there may 

be multiple domains that differ from the target domain. Although knowledge in multiple 

fields can be transferred, there may be problems in transferring multiple fields that need to 

be resolved. Overall, most transfer learning techniques that handle small training samples 

achieve good experimental results and thus the issues of efficiency, experimental cost, etc., 

should also be considered.

3.12. Active Learning

In the industrial and scientific communities, data must be annotated to be used in ML 

algorithms, but this process is typically time-consuming and expensive, in terms of human 

and material resources. To mitigate these costs, AL methods were proposed in the ML 

domain. The AL concept was first introduced by Lewis in 1994.432 The basic idea is to 

iteratively query an information source to obtain desirable labels, which is also termed 

optimal experimental design.
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In general, AL can be divided into two categories: stream-based AL433,434 and pool-based 

AL.435 The stream-based AL framework requires all of the training data to be passed to the 

algorithm as a data stream. Each data point is sent to the algorithm separately for training, 

and the algorithm must decide immediately whether to label the data or not. Additionally, 

the training data are selected from the data pool for labeling, and the label of the current 

training data should be sent to the algorithm immediately before the next data point is 

trained. In contrast, the pool-based AL process is less complex than the stream-based 

approach. The training data come from an unlabeled data pool, and then the data are selected 

from the pool for labeling. Overall, AL is usually applied to scenarios with a large amount of 

unlabeled data in order to achieve the desired performance of the model with a few labeled 

samples.

Additionally, AL consists of five core components: the unlabeled pool, select queries, human 

annotator, labeled training set, and ML model. AL is mainly used in scenarios where data 

labeling is scarce or expensive, proactively requesting labeling and submitting the filtered 

data to experts for labeling to obtain a better model with fewer training samples. In the 

field of bioinformatics research, some chemical molecular data sets are typically small, 

making them ideal candidates for AL application. Recently, AL has played an essential 

role in predicting the biological and physical activities of small molecules in the fields of 

biology and chemistry. This includes predicting the structure of proteins,436–438 as well as 

the toxicity of compounds.439,440 However, how does AL deal with data sets that have a 

small number of labeled elements? Numerous works have been proposed to address this 

issue, which are outlined below.

In 2019, Zhang et al.441 proposed a semi-supervised method using SVGD (stein variational 

gradient descent), called semi-supervised with SVGD, to quantify uncertainty in molecular 

properties. The method combined the algorithm SVGD442 with semi-supervised learning 

and used AL to overcome the problem of data set bias in the training set, demonstrating 

that it can be robust to the uncertainty of molecules. The experiments used both small data 

sets, such as FreeSolv (sample size: 643), ESOL (sample size: 1128), and CatS (sample 

size: 595), and relatively large data sets, including MeltingPoint (sample size: 3025), 

p450 (sample size: 8817), and malaria (sample size: 13417). Two other methods, graph 

convolution with dropout and semi-supervised with dropout, were compared experimentally 

with semi-supervised with SVGD, where the first two methods were used in combination 

with dropout (dropout variational inference). The experiments were evaluated using the 

Spearman correlation coefficient, and the results are shown in Table 7. The experimental 

results demonstrated that semi-supervised with SVGD outperformed the other two methods 

on all six data sets.

Peptides are a popular target for biomaterials design, and their data are often scarce. In 2021, 

Rainier et al.443 applied AL with CNN to binary classification of peptides, including two 

standard AL methods, query by committee and uncertainty minimization. The framework of 

the model is shown in Figure 18. The authors presented a multitask benchmark database of 

peptides designed to advance these methods for experimental design, and found that neither 

AL method tested to be better than random choice and combing meta-learning and AL could 
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offer inconsistent benefits. Their findings validate that AL could be used an extension to 

design of experiments through the selection of optimal experiments on limited resources.

In addition to the recent studies discussed above, AL has been applied not only in the 

field of biochemistry,444 but also in medical imaging,445 unmanned systems,446 and Internet 

big data,447 among others. AL has the potential to reduce the amount of annotated data 

required, as obtaining labeled data is a time-consuming and labor-intensive part of building 

ML models. As a relatively new ML method, AL aims to optimize operational resources 

and reduce the number of training samples.448,449 The key idea of AL is to choose the 

appropriate annotation set and then manually annotate the data with the method selection 

depending on whether a single ML model or multiple ML models are used. Overall, AL 

strives to reduce annotation cost and increase model performance, enhancing the prosperity 

of applications in various scenarios, including imaging, NLP,450 safety risk control, and 

time series anomaly detection,451 among others. AL has the potential to be applied to more 

scientific tasks in the future, and effective AL strategies for optimizing repeated training in 

continuous data acquisition remain an important research topic.

3.13. Graph-Based Semi-Supervised Learning

Traditional ML tasks can be broadly categorized into unsupervised and supervised learning. 

Semi-supervised learning is a hybrid approach that addresses learning tasks where only a 

portion of the data is labeled and the amount of labeled data is much smaller than the 

unlabeled data. This approach combines the strengths of both supervised and unsupervised 

learning. In many practical scenarios, manually labeling samples can be expensive, which 

leads to very sparse labeled data. However, unlabeled data are often easily obtainable. 

Semi-supervised learning leverages a large amount of unlabeled data along with a small 

amount of labeled data to train the model, thus addressing the problem of insufficiently 

labeled samples. For example, the Merriman–Bence–Osher (MBO) algorithm is a popular 

method used in semi-supervised learning tasks. The first step is to construct a graph with a 

specified number of nearest neighbors, denoted as Ne. Then, the Laplacian and a specified 

number of eigenvalues and eigenvectors, again denoted as Ne, are calculated from the graph. 

A subset of the input data is selected as the labeled set for training, while the remaining data 

are used as unlabeled data for testing. This approach has been shown to yield good results, 

particularly for small data sets in the fields of biology and chemistry. For instance, it can be 

applied to predict biochemical molecular interactions, such as interactions between proteins 

and drug molecules,452,453 or interactions between proteins.454,455 In addition, the Nyström 

technique enables MBO to be used effectively with very large data sets. This section outlines 

recently developed techniques for applying this method to ML prediction with small data 

sets.

In the field of molecular and biological sciences, small or insufficiently labeled data sets 

are a common challenge due to the high costs of experiments. In 2022, Hayes et al.456 

proposed three new ML models, namely, an autoencoder coupled with an MBO scheme 

(AE-MBO), a bidirectional encoder transformer coupled with an MBO scheme (BT-MBO), 

and an ECFP457 coupled with an MBO scheme. The proposed models were validated with 

experiments on five data sets, and their performance was compared with other methods, 
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such as SVMs, RFs, and gradient-boosted decision trees. Comparative experiments were 

conducted to test the effectiveness of the proposed models on a small amount of labeled 

data, using 1%, 2%, 5%, and 90% of labeled data from the data set in different models. The 

results for 1% labeled data for the five molecular classification data sets are presented in 

Figure 19. The proposed model in this article demonstrated strong predictive power in the 

presence of sparse marker data.

In 2021, Merkurjev et al.458 proposed two MBO-based approaches for ML tasks with 

limited samples or small data sets. The first, called multikernel manifold learning (MML), 

integrated manifold learning with multikernel information. The second, called multiscale 

MBO (MMBO),459 introduced multiscale Laplacians to a modification of the MBO scheme. 

These approaches were tested on various types of data sets, including α and β-protein 

(sample size: 900). The experimental results demonstrated that the proposed MMBO 

method consistently outperformed other methods and emerged as the top performer in most 

experiments, with the MML method closely following. Recently, the Poisson equation was 

used for graph based semi-supervised learning at very low label rates.460 This approach 

replaced the assignment of label values at training points with the placement of sources and 

sinks in the Poisson equation. The resulting Poisson learning was compared with traditional 

Laplacian learning.

Semi-supervised learning has found wide application in various fields to solve problems 

encountered in real life. These fields include image classification,461 sentiment analysis,462 

speech recognition,463 bioinformatics,464,465 and many others. Classification-based semi-

supervised learning methods are similar to supervised methods in that they require a large 

amount of training data to classify the test data and thus obtain a superior classification 

system.466

The field of semi-supervised learning is aimed at building efficient learning methods and 

improving learning performance by leveraging the information contained in unlabeled 

samples.59 Semi-supervised clustering is a specific type of clustering that uses both 

labeled and unlabeled data with auxiliary information to help group data patterns.467 

Additionally, reducing the dimensionality of high-dimensional data is a crucial technique 

in semi-supervised learning that often incorporates knowledge from the field of paired 

constraints.468 However, semi-supervised learning still poses a significant challenge, 

particularly in addressing the problem of lack of robustness. While increasing the amount 

of labeled data has been proposed to counter this issue, many algorithms used in semi-

supervised scenarios struggle to obtain sufficient labeled data, making this a pressing open 

problem.

4. PERSPECTIVES FOR MOLECULAR SCIENCE

4.1. Combining Deep Learning with Traditional Machine Learning

DL is a crucial tool in the fields of computer vision,469 drug discovery,470,471 and 

NLP,472 where experiments often require a relatively large amount of data. DL has 

been widely used in the fields of chemistry and biology.473,474 For instance, Yang and 

Li developed an interpretable uncertainty quantification method for DL-based molecular 
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property prediction.475 Yang et al. explored the space of low-toxic chemicals through DL-

based molecular generation.476 Additionally, Pandey et al. introduced state-of-the-art DL 

architectures for accelerating molecular docking, evaluating off-target effects, and predicting 

pharmacological properties.477

However, when using very small data sets, DL models may struggle to establish a reliable 

distribution or determine their coefficients, leading to high prediction errors despite good 

training performance. In contrast, traditional ML methods such as KNN,478 Bayesian 

network,479 SVM,480 and GBDT481 tend to perform better on small data sets. While the 

DL is rapidly advancing, it is unlikely that it will fully replace ML algorithms. Instead, 

researchers have been exploring ways to combine the strengths of DL on large data sets with 

the strengths of ML on small data sets. This has led to an increasing amount of research on 

integrating DL with traditional ML algorithms for small data sets, as discussed below.

In 2022, Jiang et al. proposed a novel framework called boosting tree-assisted multitask 

DL (BTAMDL) for predicting chemical molecular properties.341 The model consisted 

of multitask deep transfer learning and Gradient Boosting Decision Tree (GBDT). The 

BTAMDL model used small data sets in conjunction with related large data sets to learn 

the target and source tasks (involving small and large data sets, respectively) via multitask 

deep transfer learning and transferring knowledge from the source task to the target task. 

To validate the proposed method, the authors selected four types of data sets, including 

toxicity, log P, log S, and solvation. The toxicity data set consisted of four subsets with 

different sample sizes: LD50 (7413), IGC50 (1792), LC50 (823), and LC50-DM (353). The 

performance of BTAMDL was compared with that of other methods in the literature, and the 

results are presented in Table 8, where the first four methods are those involved in the paper, 

and the rest can be found in the literature. The results showed that the proposed BTAMDL 

framework can improve the prediction performance of small data sets.

In 2021, Qiu et al.483 presented a GBDT-based model called Bag-of-Words (BOW -GBDT 

for predicting drug interactions, as depicted in Figure 20. The framework consisted of three 

steps. First, features were obtained from the GPCR (G-proteincoupled receptor) module 

and combined with molecular fingerprint features. Second, the final features were generated 

through SMOTE (synthetic minority oversampling technique)484 and ANN. Finally, GBDT 

was used to predict drug interactions. The data set D92 M used in the study was a cross-

validation data set with 1860 samples, and the Check390 data set was a test data set with 

390 samples. The accuracy of BOW-GBDT was reported as 86.7%, which outperformed the 

accuracy of 82.8% achieved by the DWKNN (ensemble) method proposed by Xiao485 et al. 

in 2013.

In 2022, Yu et al.42 developed a powerful model called SVM +GCN, which used GCNs 

and SVMs to classify drug data sets. The data set used in the study was a small compound 

data set, and the SVM+GCN model was compared with SVM, RF, and GCN methods. Two 

validation methods, namely, random-split validation and fingerprint-split validation, were 

employed to evaluate the performance of the models. The results of the experiment showed 

that the SVM+GCN model achieved the highest accuracy at 95.8%, while the GCN and RF 

models obtained accuracies of 91.6% and 87.4%, respectively.
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In 2021, Deng et al.486 proposed an integrated framework model, XGraphBoost, which 

combines the features of GNN with XGBoost487 for accurate molecular property prediction, 

as shown in Figure 21. The original molecular data was first formatted into a graph structure, 

and then the molecular features were extracted through GCN, GGNN (gated GNN), and 

directed message passing neural network. Finally, the XGBoost classifier was used to obtain 

accurate predictions of the molecular properties. The data sets used in the experiments were 

essentially small sample data sets, including ESOL (sample size: 1128), FreeSolv (sample 

size: 642), Lipophilicity (sample size: 4200), HIV (sample size: 41127), BACE (sample size: 

1513), BBBP (sample size: 2039), Tox21 (sample size: 7831), ToxCast (sample size: 8575), 

SIDER (sample size: 1427), and Clintox (sample size: 1478). The experimental results 

demonstrated the advantages of combining the DL with traditional ML methods.

The combination of DL methods and traditional ML algorithms is not only widely used in 

the field of biochemistry, but it is also prevalent in other research fields, such as cytotoxicity 

classification,488 disease research,489 and imaging.490–492 While DL can improve prediction 

performance as the number of data increases, it falls short in its performance when small 

data sets are involved. Although DL has strong learning ability and portability, the number 

of model parameters will increase and their hardware requirements are also relatively high. 

Moreover, the model design can be relatively cumbersome. In contrast, the performance 

of traditional ML algorithms has an advantage in processing small data sets, and there is 

an increasing focus on developing methods that combine the advantages of the two. This 

direction represents an important area for future research.

4.2. Physical Model-Based Data Augmentation

The widespread use of ML and DL in fields such as imaging and text processing is heavily 

dependent on the quality and standardization of data. However, in the field of molecular 

science, due to the intricate complexity of molecular structures, especially macromolecules, 

it is challenging to obtain standardized features with the same dimensions. Many different 

molecule representations have been proposed,339,493 and the field is still evolving. Adding 

to the challenge, there is often an insufficient amount of molecular samples available to 

build accurate and reliable ML models. To overcome this, researchers utilize traditional 

theoretical methods and physical models based on fundamental laws of physics to generate 

important parameters of molecular properties, which are used as labels to build and/or 

expand data sets. These labels are then used in downstream ML/DL procedures to predict 

molecular functions. Common theoretical methods and physical models used for this include 

molecular mechanics (MM),494 molecular dynamics (MD),495,496 quantum mechanics 

(QM),497 quantum chemistry (QC),498 density functional theory (DFT),499 Monte Carlo 

method,500 and finite element analysis.501 By using theoretical calculations and simulations, 

researchers can generate high-quality, diverse, and large-scale training data sets, which can 

significantly improve the predictive accuracy of ML models. For instance, to improve the 

accuracy of predicting chemical reactions for small data sets, physical theory and transfer 

learning can be employed, as shown in ref 502. In another study, Jian et al. extended the 

training data set by physically modeling T-cell receptors and peptide pairs.503 Additionally, 

Xie et al. presented an application of single-molecule ligation in monitoring molecular 

physical and chemical processes.504
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MM, MD, and QM are all used to describe molecular interactions, including protein–

protein, protein–nucleic acid, and protein–drug complexes.505 MD, which is based on 

force fields, can be used to depict conformational changes in proteins or nucleic acids, 

the impact of mutations on protein folding stability, and the binding energies between small 

molecules and proteins. QM, on the other hand, based on the Schrödinger equation, can 

predict electronic structures involved in chemical reactions and describe polarization effects, 

especially with dimension-reduced DFT. While the number of atoms in the system that can 

be handled by MM can be as large as a million, the system suitable for QM and DFT may 

have only a few dozen atoms. Therefore, QM/MM methods have been developed to combine 

the advantages of MM and QM while taking into account the computing cost of QM and the 

size of most biological systems.506 In QM/MM methods, the active site is handled by QM, 

while the rest of the system is considered by MM.

MM is a method used to calculate molecular structures and energies based on classical 

mechanical theory, using empirical and semiempirical parameters. The approach considers 

molecules as collections of atoms held together by elastic, van der Waals, and electrostatic 

forces, which reach equilibrium in the whole molecular system to determine its structure. 

The first use of MM dates back to 1927 when Born and Oppenheimer utilized it in their 

work, and it has since been widely used to calculate the conformations and energies of 

molecules. MM has been instrumental in determining and understanding the structure and 

properties of molecules since the 1950s.507,508

MD is the most extensively researched method in MM. Its early simulations were focused 

on rigid spherical systems and gradually expanded to include molten salts, metals, alloys, 

semiconductors, and silicates.509–513 Various useful algorithms, such as the truncation and 

modification algorithm of Lennard-Jones potential function, Coulomb interaction algorithm, 

Verlet nearest neighbor list algorithm, and lattice index algorithm, were developed during 

the evolution of MD simulations.514–516 These algorithms have greatly influenced the 

application of MD simulations. In recent years, MM methods have expanded beyond 

the study of small- and medium-sized molecules and have become capable of handling 

macromolecular systems.517 These methods are implemented in popular software packages, 

such as AMBER,518 and have wide distributions and applications. In various fields, such as 

biophysics, biochemistry, coordination chemistry, materials, and physics,519,520 as well as in 

drug design,521,522 MM methods have been extensively utilized in conjunction with lattice 

dynamics, energy band theory, and many other approaches.

QM is a foundational theory that investigates the electronic structure and properties of 

atoms, molecules, condensed matter, atomic nuclei, and basic particles. One of the most 

popular QM methods used since the 1990s is DFT, which has become widely applied in 

the study of biomolecules and materials.523–525 DFT provides accuracy levels similar to 

those of semiempirical methods but at a lower computational cost. It is commonly used 

in condensed matter physics, computational materials, and computational chemistry, and 

its high efficiency allows it to handle larger and more complex systems, expanding the 

range of applications and the predictive power of electronic structure theory. This has 

also fostered greater collaboration between modelers and experimentalists.526 However, 

due to the computational cost of QM methods and the large size of most biological 
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systems, QM/MM methods have been developed to enable electronic structure calculations 

of biological systems.518,527

As shown in Figure 22, Tavakoli et al.528 employed DFT to determine methyl cation 

affinities and methyl anion affinities for over 2400 organic molecules. This work resulted 

in a large data set of chemical reactivity scores, which is now available to the scientific 

community. The authors used this data set to train several DNN, each with different 

representations, in order to predict reactivity. Their findings revealed that graph attention 

neural networks outperformed other methods and representations, achieving a 10-fold cross-

validation accuracy of 92%. This work highlights the power of combining QM and ML 

methods to enhance the scientific understanding and promote technological progress.

Qiao et al.529 proposed OrbNet, a framework that combined symmetry-adapted atomic 

orbitals features with a GNN to predict energy solutions. The experimental flowchart of 

OrbNet is presented in Figure 23. The authors demonstrated that OrbNet achieved prediction 

accuracy similar to that of DFT, but at a computational cost at least 3 orders of magnitude 

lower than DFT. OrbNet has been trained on approximately 100 000 molecules, and the 

training set can be further expanded to include more data.

Bennett et al.530 developed 3D-CNN and spatial graph CNN models using atomic and 

molecular features based on atomistic MD simulations that calculated transfer free energies 

of 15 000 small molecules from water to cyclohexane. The DL models were trained to 

predict the transfer free energies based on MD-simulated data. The spatial graph CNN 

model showed higher accuracy than the 3D-CNN model, achieving a MAE of 4 kJ/mol 

when compared with MD calculations. This study suggests that the DL model can be 

a cost-effective alternative to expensive free energy calculations while providing similar 

accuracy to MD calculations. The experimental workflow is presented in Figure 24.

In the field of molecular activity prediction research, combining two-dimensional or three-

dimensional descriptors with ML, can be effective for identifying active compounds. 

However, training ML models on data generated by MD is still being explored. In 2019, 

Jamal et al.531 obtained MD descriptors using simulations and combined them with 2D 

and 3D descriptors. They conducted experiments using two models: ANN and RF. The 

final results showed that the MD descriptor outperformed both the 2D and 3D descriptors, 

indicating a significant improvement in the classification performance of the obtained MD 

descriptor.

During computer-assisted drug design, the quantitative structure/property relationships 

model combines experimental descriptors with those generated by MD or QM to expand 

data sets, which improves the prediction of molecular properties. However, the applicable 

conditions of each computational simulation method are limited. For example, DFT can 

simulate only small molecular systems, and errors in the simulation structure under high-

temperature, high-pressure, and strong magnetic field environments are often significant. In 

addition, MD simulations are usually dependent on the accuracy of the potential function. 

For some applications, such as inferring force fields by ML, access to a large and diverse 

high-quality training data set obtained from QM calculations is essential to capture reliable 
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results for general applications.532 However, there are still no known criteria for sufficiency, 

such as the question of how many molecular descriptors are required to explain ligand 

binding satisfactorily, or the question of how many large noncoding RNAs are diverse 

enough to represent the universe of RNA folds for these systems.533

Combining the simulation of these physical models with various ML algorithms could 

benefit the improvement of the QSAR model.534

4.3. Spatial and Temporal Pattern Extractions for Molecules

In recent times, there has been a significant increase in the availability of spatio-temporal 

data. Spatial pattern extraction, as demonstrated in ref 535, is commonly utilized to identify 

patterns or relationships in data that are associated with the spatial arrangement or position 

of data points. This is particularly useful in image classification or object detection tasks, 

where the accurate prediction of spatial relationships between pixels or points is crucial. 

Similarly, temporal pattern extraction is applied to identify patterns or relationships in 

data that are related to the sequence or timing of the data points. This technique is often 

employed in speech recognition536 or NLP,537 where the order of words or sequence holds 

significant importance for the data. With the development of molecular science, there has 

been growing interest in applying spatial and temporal pattern extraction to chemical and 

biological molecules. ML algorithms have made significant contributions to this field, as 

evidenced by numerous achievements.538 In the study by Roth et al.,539 it was found 

that material platforms like nanoparticles, hydrogels, and microneedles can be designed to 

control the interaction of vaccine components with immune cells spatially and temporally. 

Similarly, Goel et al.540 explored an avenue to go beyond the space of known drug-like 

chemistry to benefit drug design.

A wide range of ML algorithms are available for spatial and temporal pattern extraction, 

including CNNs, RNNs, LSTM, GraphCNN, Autoencoders (AEs)/Stacked Autoencoders 

(SAEs), and Sequence-to-Sequence (Seq2Seq) models.

CNNs are primarily used to process spatial maps and are often applied to tasks such as 

image classification and object detection, as demonstrated in ref 144. GraphCNN is designed 

to handle graph data and can be further categorized into spatial maps, as shown in ref 

541. RNN models, including LSTM and GRU, are particularly effective in dealing with 

trajectories, time series, and the sequences of spatial maps, as discussed in refs 542 and 543. 

ConvLSTM, a hybrid model that combines RNN and CNN, is typically used for handling 

spatial maps, as described in ref 544. AEs and SAEs are well-suited for extracting features 

from time series, trajectories, and spatial maps, as detailed in refs 308 and 545. Lastly, 

Seq2Seq models are generally designed for sequential data and are used for cases involving 

time series and trajectories, as explained in ref 416.

4.4. Natural Language Processing for Molecular Sequences

NLP, as discussed in ref 546, is the ability of a computer program to understand, interpret, 

and generate human language, both spoken and written, which is known as natural 

language. As a component of AI, NLP has various real-world applications such as language 

translation,546 text classification,547 text generation,548 spam detection,549 virtual agents and 
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chatbots,546,550 and social media sentiment analysis.551 Now, with more research, NLP is 

also being applied to chemical and biological molecules, showing powerful effects.552,553

NLP is also being increasingly applied to chemical and biological molecules, with promising 

results.552,553 For example, Winter et al. used NLP to predict limiting activity coefficients 

from SMILES codes.554 They developed a SMILES-to-properties transformer, an NLP 

network that accurately predicted binary limit activity coefficients from SMILES codes 

alone. Similarly, Lu and Zhang developed a unified DL model called T5Chem that used 

the Text-to-Text Transfer Transformer (T5) framework in NLP to predict various chemical 

reaction tasks.555 They found that models trained with multiple tasks were more robust and 

can benefit from the mutual learning of related tasks. In addition, NLP can be used to predict 

the physiological effects of chemicals, as demonstrated by Mukherjee et al. who developed 

models for predicting physiological effects of chemicals based on their molecular structures 

using NLP methods.556 They achieved high prediction accuracy using standard chemical 

data sets.

The process of NLP, as described in ref 546, can be divided into two main steps: data 

preprocessing and algorithm development. Data preprocessing involves preparing and 

cleaning text data, putting it in a workable form, and highlighting features in the text that 

can be analyzed by an ML algorithm. After the data have been preprocessed, an algorithm is 

developed to process it. There are two main types of algorithms: rules-based and ML-based. 

Rules-based algorithms are early NLP algorithms that use designed linguistic rules, while 

ML-based algorithms are used for tasks based on fed training data and can adjust their 

methods as more data is processed. There are various ML-based algorithms that can be 

used for NLP tasks, including the BOW algorithm, N-gram algorithm, word-embedding 

algorithm, RNN, and transformers, as explained in refs 557–561.

Syntax and semantic analysis are two primary techniques used in NLP, as explained in ref 
562. Syntax refers to the arrangement of words in a sentence to create grammatical sense, 

and NLP utilizes syntax to extract meaning from language based on grammatical rules. On 

the other hand, semantics is concerned with the meaning behind words. NLP uses various 

algorithms to comprehend the meaning and structure of sentences.

4.5. Generative AI for Molecular Generation

Generative AI or generative models563 are a branch of unsupervised learning techniques in 

ML that are able to generate new data samples similar to a training data set, which are often 

used for tasks such as image generation, text generation, and data augmentation. They can 

also be effective in cases such as anomaly detection, where the goal is to identify examples 

that do not fit with the rest of the data. Generative networks or generative models are 

becoming increasingly popular in the field of chemical and biological molecules. According 

to Bilodeau et al., generative models can offer a new approach to molecular discovery by 

reframing molecular design as an inverse design problem.564 Similarly, Tong et al. stated 

that generative models have received a lot of attention in recent years, with researchers 

applying them to new drug design.565 They listed a number of publicly available generative-

model-based molecular design tools that can be used to directly generate molecules. 

Additionally, in the study by Yakubovich et al., a computational workflow based on quantum 
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chemical calculations and a DNN-based generative model was proposed for the discovery 

of novel materials.566 Here are four popular examples of generative network approaches as 

following.

GANs treat the training process as a game between two separate neural networks: a 

generator network and a discriminative network.299 The generator network is trained to 

generate new data samples, however, the discriminative network is trained to classify 

samples as either coming from the true distribution or the model distribution. Every time 

the discriminator notices a difference between the two distributions and the generator adjusts 

its parameters slightly to make it go away, until at the end, the generator exactly reproduces 

the true data distribution and the discriminator cannot find a difference between the two 

distributions.

Variational autoencoders (VAEs)567 are neural networks designed to learn an identity 

function in an unsupervised way to reconstruct the original input while compressing the 

data in the process so as to discover a more efficient and compressed representation. VAEs 

usually consist of an encoder network and a decoder network. The encoder network is 

trained to map input data samples to a latent space, while the decoder network is used to 

map points in the latent space back to the original data space. VAEs can be utilized to 

generate new data samples by sampling points in the latent space and passing them through 

the decoder network.

In drug discovery, it remains a challenge to create novel compounds that are not only 

druggable but also cheaply available. Gao et al.568 proposed a generative network complex 

(GNC) model to enable the design of optimal lead compounds with desired chemical 

properties. The framework of the GNC model is shown in Figure 25 and GNC generated 

new drug-like molecules based on the multiproperty optimization in the latent space of an 

autoencoder. Both Monte Carlo-like random diffusion algorithm and gradient descent were 

used to create new molecules in the latent space. The resulting compounds were translated 

into SMILES strings by a decoder and further evaluated by the real space ML models.

Autoregressive models like PixelRNN569 generate new data samples by predicting each data 

point in the sample based on the previous data points, which are commonly used for cases 

such as language modeling with the goal of predicting the next word in a sentence based on 

the previous words.

Generative pretraining (GPT)570 is one of the pioneers in language understanding and 

modeling, and essentially proposes the concept of pretraining a language model on a huge 

corpus of data, and then fine-tuning the model for downstream tasks. The core ideas of 

GPT are attention mechanism and unsupervised pretraining. The reason for unsupervised 

learning is the shortage of massive labeled data sets. GPT and its extensions GPT-2 and 

GPT-3 are well-known for their impressive performance on small data or zero-shot learning 

which is a scenario wherein at test time the samples provided are not observed while 

training, and have successfully applied to a variety of tasks, such as machine translation,571 

question-answering,570 reading of conceptual works, scripting of poems and elementary 

mathematics, etc., ChatGPT has gained a lot of popularity recently due to its impressive 
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strengths, such as increased efficiency and precision in NLP-related tasks. It is capable of 

providing answers to a wide range of issues promptly and accurately, making it invaluable 

in assisting with routine tasks, generating algorithms for computing tasks, and much more. 

However, its potential applications in molecular science, especially, in small molecular data 

sets, have yet to be fully explored because ChatGPT is trained on an extensive corpus of 

data. It is likely that ChatGPT will be proven useful in studying chemical and biological 

molecules in the future, but further research is still needed to confirm this.

4.6. Material Science

In recent years, machine learning methods have been successfully applied to predict 

chemical and material properties, particularly in material science. However, due to 

restrictions or limitations, collecting large labeled training samples is typically difficult in 

this field, which significantly reduces the predictive power of sophisticated deep learning 

models like convolutional neural networks and recurrent neural network. To address these 

small data challenges, simple regression models can be used by creating linear combinations 

of nonlinear basis functions.580 For instance, when predicting the properties of elpasolite 

crystals, deep learning with a black box model may not be the optimal option for exploring 

the elpasolite universe and predicting the spin states of transition metal complexes. In such 

cases, the nature of the variables present in the linear model and the knowledge of the 

physics of the underlying problem can facilitate the identification of when simplistic linear 

solutions will bring comparable performance. Linear solutions can not only accurately 

predict material properties such as the bandgap and formation energy of transparent 

conducting oxides, the spin states for transition metal complexes, and the formation energy 

for elpasolite structures but also offer an excellent approach for interpretable predictions in 

the material science community.

5. OUTLOOK

In this review, we examine recent progress in addressing the challenge of working with 

small scientific data sets in machine learning and deep learning. Due to various constraints 

and limitations in data acquisition, small data sets are ubiquitous in scientific fields. The 

small data challenge in machine learning can be just as severe, if not more so, as the big 

data challenge. One of the most immediate problems posed by small scientific data sets 

is overfitting, which can occur not only during training but also during testing, ultimately 

leading to less accurate and reliable machine learning models. Additionally, small data 

sets are often associated with data imbalance. For example, in drug discovery, only a few 

drug candidates may be active, whereas for machine learning modeling, active and inactive 

samples should be well-balanced. Data imbalance can result in inaccurate, unreliable, and 

unstable machine learning and deep learning models. Moreover, augmenting small data sets 

using computational approaches can easily introduce noise or nonuniform data, which also 

presents a challenging issue in machine learning and deep learning. As summarized in Table 

9, this paper reviews several approaches to address the challenges posed by small data 

sets, including transfer learning or multitask learning, combining traditional ML algorithms 

with deep learning, self-supervised learning, Generative Adversarial Networks, variational 

autoencoders, transformers, long short-term memory, active learning, semi-supervised 
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learning, and physical model-based data augmentation. While many of these approaches 

have been proposed in the past decade and are still in the early stages of development, there 

have been tremendous advances in recent years. However, the small data challenge remains a 

pressing issue in machine learning and deep learning, calling for innovative strategies.

Given the widespread need for machine learning techniques to handle large-scale training 

samples coupled with the increasing progress of small data studies, the concepts and 

methods of small data research are now being applied to diverse applications. In this regard, 

we highlight a few forefronts of the development and application of the machine learning 

methods for small data challenges in molecular science, particularly in molecular properties 

discovery, multilinear models in material science, machine learning force fields,574,575 

protein folding,576 catalyst design,577 and retrosynthetic pathways.578

5.1. Machine Learning Force Fields

Machine learning force fields574,579 are applied to overcome the size limitations of accurate 

ab initio methods, by learning the energies and interactions in atomic-scale systems directly 

from, for example, density functional theory calculations. Unlike conventional force fields, 

Machine learning force fields are built on mathematical structures with limited underlying 

physics and chemistry concepts. Therefore, it is crucial to train the machine learning force 

field on relevant density functional theory data, such as energies, forces, and stress, to 

obtain a robust Machine learning force field for particular systems and applications. During 

training, the atomic environments in a configuration are transformed into a set of features 

that are then used to predict the energies of the atomic configuration for downstream tasks. 

Once the training is complete, the machine learning force field model can be used for 

atomic-scale simulations, much like any other conventional force field.

5.2. Biomolecular Properties Discovery

One of the most challenging issues in drug design and substance discovery is predicting 

molecular properties. Traditional methods based on density functional theory have explicit 

physical images but are time-consuming for processing large numbers of molecules. In 

recent years, data-driven machine learning models have successfully learned the relationship 

between the structure and properties of a molecule and can perform low-cost predictions 

instead of costly and time-consuming processes involving human expertise, computer 

simulation, and subsequent experimental synthesis. However, due to the complexity, cost, 

and time required to obtain molecular information experimentally, it is often difficult to 

obtain large labeled molecular data sets. Several approaches have been developed to address 

this challenge. Hayes et al. introduced three graph-based MBO models for molecular 

classification prediction with scarcely labeled data, including Ames, Bace, BBBP, Beet, and 

ClinTox data sets.456 Jiang et al. built a BTAMDL architecture that integrates GBDT and 

multitask deep learning to achieve near-optimal predictions for small molecular properties 

such as partition coefficient, solubility, toxicity, and solvation.341

5.3. Protein Folding Prediction

Protein folding plays a decisive role in the biological functions of proteins. Predicting 

protein folding modes is crucial in expressing their spatial topological features and can be 
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solved as a classification problem with ML methods. Generally, machine learning algorithms 

take amino acid sequences as input and predict folding patterns by extracting features, 

which are then fed into a classifier for prediction and performance evaluation. Alphafold2 

is currently the most popular tool for protein folding, which combines knowledge of 

protein structure with deep learning.581 While Alphafold2 has achieved significant success 

in protein folding prediction, its predictive accuracy is lower compared to experimental 

techniques such as X-ray crystallography.582 Additionally, running Alphafold2 requires 

substantial computational resources. Other advanced methods such as DeepSVM fold have 

also been proposed, which achieved a prediction accuracy of 67.3% and outperformed other 

methods.583

5.4. Catalyst Design

To understand catalyst catalysis, it is necessary to accurately identify descriptors of 

catalytic activity.584 However, traditional methods often lack predictability and accuracy, 

leading researchers in catalyst design to focus on improving the accuracy of identifying 

catalyst descriptors and predicting rates using machine learning. In a recent study by 

Wenjie Liao et al.,585 an enhanced method for accurately identifying descriptors was 

proposed using a machine learning surrogate model derived from a kinetic data set, which 

outperformed traditional derivative-based methods. Density functional theory is a commonly 

used computational chemistry tool for studying and predicting the geometric structure, 

mechanical properties, electronic structure, and reaction energies of materials. Xuhao Wan et 

al.586 introduced a DFT-based machine learning approach (DMCP) and used transition metal 

phthalocyanine diatomic catalysts as electrocatalysts for carbon reduction reactions.

5.5. Retrosynthetic Pathways

Retrosynthesis, which was proposed by Corey in the 1960s, describes the iterative process 

of reducing a complex target molecule to a simple precursor by breaking bonds.587 

It summarizes the reverse work that organic chemists need to do when building new 

molecules, and these chemists have identified a series of chemical transformations that 

can be achieved through the simpler chemical structure of oil or other resources.588 

Currently, retrosynthetic programs are mainly divided into logic-based heuristic programs 

and detailed retrosynthetic route prediction programs.589 Moreover, Badowski et al.590 

have shown that synergy between expert and machine learning approaches can lead to 

improved retrosynthetic planning. In the future, high-quality databases will accelerate 

further developments in retrosynthesis.591

5.6. Computational Chemistry

Recently, computational chemistry and machine learning have increasingly been combined 

to enhance the understanding and prediction of chemical and physical properties and 

behavior. More and more machine learning and deep learning techniques are borrowed 

in computational chemistry to generate models and algorithms to extract patterns and 

relationships from large data sets and to make predictions about chemical systems. For some 

chemical systems with limited data, there has been great progress made in recent years. For 

instance, Lilienfeld et al. developed quantum machine learning models to predict various 

molecular properties, such as energy, electronic structure, and spectroscopic data.592 Ceriotti 
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et al. explored different machine learning methods to understand the behavior of molecules 

and materials in systems with various size at the atomic scale.593 Moreover, Csanyi et al. 

provided a unified framework to predict atomic-scale properties based on local description 

of chemical environments and Bayesian statistical learning.594 More related references can 

be found in refs 595–600.

We conclude our review with several reminders of challenges that need to be addressed 

when dealing with small data sets in machine learning and deep learning.

5.7. Modelability Metrics

It is essential to develop metrics for measuring the modelability of small data sets, which can 

be used to evaluate all methods, including transfer learning, where the data similarity index 

is closely related to the modelability.

5.8. Small and Diverse Data Sets

Developing machine learning and deep learning methods for handling small and diverse 

data sets is particularly challenging. Data diversity is closely related to data modelability, 

especially for small data sets.

5.9. Small and High-Dimensional Data Sets

Developing machine learning/deep learning methods for tackling small and high-

dimensional data sets, especially for single-cell RNA sequencing (sc-RNA-seq) and 

transcriptomic data analysis, is another important task. Traditional approaches such as 

principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), 

and uniform manifold approximation and projection (UMAP) have limited success, and 

machine learning and deep learning methods are expected to address challenges from the 

spatiotemporal entanglement of cells, genes, and tissues.

5.10. Small and Noisy Data Sets

Moreover, addressing truly small and noisy data sets is one of the most challenging tasks in 

machine learning and deep learning. Currently, there is limited feasibility and few results for 

this problem in the literature.

5.11. Small and Imbalanced Data Sets

The modeling of small and imbalanced data is a difficult issue that needs to be addressed. 

Imbalanced data sets naturally occur in experimental settings where successful results are 

reported while unsuccessful ones are ignored. On the other hand, in drug discovery, most 

drug candidates are unsuccessful.

5.12. Data Imputation in Small Data Sets

Treating concurrent small data and data imputation can be very challenging. This treatment 

is often a needed preprocessing in machine learning studies. It will be an important research 

topic.
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5.13. Data Representability

The quantitative analysis of data representability will be an interesting issue. The 

construction of effective descriptors will continue to be an important area of research, 

particularly for data with intrinsically complex internal structures, such as biomolecules, 

macromolecules, and functional materials.

5.14. Machine/Deep Learning Complexes

The construction of sophisticated machine learning complexes that integrate different ML 

methods to deal with small data sets, such as using migration learning in combination with 

Generative Adversarial Networks, while optimizing the data and the model framework to 

obtain the desired results, will be both challenging and important. It is expected that such 

complexes will become common in molecular sciences.

5.15. Data Understanding

Finally, one cannot overemphasize the role of physical/chemical/biological understanding of 

data in the machine learning method design, development, or selection and machine learning 

result interpretation. It is important to utilize prior domain knowledge about small data sets 

to design machine learning and deep learning methods and improve their predictability.

We apologize that we could not review all related concepts and issues and cover all 

important references about machine learning and deep learning approaches for dealing with 

small scientific data sets. We hope that the reader can benefit from the perspective presented 

in this review and find a way to tackle the small data challenge.
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ABBREVIATIONS

AI artificial intelligence

AL active learning

ANN artificial neural network

AUC area under the curve

BLSTM bidirectional LSTM

BOW bag-of-words

BTAMDL boosting tree-assisted multitask deep learning

CNNs convolutional neural networks

DFT density functional theory

DL deep learning

DNN deep neural networks

Deep RL DRL

ECFP extended-connectivity fingerprint

F-measure F-measure represents the harmonic mean of precision and recall

GAN Generative Adversarial Network

GBDT Gradient Boosting Decision Tree

GF-VAE Graph Flow-Variational AutoEncoder

GNC generative network complex

GNN graph neural network

GCNs graph convolutional networks

GPCR G protein-coupled receptor

KDE kernel density estimation using Gaussian kernel function

KNN K-nearest neighbor

LSTM long short-term memory

log P partition coefficient
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log S solubility

MBO Merriman–Bence–Osher

MAE mean absolute error

MD molecular dynamics

ML machine learning

MM molecular mechanics

MMBO multiscale MBO

MML multikernel manifold learning

MoLGNN Motif Learning Graph Neural Network

NB naive Bayes

NLP natural language processing

ProGAN Protein Solubility Generative Adversarial Net

QC quantum chemistry

QM quantum mechanics

RF random forest

RNNs recurrent neural networks

R2 coefficient of determination

RMSE root mean square error

SSL self-supervised learning

SVM support vector machine

VAE variational auto-encoder

REFERENCES

(1). Jordan MI; Mitchell TM Machine learning: Trends, perspectives, and prospects. Science 2015, 
349, 255–260. [PubMed: 26185243] 

(2). Campbell C Springer Handbook of Bio-/Neuroinformatics; Springer, 2014; pp 185–206.

(3). Lutnick B; Ginley B; Govind D; McGarry SD; LaViolette PS; Yacoub R; Jain S; Tomaszewski 
JE; Jen K-Y; Sarder P Iterative annotation to ease neural network training: Specialized machine 
learning in medical image analysis. arXiv 2018, arXiv.1812.07509.

(4). Keith JA; Vassilev-Galindo V; Cheng B; Chmiela S; Gastegger M; Muller K-R; Tkatchenko A 
Combining machine learning and computational chemistry for predictive insights into chemical 
systems. Chem. Rev. 2021, 121, 9816–9872. [PubMed: 34232033] 

(5). Chen M; Wei Z; Huang Z; Ding B; Li Y Simple and deep graph convolutional networks. In 
Proceedings of the 37th International Conference on Machine Learning, 2020; Vol. 110, pp 
1725–1735

Dou et al. Page 44

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(6). O’Shea K; Nash R An introduction to convolutional neural networks. arXiv 2015, 
arXiv.1511.08458.

(7). Mandic D; Chambers J Recurrent Neural Networks for Prediction: Learning Algorithms, 
Architectures and Stability; Wiley, 2001.

(8). Creswell A; White T; Dumoulin V; Arulkumaran K; Sengupta B; Bharath AA Generative 
adversarial networks: An overview. IEEE Signal Process Mag 2018, 35, 53–65.

(9). He K; Zhang X; Ren S; Sun J Deep residual learning for image recognition. Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition; IEEE, 2016; pp 770–778.

(10). Läubli S; Castilho S; Neubig G; Sennrich R; Shen Q; Toral A A set of recommendations for 
assessing human–machine parity in language translation. J. Artif. Intell. Res. 2020, 67, 653–672.

(11). Hinton G; Deng L; Yu D; Dahl GE; Mohamed A.-r.; Jaitly N; Senior A; Vanhoucke V; Nguyen P; 
Sainath TN; et al. Deep neural networks for acoustic modeling in speech recognition: The shared 
views of four research groups. IEEE Signal Process Mag 2012, 29, 82–97.

(12). Silver D; Huang A; Maddison CJ; Guez A; Sifre L; Van Den Driessche G; Schrittwieser J; 
Antonoglou I; Panneershelvam V; Lanctot M; et al. Mastering the game of Go with deep neural 
networks and tree search. nature 2016, 529, 484–489. [PubMed: 26819042] 

(13). Altae-Tran H; Ramsundar B; Pappu AS; Pande V Low data drug discovery with one-shot 
learning. ACS Cent. Sci. 2017, 3, 283–293. [PubMed: 28470045] 

(14). Hariono M; Wijaya DB; Chandra T; Frederick N; Putri AB; Herawati E; Warastika LA; 
Permatasari M; Putri AD; Ardyantoro S A Decade of Indonesian Atmosphere in Computer-Aided 
Drug Design. J. Chem. Inf. Model. 2022, 62, 5276–5288. [PubMed: 36373286] 

(15). Wang W; Zheng VW; Yu H; Miao C A survey of zero-shot learning: Settings, methods, and 
applications. ACM T INTEL SYST TEC. 2019, 10, 1–37.

(16). Eloff R; Engelbrecht HA; Kamper H Multimodal one-shot learning of speech and images. 
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing; 
ICASSP. 2019; pp 8623–8627.

(17). Prabhu V; Kannan A; Ravuri M; Chaplain M; Sontag D; Amatriain X Few-shot learning for 
dermatological disease diagnosis. In Machine Learning for Healthcare Conference, 2019; pp 
532–552.

(18). Wang Y; Yao Q; Kwok JT; Ni LM Generalizing from a few examples: A survey on few-shot 
learning. ACM Comput. Surv. 2021, 53, 1–34.

(19). Pham HNA; Triantaphyllou E Soft Computing for Knowledge Discovery and Data Mining; 
Springer, 2008; pp 391–431.

(20). Barman R; Deshpande S; Agarwal S; Inamdar U; Devare M; Patil A Transfer learning for small 
dataset. In Proceedings of the National Conference on Machine Learning, Mumbai, India, 2019; 
pp 132–137.

(21). Li X; Fourches D Inductive transfer learning for molecular activity prediction: Next-Gen QSAR 
Models with MolPMoFiT. J. Cheminform. 2020, 12, 27. [PubMed: 33430978] 

(22). Kumar SA; Ananda Kumar TD; Beeraka NM; Pujar GV; Singh M; Narayana Akshatha HS; 
Bhagyalalitha M Machine learning and deep learning in data-driven decision making of drug 
discovery and challenges in high-quality data acquisition in the pharmaceutical industry. Future 
Med. Chem. 2022, 14, 245–270. [PubMed: 34939433] 

(23). Chato L; Latifi S Machine learning and deep learning techniques to predict overall survival 
of brain tumor patients using MRI images. In 2017 IEEE 17th International Conference on 
Bioinformatics and Bioengineering (BIBE); IEEE, 2017; pp 9–14.

(24). Li J; Topaloglu RO; Ghosh S Quantum generative models for small molecule drug discovery. 
IEEE Trans. Quantum Eng. 2021, 2, 1–8.

(25). Xu Y; Zhang Z; You L; Liu J; Fan Z; Zhou X scIGANs: single-cell RNA-seq imputation using 
generative adversarial networks. Nucleic Acids Res. 2020, 48, e85–e85. [PubMed: 32588900] 

(26). Hadipour H; Liu C; Davis R; Cardona ST; Hu P Deep clustering of small molecules at large-scale 
via variational autoencoder embedding and K-means. BMC Bioinform. 2022, 23, 132.

(27). Armitage J; Spalek LJ; Nguyen M; Nikolka M; Jacobs IE; Marañón L; Nasrallah I; Schweicher 
G; Dimov I; Simatos D, et al. Fragment graphical variational autoencoding for screening 
molecules with small data. arXiv 2019, arXiv.1910.13325.

Dou et al. Page 45

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(28). Zhang Z; Liu Q; Wang H; Lu C; Lee C-K Motif-based graph self-supervised learning for 
molecular property prediction. arXiv 2021, arXiv, 2110.00987.

(29). Liu H; HaoChen JZ; Gaidon A; Ma T Self-supervised learning is more robust to dataset 
imbalance. arXiv 2021, arXiv.2110.05025.

(30). Wang Y-B; You Z-H; Yang S; Yi H-C; Chen Z-H; Zheng K A deep learning-based method for 
drug-target interaction prediction based on long short-term memory neural network. BMC Med. 
Inf. Decis. Making 2020, 20, 49.

(31). Chakravarti SK; Alla SRM Descriptor free QSAR modeling using deep learning with long 
short-term memory neural networks. Front. Artif. Intell. 2019, 2, 17. [PubMed: 33733106] 

(32). Rodriguez Serrano AF; Hsing I-M Prediction of Aptamer–Small-Molecule Interactions Using 
Metastable States from Multiple Independent Molecular Dynamics Simulations. J. Chem. Inf. 
Model. 2022, 62, 4799–4809. [PubMed: 36134737] 

(33). Kumar A; Purohit R Use of long term molecular dynamics simulation in predicting cancer 
associated SNPs. PLoS Comput. Biol. 2014, 10, No. e1003318. [PubMed: 24722014] 

(34). Azzimonti D; Rottondi C; Giusti A; Tornatore M; Bianco A Comparison of domain adaptation 
and active learning techniques for quality of transmission estimation with small-sized training 
datasets. J. Opt. Commun. Networking 2021, 13, A56–A66.

(35). Quteineh H; Samothrakis S; Sutcliffe R Textual data augmentation for efficient active learning 
on tiny datasets. Proceedings of the 2020 Conference on Empirical Methods in Natural Language 
Processing (EMNLP), 2020; pp 7400–7410.

(36). Inés A; Domínguez C; Heras J; Mata E; Pascual V Biomedical image classification made easier 
thanks to transfer and semi-supervised learning. Comput. Methods Programs Biomed. 2021, 198, 
105782. [PubMed: 33065493] 

(37). Hyun M; Jeong J; Kwak N Class-imbalanced semi-supervised learning. arXiv 2020, 
arXiv.2002.06815.

(38). Young SI; Balbastre Y; Dalca AV; Wells WM; Iglesias JE; Fischl B SuperWarp: Supervised 
Learning and Warping on U-Net for Invariant Subvoxel-Precise Registration. arXiv 2022, 
arXiv.2205.07399.

(39). Farasin A; Colomba L; Garza P Double-step u-net: A deep learning-based approach for the 
estimation of wildfire damage severity through sentinel-2 satellite data. Appl. Sci. 2020, 10, 
4332.

(40). Chen J; Wang J; Wang X; Du Y; Chang H Predicting drug target interactions based on GBDT. 
In International Conference on Machine Learning and Data Mining in Pattern Recognition. 2018; 
pp 202–212.

(41). Wei S; Chen Z; Arumugasamy SK; Chew IML Data augmentation and machine learning 
techniques for control strategy development in bio-polymerization process. Environ. Sci. 
Ecotechnol. 2022, 11, 100172. [PubMed: 36158757] 

(42). Yu T-H; Su B-H; Battalora LC; Liu S; Tseng YJ Ensemble modeling with machine learning 
and deep learning to provide interpretable generalized rules for classifying CNS drugs with high 
prediction power. Briefings Bioinf. 2022, 23, bbab377.

(43). Lazarovits J; Sindhwani S; Tavares AJ; Zhang Y; Song F; Audet J; Krieger JR; Syed AM; 
Stordy B; Chan WC Supervised learning and mass spectrometry predicts the in vivo fate of 
nanomaterials. ACS Nano 2019, 13, 8023–8034. [PubMed: 31268684] 

(44). Sandfort F; Strieth-Kalthoff F; Kühnemund M; Beecks C; Glorius F. A structure-based platform 
for predicting chemical reactivity. Chem. 2020, 6, 1379–1390.

(45). Das P; Mazumder DH An extensive survey on the use of supervised machine learning techniques 
in the past two decades for prediction of drug side effects. Artif. Intell. Rev. 2023, 2023, 10413–
7.

(46). Muñoz E; Nováček V; Vandenbussche P-Y. Facilitating prediction of adverse drug reactions by 
using knowledge graphs and multi-label learning models. Briefings Bioinf. 2019, 20, 190–202.

(47). Zhou H; Cao H; Matyunina L; Shelby M; Cassels L; McDonald JF; Skolnick J MEDICASCY: a 
machine learning approach for predicting small-molecule drug side effects, indications, efficacy, 
and modes of action. Mol. Pharmaceutics 2020, 17, 1558–1574.

Dou et al. Page 46

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(48). Zhou L; Kaess M Windowed bundle adjustment framework for unsupervised learning of 
monocular depth estimation with u-net extension and clip loss. IEEE Rob. Autom. Lett. 2020, 5, 
3283–3290.

(49). Khan Z; Yang J Bottom-up unsupervised image segmentation using FC-Dense u-net based 
deep representation clustering and multidimensional feature fusion based region merging. Image 
Vision Comput. 2020, 94, 103871.

(50). Pena JM; Lozano JA; Larranaga P; Inza I Dimensionality reduction in unsupervised learning of 
conditional Gaussian networks. IEEE Trans. Geosci. Electron. 2001, 23, 590–603.

(51). Glielmo A; Husic BE; Rodriguez A; Clementi C; Noé F; Laio A Unsupervised learning methods 
for molecular simulation data. Chem. Rev. 2021, 121, 9722–9758. [PubMed: 33945269] 

(52). Basdogan Y; Groenenboom MC; Henderson E; De S; Rempe SB; Keith JA Machine learning-
guided approach for studying solvation environments. J. Chem. Theory Comput. 2020, 16, 633–
642. [PubMed: 31809056] 

(53). Chen D; Ao Y; Liu S Semi-supervised learning method of u-net deep learning network for blood 
vessel segmentation in retinal images. Symmetry 2020, 12, 1067.

(54). Oymak S; Gulcu TC Statistical and algorithmic insights for semi-supervised learning with 
self-training. arXiv 2020, arXiv.2006.11006.

(55). Xia Y; Liu F; Yang D; Cai J; Yu L; Zhu Z; Xu D; Yuille A; Roth H 3D semi-supervised 
learning with uncertainty-aware multi-view co-training. In Proceedings of the IEEE/CVF Winter 
Conference on Applications of Computer Vision; IEEE/CVF, 2020; pp 3646–3655.

(56). Li S; Li W-T; Wang W Co-gcn for multi-view semi-supervised learning. In Proceedings of the 
AAAI Conference on Artificial Intelligence; AAAI. 2020; pp 4691–4698.

(57). Ji C; Wang Y; Gao Z; Li L; Ni J; Zheng C A semi-supervised learning method for MiRNA-
disease association prediction based on variational autoencoder. IEEE/ACM Trans. Comput. 
Biol. Bioinf. 2022, 19, 2049–2059.

(58). Yin C; Chen Z Developing sustainable classification of diseases via deep learning and semi-
supervised learning. Healthcare 2020, 8, 291. [PubMed: 32846941] 

(59). Kostopoulos G; Karlos S; Kotsiantis S; Ragos O Semi-supervised regression: A recent review. J. 
Intell. Fuzzy Syst. 2018, 35, 1483–1500.

(60). Salvador A; Gundogdu E; Bazzani L; Donoser M Revamping cross-modal recipe retrieval 
with hierarchical transformers and self-supervised learning. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition; IEEE, 2021; pp 15475–15484.

(61). Huang H; Wang T; Cheng J; Xiong Y; Wang C; Geng J Self-Supervised Deep Learning to 
Reconstruct Seismic Data With Consecutively Missing Traces. IEEE Trans. Geosci. Electron. 
2022, 60, 5911514.

(62). Wang Y; Chen X; Min Y; Wu J Molcloze: a unified cloze-style self-supervised molecular 
structure learning model for chemical property prediction. In 2021 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM); IEEE, 2021; pp 2896–2903.

(63). Zhang S; Yan Z; Huang Y; Liu L; He D; Wang W; Fang X; Zhang X; Wang F; Wu H; wang 
H HelixADMET: a robust and endpoint extensible ADMET system incorporating self-supervised 
knowledge transfer. Bioinformatics 2022, 38, 3444–3453. [PubMed: 35604079] 

(64). Ohno H Auto-encoder-based generative models for data augmentation on regression problems. 
Soft Comput. 2020, 24, 7999–8009.

(65). Pekel E Estimation of soil moisture using decision tree regression. Theor. Appl. Climatol. 2020, 
139, 1111–1119.

(66). Massy WF Principal components regression in exploratory statistical research. J. Am. Stat. 
Assoc. 1965, 60, 234–256.

(67). Segal MR Machine Learning Benchmarks and Random Forest Regression; Center for 
Bioinformatics & Molecular, 2004.

(68). Smola AJ; Schölkopf B A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–
222.

(69). Ostertagová E Modelling using polynomial regression. Procedia Eng. 2012, 48, 500–506.

Dou et al. Page 47

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(70). Rahman MM; Saha T; Islam KJ; Suman RH; Biswas S; Rahat EU; Hossen MR; Islam R; Hossain 
MN; Mamun AA; et al. Virtual screening, molecular dynamics and structure–activity relationship 
studies to identify potent approved drugs for Covid-19 treatment. J. Biomol. Struct. Dyn. 2021, 
39, 6231–6241. [PubMed: 32692306] 

(71). Yan A; Chong Y; Wang L; Hu X; Wang K Prediction of biological activity of Aurora-A kinase 
inhibitors by multilinear regression analysis and support vector machine. Bioorg. Med. Chem. 
Lett. 2011, 21, 2238–2243. [PubMed: 21421314] 

(72). Ye Q; Li Q; Gao A; Ying H; Cheng G; Chen J; Che J; Li J; Dong X; Zhou Y Discovery of 
novel indoleaminopyrimidine NIK inhibitors based on molecular docking-based support vector 
regression (SVR) model. Chem. Phys. Lett. 2019, 718, 38–45.

(73). Chen Y; Liu Y; Podimata C Learning strategy-aware linear classifiers. Adv. Neural Inf. Process. 
Syst. 2020, 33, 15265–15276.

(74). Wei K; Li T; Huang F; Chen J; He Z Cancer classification with data augmentation based on 
generative adversarial networks. Front. Comput. Sci. 2022, 16, 162601.

(75). Arian R; Hariri A; Mehridehnavi A; Fassihi A; Ghasemi F Protein kinase inhibitors classification 
using K-Nearest neighbor algorithm. Comput. Biol. Chem. 2020, 86, 107269. [PubMed: 
32413830] 

(76). Madhulatha TS An overview on clustering methods. arXiv 2012, arXiv.1205.1117.

(77). Duran BS; Odell PL Cluster Analysis: A Survey; Springer Science & Business Media, 2013; Vol. 
100.

(78). Xu Q; Zhang Q; Liu J; Luo B Efficient synthetical clustering validity indexes for hierarchical 
clustering. Expert Syst. Appl. 2020, 151, 113367.

(79). Uppada SK Centroid based clustering algorithmsA clarion study. Int. J. Comput. Sci. Inform. 
Technol. 2014, 5, 7309–7313.

(80). Xu X; Ester M; Kriegel H-P; Sander J A distribution-based clustering algorithm for mining in 
large spatial databases. In Proceedings of the 14th International Conference on Data Engineering. 
1998; pp 324–331.

(81). Kriegel H-P; Kröger P; Sander J; Zimek A Density-based clustering. Wiley Interdiscip. Rev.: 
Data Min. Knowl. Discovery 2011, 1, 231–240.

(82). Park NH; Lee WS Statistical grid-based clustering over data streams. Acm Sigmod Record 2004, 
33, 32–37.

(83). Ferro S; Bottigliengo D; Gregori D; Fabricio AS; Gion M; Baldi I Phenomapping of patients with 
primary breast cancer using machine learning-based unsupervised cluster analysis. J. Pers. Med. 
2021, 11, 272. [PubMed: 33916398] 

(84). Yansari RT; Mirzarezaee M; Sadeghi M; Araabi BN A new survival analysis model in adjuvant 
Tamoxifen-treated breast cancer patients using manifold-based semi-supervised learning. J. 
Comput. Sci. 2022, 61, 101645.

(85). Sorzano COS; Vargas J; Montano AP A survey of dimensionality reduction techniques. arXiv, 
2014, arXiv.1403.2877.

(86). Pearson K LIII. On lines and planes of closest fit to systems of points in space. The London, 
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1901, 2, 559–572.

(87). Mulaik SA Foundations of Factor Analysis; CRC Press, 2009.

(88). Gisbrecht A; Schulz A; Hammer B Parametric nonlinear dimensionality reduction using kernel 
t-SNE. Neurocomputing 2015, 147, 71–82.

(89). McInnes L; Healy J; Melville J Umap: Uniform manifold approximation and projection for 
dimension reduction. arXiv 2018, arXiv.1802.03426.

(90). Hozumi Y; Wang R; Wei G-W CCP: Correlated Clustering and Projection for Dimensionality 
Reduction. arXiv 2022, arXiv.2206.04189.

(91). Karnati KR; Wang Y Structural and binding insights into HIV-1 protease and P2-ligand 
interactions through molecular dynamics simulations, binding free energy and principal 
component analysis. J. Mol. Graphics Modell. 2019, 92, 112–122.

Dou et al. Page 48

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(92). Bort W; Baskin II; Gimadiev T; Mukanov A; Nugmanov R; Sidorov P; Marcou G; Horvath 
D; Klimchuk O; Madzhidov T; et al. Discovery of novel chemical reactions by deep generative 
recurrent neural network. Sci. Rep. 2021, 11, 3178. [PubMed: 33542271] 

(93). Samuel AL Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 
1959, 3, 210–229.

(94). Cover T Estimation by the nearest neighbor rule. IEEE Trans. Inf. Theory 1968, 14, 50–55.

(95). Cortes C; Vapnik V Support-vector networks. Mach. Learn. 1995, 20, 273–297.

(96). Ho TK Random decision forests. Proceedings of the 3rd International Conference on Document 
Analysis and Recognition, 1995; pp 278–282.

(97). Helma C; Cramer T; Kramer S; De Raedt L Data mining and machine learning techniques 
for the identification of mutagenicity inducing substructures and structure activity relationships 
of non-congeneric compounds. J. Chem. Inf. Comput. Sci. 2004, 44, 1402–1411. [PubMed: 
15272848] 

(98). Kavakiotis I; Tsave O; Salifoglou A; Maglaveras N; Vlahavas I; Chouvarda I Machine learning 
and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 2017, 15, 104–116. 
[PubMed: 28138367] 

(99). Ball NM; Brunner RJ Data mining and machine learning in astronomy. Int. J. Mod. Phys. D 
2010, 19, 1049–1106.

(100). Iniesta R; Stahl D; McGuffin P Machine learning, statistical learning and the future of biological 
research in psychiatry. Psychol. Med. 2016, 46, 2455–2465. [PubMed: 27406289] 

(101). Hothorn T CRAN Task View; Machine Learning & Statistical Learning. 2022,

(102). Khan AI; Al-Habsi S Machine learning in computer vision. Procedia Comput. Sci. 2020, 167, 
1444–1451.

(103). Huang M; Ninić J; Zhang Q BIM, machine learning and computer vision techniques in 
underground construction: Current status and future perspectives. Tunnelling Underground Space 
Technol. 2021, 108, 103677.

(104). Silahtaroğlu G; Yılmaztürk N. Data analysis in health and big data: a machine learning medical 
diagnosis model based on patients complaints. Commun. Stat.-Theory Methods 2021, 50, 1547–
1556.

(105). Alakus TB; Turkoglu I Comparison of deep learning approaches to predict COVID-19 infection. 
Chaos, Solitons Fractals 2020, 140, 110120. [PubMed: 33519109] 

(106). Shorten C; Khoshgoftaar TM; Furht B Deep Learning applications for COVID-19. J. Big Data 
2021, 8, 18. [PubMed: 33457181] 

(107). Yu K; Tan L; Lin L; Cheng X; Yi Z; Sato T Deeplearning-empowered breast cancer auxiliary 
diagnosis for 5GB remote E-health. IEEE Wireless Commun. 2021, 28, 54–61.

(108). Harmon SA; Sanford TH; Xu S; Turkbey EB; Roth H; Xu Z; Yang D; Myronenko A; Anderson 
V; Amalou A; et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT 
using multinational datasets. Nat. Commun. 2020, 11, 4080. [PubMed: 32796848] 

(109). Oh Y; Park S; Ye JC Deep learning COVID-19 features on CXR using limited training data sets. 
IEEE Trans. Med. Imaging 2020, 39, 2688–2700. [PubMed: 32396075] 

(110). Ardakani AA; Kanafi AR; Acharya UR; Khadem N; Mohammadi A Application of deep 
learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 
10 convolutional neural networks. Comput. Biol. Med. 2020, 121, 103795. [PubMed: 32568676] 

(111). Zhou S; Li G-B; Huang L-Y; Xie H-Z; Zhao Y-L; Chen Y-Z; Li L-L; Yang S-Y A prediction 
model of drug-induced ototoxicity developed by an optimal support vector machine (SVM) 
method. Comput. Biol. Med. 2014, 51, 122–127. [PubMed: 24907415] 

(112). Rish I An empirical study of the naive Bayes classifier. IJCAI 2001 Workshop on Empirical 
Methods in Artificial Intelligence; IJCAI, 2001; pp 41–46.

(113). Zhang H; Singer BH Recursive Partitioning and Applications; Springer Science & Business 
Media, 2010.

(114). Siemers FM; Feldmann C; Bajorath J Minimal data requirements for accurate compound 
activity prediction using machine learning methods of different complexity. Cell Rep. Phys. Sci. 
2022, 3, 101113.

Dou et al. Page 49

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(115). Yu F; Li B; Sun J; Qi J; De Wilde RL; Torres-de la Roche LA; Li C; Ahmad S; Shi W; Li 
X; et al. PSRR: A Web Server for Predicting the Regulation of miRNAs Expression by Small 
Molecules. Front. Mol. Biosci. 2022, 9, 817294. [PubMed: 35386297] 

(116). Albuquerque M; Gerassis S; Sierra C; Taboada J; Martín J; Antunes IMHR; Gallego J 
Developing a new Bayesian Risk Index for risk evaluation of soil contamination. Sci. Total 
Environ. 2017, 603, 167–177. [PubMed: 28624637] 

(117). James G; Witten D; Hastie T; Tibshirani R An introduction to statistical learning; Springer, 
2021; pp 367–402.

(118). Oliveira J; Nogueira D; Ferreira C; Jorge AM; Coimbra M The robustness of Random Forest 
and Support Vector Machine Algorithms to a Faulty Heart Sound Segmentation. In 2022 44th 
Annual International Conference of the IEEE Engineering in Medicine & Biology Society 
(EMBC); IEEE, 2022; pp 1989–1992.

(119). Zakariah M Classification of large datasets using Random Forest Algorithm in various 
applications: Survey. Int. J. Eng. Innov. Technol. 2014, 4, 189–198.

(120). Oshiro TM; Perez PS; Baranauskas JA How many trees in a random forest? In International 
Workshop on Machine Learning and Data Mining in Pattern Recognition, 2012; pp 154–168.

(121). McCulloch WS; Pitts W Bull. Math. Biophys. Bull. Math. Biophys. 1943, 5, 115–133.

(122). Le TH Applying artificial neural networks for face recognition. Adv. Artif. Neural Syst. 2011, 
2011, 673016.

(123). Zhang M; Fulcher J Face recognition using artificial neural network group-based adaptive 
tolerance (GAT) trees. IEEE Trans. Neural Networks 1996, 7, 555–567. [PubMed: 18263454] 

(124). Nazeer SA; Omar N; Khalid M Face recognition system using artificial neural networks 
approach. In 2007 International Conference on Signal Processing, Communications and 
Networking, 2007; pp 420–425.

(125). Amato F; López A; Peña-Méndez EM; Vaňhara P; Hampl A; Havel J. Artificial neural networks 
in medical diagnosis. J. Appl. Biomed. 2013, 11, 47–58.

(126). Zhou Z-H; Jiang Y Medical diagnosis with C4. 5 rule preceded by artificial neural network 
ensemble. IEEE Trans. Inf. Technol. Biomed. 2003, 7, 37–42. [PubMed: 12670017] 

(127). Tourassi GD; Floyd CE The effect of data sampling on the performance evaluation of artificial 
neural networks in medical diagnosis. Med. Decis. Making 1997, 17, 186–192. [PubMed: 
9107614] 

(128). Dede G; Sazlı MH Speech recognition with artificial neural networks. Digital Signal Process 
2010, 20, 763–768.

(129). Lim CP; Woo SC; Loh AS; Osman R Speech recognition using artificial neural networks. In 
Proceedings of the First International Conference on Web Information Systems Engineering, 
2000; pp 419–423.

(130). Olson M; Wyner A; Berk R Modern neural networks generalize on small data sets. In Advances 
in Neural Information Processing Systems, 2018; Vol. 31, p 3623–3632.

(131). Chen Y-K; Shave S; Auer M Mrlogp: transfer learning enables accurate logp prediction using 
small experimental training datasets. Processes 2021, 9, 2029.

(132). Hoseini Ahari SMM; Mirzaei M The artificial neural network-based QSPR and DFT prediction 
of lipophilicity for thioguanine. Main Group Chem. 2022, 21, 1091–1103.

(133). Dadfar E; Shafiei F; Isfahani TM Structural Relationship Study of Octanol-Water Partition 
Coefficient of Some Sulfa Drugs Using GA-MLR and GA-ANN Methods. Curr. Comput.-Aided 
Drug Des. 2020, 16, 207–221. [PubMed: 32507103] 

(134). Mamada H; Iwamoto K; Nomura Y; Uesawa Y Predicting blood-to-plasma concentration ratios 
of drugs from chemical structures and volumes of distribution in humans. Mol. Diversity 2021, 
25, 1261–1270.

(135). Mayer AE; Krasnikov VS; Pogorelko VV Homogeneous nucleation of dislocations in copper: 
Theory and approximate description based on molecular dynamics and artificial neural networks. 
Comput. Mater. Sci. 2022, 206, 111266.

(136). Mahmood A; Irfan A; Wang J-L Developing efficient small molecule acceptors with sp2-
hybridized nitrogen at different positions by density functional theory calculations, molecular 

Dou et al. Page 50

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dynamics simulations and machine learning. Chem.-Eur. J. 2022, 28, No. e202103712. [PubMed: 
34767281] 

(137). Yang GR; Wang X-J Artificial neural networks for neuroscientists: A primer. Neuron 2020, 107, 
1048–1070. [PubMed: 32970997] 

(138). Tabbussum R; Dar AQ Performance evaluation of artificial intelligence paradigmsartificial 
neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. 
Environ. Sci. Pollut. Res. 2021, 28, 25265–25282.

(139). Wu J; Wang Z A hybrid model for water quality prediction based on an artificial neural network, 
wavelet transform, and long short-term memory. Water 2022, 14, 610.

(140). Huang Y Advances in artificial neural networks–methodological development and application. 
Algorithms 2009, 2, 973–1007.

(141). Abbass HA An evolutionary artificial neural networks approach for breast cancer diagnosis. 
Artif. Intell. Med. 2002, 25, 265–281. [PubMed: 12069763] 

(142). Benítez JM; Castro JL; Requena I Are artificial neural networks black boxes? IEEE Trans. 
Neural Networks 1997, 8, 1156–1164. [PubMed: 18255717] 

(143). Vaz JM; Balaji S Convolutional neural networks (CNNs): Concepts and applications in 
pharmacogenomics. Mol. Diversity 2021, 25, 1569–1584.

(144). Hubel DH; Wiesel TN Shape and arrangement of columns in cat’s striate cortex. J Physiol. 
1963, 165, 559. [PubMed: 13955384] 

(145). LeCun Y; Bottou L; Bengio Y; Haffner P Gradient-based learning applied to document 
recognition. Proc. IEEE 1998, 86, 2278–2324.

(146). Krizhevsky A; Sutskever I; Hinton GE Imagenet classification with deep convolutional neural 
networks. Commun. ACM 2017, 60, 84–90.

(147). Simonyan K; Zisserman A Very deep convolutional networks for large-scale image recognition. 
arXiv 2014, arXiv.1409.1556 DOI: 10.48550/arXiv.1409.1556.

(148). Szegedy C; Liu W; Jia Y; Sermanet P; Reed S; Anguelov D; Erhan D; Vanhoucke V; 
Rabinovich A Going deeper with convolutions. In Proceedings of the IEEE conference on 
computer vision and pattern recognition; IEEE, 2015; pp 1–9.

(149). Huang G; Liu Z; Van Der Maaten L; Weinberger KQ Densely connected convolutional 
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 
IEEE, 2017; pp 4700–4708.

(150). Xue L; Tang B; Chen W; Luo J Prediction of CRISPR sgRNA activity using a deep 
convolutional neural network. J. Chem. Inf. Model. 2019, 59, 615–624. [PubMed: 30485088] 

(151). Chen L; Li S; Bai Q; Yang J; Jiang S; Miao Y Review of image classification algorithms based 
on convolutional neural networks. Remote Sens. 2021, 13, 4712.

(152). Naranjo-Torres J; Mora M; Hernández-García R; Barrientos RJ; Fredes C; Valenzuela A A 
review of convolutional neural network applied to fruit image processing. Appl. Sci. 2020, 10, 
3443.

(153). Anwar SM; Majid M; Qayyum A; Awais M; Alnowami M; Khan MK Medical image analysis 
using convolutional neural networks: a review. J. Med. Syst. 2018, 42, 226. [PubMed: 30298337] 

(154). Gatys LA; Ecker AS; Bethge M Image style transfer using convolutional neural networks. In 
Proceedings of the IEEE conference on computer vision and pattern recognition; IEEE, 2016; pp 
2414–2423.

(155). Meglouli H; Bentabet L; Airouche M A new technique based on 3D convolutional neural 
networks and filtering optical flow maps for action classification in infrared video. J. Control 
Eng. Appl. Inform. 2019, 21, 43–50.

(156). Yao G; Lei T; Zhong J A review of convolutional-neural-network-based action recognition. 
Pattern Recognit. Lett. 2019, 118, 14–22.

(157). Liu Z; Zhang C; Tian Y 3D-based deep convolutional neural network for action recognition with 
depth sequences. Image Vision Comput. 2016, 55, 93–100.

(158). Song P; Geng C; Li Z Research on text classification based on convolutional neural network. 
In 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA), 
2019; pp 229–232.

Dou et al. Page 51

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(159). Giménez M; Palanca J; Botti V Semantic-based padding in convolutional neural networks for 
improving the performance in natural language processing. A case of study in sentiment analysis. 
Neurocomputing 2020, 378, 315–323.

(160). Albawi S; Mohammed TA; Al-Zawi S Understanding of a convolutional neural network. In 
2017 International Conference on Engineering and Technology (ICET), 2017; pp 1–6.

(161). Collobert R; Weston J A unified architecture for natural language processing: Deep neural 
networks with multitask learning. In Proceedings of the 25th International Conference on 
Machine Learning, 2008; pp 160–167.

(162). Sadoughi M; Hu C Physics-based convolutional neural network for fault diagnosis of rolling 
element bearings. IEEE Sens. J. 2019, 19, 4181–4192.

(163). Zhao X; Gong Z; Zhang Y; Yao W; Chen X Physicsinformed convolutional neural networks for 
temperature field prediction of heat source layout without labeled data. Eng. Appl. Artif. Intell. 
2023, 117, 105516.

(164). Madrazo CF; Heredia I; Lloret L; de Lucas JM Application of a Convolutional Neural Network 
for Image Classification for the Analysis of Collisions in High Energy Physics; EPJ Web of 
Conferences, 2019; p 06017.

(165). Hu S; Chen P; Gu P; Wang B A deep learning-based chemical system for QSAR prediction. 
IEEE J. Biomed. Health. Inf. 2020, 24, 3020–3028.

(166). Karpov P; Godin G; Tetko IV Transformer-CNN: Swiss knife for QSAR modeling and 
interpretation. J. Cheminform. 2020, 12, 17. [PubMed: 33431004] 

(167). Hamza H; Nasser M; Salim N; Saeed F Bioactivity prediction using convolutional neural 
network. InEmerging Trends in Intelligent Computing and Informatics: Data Science, Intelligent 
Information Systems and Smart Computing; Advances in Intelligent Systems and Computing; 
Springer International: Cham, 2020; Vol. 4, pp 341–351.

(168). Nguyen-Vo T-H; Nguyen L; Do N; Le PH; Nguyen T-N; Nguyen BP; Le L Predicting drug-
induced liver injury using convolutional neural network and molecular fingerprint-embedded 
features. ACS Omega 2020, 5, 25432–25439. [PubMed: 33043223] 

(169). Zhong S; Hu J; Yu X; Zhang H Molecular image-convolutional neural network (CNN) assisted 
QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data 
augmentation and model interpretation. Chem. Eng. J. 2021, 408, 127998.

(170). Zhong S; Zhang K; Wang D; Zhang H Shedding light on Black Box machine learning models 
for predicting the reactivity of HO radicals toward organic compounds. Chem. Eng. J. 2021, 405, 
126627.

(171). Hammes-Schiffer S; Tully JC Proton transfer in solution: Molecular dynamics with quantum 
transitions. J. Chem. Phys. 1994, 101, 4657–4667.

(172). Li G; Guo Y; Mabuchi T; Surblys D; Ohara T; Tokumasu T Prediction of the adsorption 
properties of liquid at solid surfaces with molecular scale surface roughness via encoding-
decoding convolutional neural networks. J. Mol. Liq. 2022, 349, 118489.

(173). Sun X; Ma L; Du X; Feng J; Dong K Deep convolution neural networks for drug-drug 
interaction extraction. In IEEE International Conference on Bioinformatics and Biomedicine 
(BIBM), 2018; IEEE, 2018; pp 1662–1668.

(174). Han R; Yang Y; Li X; Ouyang D Predicting oral disintegrating tablet formulations by neural 
network techniques. Asian J. Pharm. Sci. 2018, 13, 336–342. [PubMed: 32104407] 

(175). Meyer JG; Liu S; Miller IJ; Coon JJ; Gitter A Learning drug functions from chemical structures 
with convolutional neural networks and random forests. J. Chem. Inf. Model. 2019, 59, 4438–
4449. [PubMed: 31518132] 

(176). Senior AW; Evans R; Jumper J; Kirkpatrick J; Sifre L; Green T; Qin C; Žídek A; Nelson AW; 
Bridgland A; et al. Protein structure prediction using multiple deep neural networks in the 13th 
Critical Assessment of Protein Structure Prediction (CASP13). Proteins: Struct., Funct., Bioinf. 
2019, 87, 1141–1148.

(177). Hernández-García A; König P Further advantages of data augmentation on convolutional neural 
networks. International Conference on Artificial Neural Networks 2018, 11139, 95–103.

(178). Yamashita R; Nishio M; Do RKG; Togashi K Convolutional neural networks: an overview and 
application in radiology. Insights into imaging 2018, 9, 611–629. [PubMed: 29934920] 

Dou et al. Page 52

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(179). Ma S; Zhang Z OmicsMapNet: Transforming omics data to take advantage of Deep 
Convolutional Neural Network for discovery. arXiv 2018, arXiv.1804.05283

(180). Liu S; Deng W Very deep convolutional neural network based image classification using small 
training sample size. In 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR); 
IAPR, 2015; pp 730–734.

(181). Kamilaris A; Prenafeta-Boldu FX ́. A review of the use of convolutional neural networks in 
agriculture. J Agric Sci. 2018, 156, 312–322.

(182). Islam MA; Jia S; Bruce ND How Much Position Information Do Convolutional Neural 
Networks Encode? arXiv 2020, arXiv.2001.08248.

(183). Mohakud R; Dash R Intelligent and Cloud Computing; Springer, 2021; pp 737–744.

(184). Feng D; Haase-Schütz C; Rosenbaum L; Hertlein H; Glaeser C; Timm F; Wiesbeck W; 
Dietmayer K. Deep multi-modal object detection and semantic segmentation for autonomous 
driving: Datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1341–
1360.

(185). Li J; Jiang F; Yang J; Kong B; Gogate M; Dashtipour K; Hussain A Lane-deeplab: Lane 
semantic segmentation in automatic driving scenarios for high-definition maps. Neurocomputing 
2021, 465, 15–25.

(186). Asad MH; Bais A Weed density estimation using semantic segmentation. In Pacific-Rim 
Symposium on Image and Video Technology, 2020; pp 162–171.

(187). Long J; Shelhamer E; Darrell T Fully convolutional networks for semantic segmentation. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE, 2015; 
pp 3431–3440.

(188). Ronneberger O; Fischer P; Brox T U-net: Convolutional networks for biomedical image 
segmentation. In International Conference on Medical Image Computing and Computer-Assisted 
Intervention, 2015; pp 234–241.

(189). Badrinarayanan V; Handa A; Cipolla R Segnet: A deep convolutional encoder-decoder 
architecture for robust semantic pixel-wise labelling. arXiv 2015, arXiv.1505.07293.

(190). Yu F; Koltun V Multi-scale context aggregation by dilated convolutions. arXiv 2015, 
arXiv.1511.07122.

(191). Chen L-C; Papandreou G; Kokkinos I; Murphy K; Yuille AL Deeplab: Semantic image 
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE 
Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [PubMed: 28463186] 

(192). Zhou Z; Rahman Siddiquee MM; Tajbakhsh N; Liang J Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support; Springer, 2018; pp 3–11.

(193). Yan X; Lu Y; Li Z; Wei Q; Gao X; Wang S; Wu S; Cui S PointSite: A Point Cloud 
Segmentation Tool for Identification of Protein Ligand Binding Atoms. J. Chem. Inf. Model. 
2022, 62, 2835–2845. [PubMed: 35621730] 

(194). Ibtehaz N; Rahman MS MultiResUNet: Rethinking the U-Net architecture for multimodal 
biomedical image segmentation. Neural networks 2020, 121, 74–87. [PubMed: 31536901] 

(195). Al-Shaebi Z; Uysal Ciloglu F; Nasser M; Aydin O Highly Accurate Identification of Bacterias 
Antibiotic Resistance Based on Raman Spectroscopy and U-Net Deep Learning Algorithms. ACS 
omega 2022, 7, 29443–29451. [PubMed: 36033656] 

(196). Pfab J; Phan NM; Si D DeepTracer for fast de novo cryo-EM protein structure modeling and 
special studies on CoV-related complexes. Proc. Natl. Acad. Sci. 2021, 118, No. e2017525118. 
[PubMed: 33361332] 

(197). Zhang X; Zhang B; Freddolino PL; Zhang Y CR-I-TASSER: assemble protein structures from 
cryo-EM density maps using deep convolutional neural networks. Nat. Methods 2022, 19, 195–
204. [PubMed: 35132244] 

(198). Pan Z; Xu J; Guo Y; Hu Y; Wang G Deep learning segmentation and classification for urban 
village using a worldview satellite image based on U-Net. Remote Sens. 2020, 12, 1574.

(199). Lin D; Li Y; Prasad S; Nwe TL; Dong S; Oo ZM CAM-guided Multi-Path Decoding U-Net with 
Triplet Feature Regularization for defect detection and segmentation. Knowledge-Based Syst. 
2021, 228, 107272.

Dou et al. Page 53

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(200). Nazem F; Ghasemi F; Fassihi A; Dehnavi AM 3D U-Net: A voxel-based method in binding site 
prediction of protein structure. J. Bioinf. Comput. Biol. 2021, 19, 2150006.

(201). Kotowski K; Smolarczyk T; Roterman-Konieczna I; Stapor K ProteinUnetAn efficient 
alternative to SPIDER3-single for sequence-based prediction of protein secondary structures. 
J. Comput. Chem. 2021, 42, 50–59. [PubMed: 33058261] 

(202). Prasad PJR; Elle OJ; Lindseth F; Albregtsen F; Kumar RP Modifying U-Net for small dataset: 
a simplified U-Net version for liver parenchyma segmentation. In Medical Imaging 2021: 
Computer-Aided Diagnosis, 2021; pp 396–405.

(203). Isensee F; Petersen J; Klein A; Zimmerer D; Jaeger PF; Kohl S; Wasserthal J; Koehler G; 
Norajitra T; Wirkert S, et al. nnU-Net: Self-adapting framework for u-net-based medical image 
segmentation. arXiv 2018, arXiv.1809.10486.

(204). Zhang J; Jin Y; Xu J; Xu X; Zhang Y MDU-Net: Multi-scale densely connected 
u-net for biomedical image segmentation. arXiv 2018, arXiv.1812.00352 DOI: 10.48550/
arXiv.1812.00352.

(205). Tong G; Li Y; Chen H; Zhang Q; Jiang H Improved U-NET network for pulmonary nodules 
segmentation. Optik 2018, 174, 460–469.

(206). Wu Z; Lu T; Zhang Y; Wang B; Zhao X Crack detecting by recursive attention U-Net. In 2020 
3rd International Conference on Robotics, Control and Automation Engineering (RCAE0, 2020; 
pp 103–107.

(207). Wang W; Yu K; Hugonot J; Fua P; Salzmann M Recurrent U-Net for resource-constrained 
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision; 
IEEE, 2019; pp 2142–2151.

(208). Du G; Cao X; Liang J; Chen X; Zhan Y Medical image segmentation based on u-net: A review. 
J. Imaging Sci. Technol. 2020, 64, 20508–1.

(209). Wang JL; Farooq H; Zhuang H; Ibrahim AK Segmentation of intracranial hemorrhage using 
semi-supervised multi-task attention-based U-net. Appl. Sci. 2020, 10, 3297.

(210). Ryu SM; Shin K; Shin SW; Lee S; Kim N Enhancement of evaluating flatfoot on a weight-
bearing lateral radiograph of the foot with U-Net based semantic segmentation on the long axis 
of tarsal and metatarsal bones in an active learning manner. Comput. Biol. Med. 2022, 145, 
105400. [PubMed: 35358752] 

(211). Dan H-C; Zeng H-F; Zhu Z-H; Bai G-W; Cao W Methodology for Interactive Labeling of 
Patched Asphalt Pavement Images Based on U-Net Convolutional Neural Network. Sustainability 
2022, 14, 861.

(212). Gori M; Monfardini G; Scarselli F A new model for learning in graph domains. In Proceedings 
of the 2005 IEEE International Joint Conference on Neural Networks; IEEE, 2005; pp 729–734.

(213). Scarselli F; Gori M; Tsoi AC; Hagenbuchner M; Monfardini G The graph neural network 
model. IEEE Trans. Neural Networks 2009, 20, 61–80. [PubMed: 19068426] 

(214). Micheli A Neural network for graphs: A contextual constructive approach. IEEE Trans. Neural 
Networks 2009, 20, 498–511. [PubMed: 19193509] 

(215). Wu S; Sun F; Zhang W; Xie X; Cui B Graph neural networks in recommender systems: a 
survey. ACM. Comput. Surv. 2023, 55, 97.

(216). Ying R; He R; Chen K; Eksombatchai P; Hamilton WL; Leskovec J Graph convolutional 
neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 2018; pp 974–983.

(217). Pradhyumna P; Shreya G Graph neural network (GNN) in image and video understanding using 
deep learning for computer vision applications. In 2021 Second International Conference on 
Electronics and Sustainable Communication Systems (ICESC), 2021; pp 1183–1189.

(218). Hwang D; Yang S; Kwon Y; Lee KH; Lee G; Jo H; Yoon S; Ryu S Comprehensive study 
on molecular supervised learning with graph neural networks. J. Chem. Inf. Model. 2020, 60, 
5936–5945. [PubMed: 33164522] 

(219). Wu L; Chen Y; Shen K; Guo X; Gao H; Li S; Pei J; Long B Graph neural networks for natural 
language processing: A survey. arXiv 2021, arXiv.2106.06090 DOI: 10.48550/arXiv.2106.06090.

Dou et al. Page 54

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(220). Liu W; Zhang Y; Wang J; He Y; Caverlee J; Chan PP; Yeung DS; Heng P-A Item relationship 
graph neural networks for e-commerce. IEEE Trans. Neural Networks Learn. Syst. 2022, 33, 
4785–4799.

(221). Li Z; Shen X; Jiao Y; Pan X; Zou P; Meng X; Yao C; Bu J Hierarchical bipartite graph 
neural networks: Towards large-scale e-commerce applications. 2020 IEEE 36th International 
Conference on Data Engineering (ICDE); IEEE, 2020; pp 1677–1688.

(222). Low K; Coote ML; Izgorodina EI Explainable Solvation Free Energy Prediction Combining 
Graph Neural Networks with Chemical Intuition. J. Chem. Inf. Model. 2022, 62, 5457–5470. 
[PubMed: 36317829] 

(223). Coley CW; Jin W; Rogers L; Jamison TF; Jaakkola TS; Green WH; Barzilay R; Jensen KF A 
graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 
2019, 10, 370–377. [PubMed: 30746086] 

(224). Holm AN; Plank B; Wright D; Augenstein I Longitudinal citation prediction using temporal 
graph neural networks. arXiv 2020, arXiv.2012.05742 DOI: 10.48550/arXiv.2012.05742.

(225). Gong L; Cheng Q Exploiting edge features for graph neural networks. In Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE, 2019; pp 9211–
9219.

(226). Kipf TN; Welling M Semi-supervised classification with graph convolutional networks. arXiv 
2016, arXiv.1609.02907.

(227). Kipf TN; Welling M Variational graph auto-encoders. arXiv 2016, arXiv.1611.07308.

(228). Wu Z; Pan S; Chen F; Long G; Zhang C; Yu PS A comprehensive survey on graph neural 
networks. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 4–24.

(229). Wang Y; Abuduweili A; Yao Q; Dou D Property-aware relation networks for few-shot molecular 
property prediction arXiv 2021, arXiv:2107.07994.

(230). Wu Z; Ramsundar B; Feinberg EN; Gomes J; Geniesse C; Pappu AS; Leswing K; Pande 
V MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 2018, 9, 513–530. 
[PubMed: 29629118] 

(231). Pappu A; Paige B Making graph neural networks worth it for low-data molecular machine 
learning. arXiv 2020, arXiv.2011.12203.

(232). Guo Z; Zhang C; Yu W; Herr J; Wiest O; Jiang M; Chawla NV Few-shot graph learning 
for molecular property prediction. In Proceedings of the Web Conference 2021; Vol. 2021, pp 
2559–2567.

(233). Maddhuri Venkata Subramaniya SR; Terashi G; Jain A; Kagaya Y; Kihara D Protein contact 
map refinement for improving structure prediction using generative adversarial networks. 
Bioinformatics 2021, 37, 3168–3174. [PubMed: 33787852] 

(234). Balogh OM; Benczik B; Horváth A; Pétervári M; Csermely P; Ferdinandy P; Ágg B Efficient 
link prediction in the protein–protein interaction network using topological information in a 
generative adversarial network machine learning model. BMC Bioinform. 2022, 23, 78.

(235). Ishida S; Miyazaki T; Sugaya Y; Omachi S Graph neural networks with multiple feature 
extraction paths for chemical property estimation. Molecules 2021, 26, 3125. [PubMed: 
34073745] 

(236). Almasan P; Suárez-Varela J; Rusek K; Barlet-Ros P; Cabellos-Aparicio A Deep reinforcement 
learning meets graph neural networks: Exploring a routing optimization use case. Comput. 
Commun. 2022, 196, 184–194.

(237). Chen S; Dong J; Ha P; Li Y; Labi S Graph neural network and reinforcement learning for multi-
agent cooperative control of connected autonomous vehicles. Comput.-Aided Civ. Infrastruct. 
Eng. 2021, 36, 838–857.

(238). Wang Y; Jin W; Derr T Graph Neural Networks: Foundations, Frontiers, and Applications; 
Springer, 2022; pp 391–420.

(239). Feng W; Zhang J; Dong Y; Han Y; Luan H; Xu Q; Yang Q; Kharlamov E; Tang J Graph random 
neural networks for semi-supervised learning on graphs. arXiv 2020, arXiv:2005.11079.

(240). Xie Y; Xu Z; Zhang J; Wang Z; Ji S Self-supervised learning of graph neural networks: 
A unified review. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2412–2429. [PubMed: 
35476575] 

Dou et al. Page 55

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(241). Zhu Y; Xu Y; Yu F; Wu S; Wang L CAGNN: Cluster-aware graph neural networks for 
unsupervised graph representation learning. arXiv 2020, arXiv.2009.01674.

(242). Geisler S; Schmidt T; Şirin H; Zügner D; Bojchevski A; Günnemann S. Robustness of graph 
neural networks at scale. arXiv2021 arXiv:2110.14038.

(243). Huang Q; Yamada M; Tian Y; Singh D; Chang Y Graphlime: Local interpretable model 
explanations for graph neural networks. IEEE Trans. Knowl. Data Eng. 2022, 35, 6968–6972.

(244). Ying Z; Bourgeois D; You J; Zitnik M; Leskovec J GNNExplainer: Generating Explanations for 
Graph Neural Networks. arXiv 2019, arXiv:1903.03894.

(245). Hu W; Liu B; Gomes J; Zitnik M; Liang P; Pande V; Leskovec J Strategies for pre-training 
graph neural networks. arXiv 2019, arXiv1905.12265.

(246). Loukas A What graph neural networks cannot learn: depth vs width. arXiv 2019, 
arXiv1907.03199.

(247). Mandal D; Medya S; Uzzi B; Aggarwal C MetaLearning with Graph Neural Networks: Methods 
and Applications. ACM SIGKDD Explorations Newsletter 2021, 23, 13–22.

(248). Hochreiter S; Schmidhuber J Long short-term memory. Neural Comput. 1997, 9, 1735–1780. 
[PubMed: 9377276] 

(249). Mehryary F; Björne J; Salakoski T; Ginter F Potent pairing: ensemble of long short-term 
memory networks and support vector machine for chemical-protein relation extraction. Database 
2018, 2018, bay120.

(250). Zhang J; Liu J; Luo Y; Fu Q; Bi J; Qiu S; Cao Y; Ding X Chemical substance classification 
using long short-term memory recurrent neural network. In 2017 IEEE 17th International 
Conference on Communication Technology (ICCT), 2017; pp 1994–1997.

(251). Awale M; Sirockin F; Stiefl N; Reymond J-L Drug analogs from fragment-based long short-
term memory generative neural networks. J. Chem. Inf. Model. 2019, 59, 1347–1356. [PubMed: 
30908913] 

(252). Jia X; Gavves E; Fernando B; Tuytelaars T Guiding the long-short term memory model for 
image caption generation. In Proceedings of the IEEE International Conference on Computer 
Vision; IEEE, 2015; pp 2407–2415.

(253). Balderas D; Ponce P; Molina A Convolutional long short term memory deep neural networks 
for image sequence prediction. Expert Syst Appl. 2019, 122, 152–162.

(254). Sak H; Senior A; Beaufays F Long short-term memory based recurrent neural network 
architectures for large vocabulary speech recognition. arXiv 2014, arXiv.1402.1128.

(255). Li X; Wu X Constructing long short-term memory based deep recurrent neural networks for 
large vocabulary speech recognition. 2015 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP); IEEE, 2015; pp 4520–4524.

(256). Kasthuri E; Balaji S Natural language processing and deep learning chatbot using long short 
term memory algorithm. Mater. Today: Proc. 2023, 81, 690–693.

(257). Mukherjee A; Su A; Rajan K Deep learning model for identifying critical structural motifs in 
potential endocrine disruptors. J. Chem. Inf. Model. 2021, 61, 2187–2197. [PubMed: 33872000] 

(258). Guo Y; Li W; Wang B; Liu H; Zhou D DeepACLSTM: deep asymmetric convolutional long 
short-term memory neural models for protein secondary structure prediction. BMC Bioinf. 2019, 
20, 341.

(259). Liang D; Zhang Y AC-BLSTM: asymmetric convolutional bidirectional LSTM networks for 
text classification. arXiv 2016, arXiv.1611.01884.

(260). Pollastri G; Przybylski D; Rost B; Baldi P Improving the prediction of protein secondary 
structure in three and eight classes using recurrent neural networks and profiles. Proteins: Struct., 
Funct., Bioinf. 2002, 47, 228–235.

(261). Wang S; Peng J; Ma J; Xu J Protein secondary structure prediction using deep convolutional 
neural fields. Sci. Rep. 2016, 6, 18962. [PubMed: 26752681] 

(262). Guo Y; Wang B; Li W; Yang B Protein secondary structure prediction improved by recurrent 
neural networks integrated with two-dimensional convolutional neural networks. J. Bioinf. 
Comput. Biol. 2018, 16, 1850021.

Dou et al. Page 56

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(263). Yi H-C; You Z-H; Zhou X; Cheng L; Li X; Jiang T-H; Chen Z-H ACP-DL: a deep learning 
long short-term memory model to predict anticancer peptides using high-efficiency feature 
representation. Mol. Ther.–Nucleic Acids 2019, 17, 1–9. [PubMed: 31173946] 

(264). Li S; Chen J; Liu B Protein remote homology detection based on bidirectional long short-term 
memory. BMC Bioinf. 2017, 18, 443.

(265). Håndstad T; Hestnes AJ; Sætrom P Motif kernel generated by genetic programming improves 
remote homology and fold detection. BMC Bioinform. 2007, 8, 23.

(266). Liao L; Noble WS Combining pairwise sequence similarity and support vector machines for 
detecting remote protein evolutionary and structural relationships. J. Comput. Biol. 2003, 10, 
857–868. [PubMed: 14980014] 

(267). Ben-Hur A; Brutlag D Remote homology detection: a motif based approach. Bioinformatics 
2003, 19, i26–i33. [PubMed: 12855434] 

(268). Saigo H; Vert J-P; Ueda N; Akutsu T Protein homology detection using string alignment 
kernels. Bioinformatics 2004, 20, 1682–1689. [PubMed: 14988126] 

(269). Altschul SF; Madden TL; Schäffer AA; Zhang J; Zhang Z; Miller W; Lipman DJ Gapped 
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids 
Res. 1997, 25, 3389–3402. [PubMed: 9254694] 

(270). Hochreiter S; Heusel M; Obermayer K Fast model-based protein homology detection without 
alignment. Bioinformatics 2007, 23, 1728–1736. [PubMed: 17488755] 

(271). Gers FA; Schmidhuber J; Cummins F Learning to forget: Continual prediction with LSTM. 
Neural Comput. 2000, 12, 2451–2471. [PubMed: 11032042] 

(272). Zhu L; Ye C; Hu X; Yang S; Zhu C ACP-check: An anticancer peptide prediction model based 
on bidirectional long short-term memory and multi-features fusion strategy. Comput. Biol. Med. 
2022, 148, 105868. [PubMed: 35868046] 

(273). Wang S; Wang X; Wang S; Wang D Bi-directional long short-term memory method based 
on attention mechanism and rolling update for short-term load forecasting. Int. J. Electr. Power 
Energy Syst. 2019, 109, 470–479.

(274). Goodfellow Ian J; Jean P-A; Mehdi M; Bing X; David W-F; Sherjil O; Courville Aaron 
C Generative adversarial nets. In Proceedings of the 27th International Conference on Neural 
Information Processing Systems, 2014; pp 2672–2680.

(275). Tolstikhin IO; Gelly S; Bousquet O; Simon-Gabriel C-J; Schölkopf B AdaGAN: Boosting 
generative models. In Advances in Neural Information Processing Systems 30 (NIPS 2017); 
Curran Associates, 2017; pp 5424–5433

(276). Ghosh A; Kulharia V; Namboodiri VP; Torr PH; Dokania PK Multi-agent diverse generative 
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition; Computer Vision Foundation, 2018; pp 8513–8521.

(277). Lin Z; Khetan A; Fanti G; Oh S Pacgan: The power of two samples in generative adversarial 
networks. In Conference on Neural Information Processing Systems, 2018; pp 1498–1507.

(278). Nguyen T; Le T; Vu H; Phung D Dual discriminator generative adversarial nets. In Advances in 
Neural Information Processing Systems 30 (NIPS 2017), 2017; pp 2667–2677.

(279). Chavdarova T; Fleuret FS: An alternative training of generative adversarial networks. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE, 2018; 
pp 9407–9415.

(280). Radford A; Metz L; Chintala S Unsupervised representation learning with deep convolutional 
generative adversarial networks. arXiv 2015, arXiv.1511.06434.

(281). Han X; Zhang L; Zhou K; Wang X ProGAN: Protein solubility generative adversarial nets for 
data augmentation in DNN framework. Comput. Chem. Eng. 2019, 131, 106533.

(282). Niwa T; Ying B-W; Saito K; Jin W; Takada S; Ueda T; Taguchi H Bimodal protein solubility 
distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli 
proteins. Proc. Natl. Acad. Sci. 2009, 106, 4201–4206. [PubMed: 19251648] 

(283). Marreiros AC; Daunizeau J; Kiebel SJ; Friston KJ Population dynamics: variance and the 
sigmoid activation function. Neuroimage 2008, 42, 147–157. [PubMed: 18547818] 

Dou et al. Page 57

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(284). Liu Y; Zhou Y; Liu X; Dong F; Wang C; Wang Z Wasserstein GAN-based small-sample 
augmentation for new-generation artificial intelligence: a case study of cancer-staging data in 
biology. Engineering 2019, 5, 156–163.

(285). Breiman L Random forests. Mach. Learn. 2001, 45, 5–32.

(286). Han H; Wang W-Y; Mao B-H Borderline-SMOTE: a new over-sampling method in imbalanced 
data sets learning. International conference on intelligent computing 2005, 3644, 878–887.

(287). Ribeiro e Sousa LR; Miranda T; Leal e Sousa RL; Tinoco J The use of data mining techniques 
in rockburst risk assessment. Engineering 2017, 3, 552–558.

(288). Sun Y; Kamel MS; Wong AK; Wang Y Cost-sensitive boosting for classification of imbalanced 
data. Pattern Recognit. 2007, 40, 3358–3378.

(289). Hsu T-C; Lin C Generative adversarial networks for robust breast cancer prognosis prediction 
with limited data size. 2020 42nd Annual International Conference of the IEEE Engineering in 
Medicine & Biology Society (EMBC); IEEE, 2020; pp 5669–5672.

(290). Li C; Wei Y; Chen X; Schönlieb C-B Deep Generative Models, and Data Augmentation, 
Labelling, and Imperfections; Springer, 2021; pp 103–111.

(291). Lin T-T; Sun Y-Y; Cheng W-C; Lu I-H; Chen S-H; Lin C-YDeveloping an Antiviral 
Peptides Predictor with Generative Adversarial Network Data Augmentation. bioRxiv 2021, 
bio-Rxiv.2021.11.29.470292.

(292). Lee YJ; Kahng H; Kim SB Generative adversarial networks for de novo molecular design. Mol. 
Inf. 2021, 40, 2100045.

(293). Dan Y; Zhao Y; Li X; Li S; Hu M; Hu J Generative adversarial networks (GAN) based efficient 
sampling of chemical composition space for inverse design of inorganic materials. NPJ Comput. 
Mater. 2020, 6, 84.

(294). Sawada Y; Morikawa K; Fujii M Conditional Generative Adversarial Networks for Inorganic 
Chemical Compositions. Chem. Lett. 2021, 50, 623–626.

(295). Yi X; Walia E; Babyn P Generative adversarial network in medical imaging: A review. Med. 
Image Anal. 2019, 58, 101552. [PubMed: 31521965] 

(296). Bing X; Zhang W; Zheng L; Zhang Y Medical image super resolution using improved 
generative adversarial networks. IEEE Access 2019, 7, 145030–145038.

(297). Zhang T; Cheng J; Fu H; Gu Z; Xiao Y; Zhou K; Gao S; Zheng R; Liu J Noise adaptation 
generative adversarial network for medical image analysis. IEEE Trans. Med. Imaging 2020, 39, 
1149–1159. [PubMed: 31567075] 

(298). Zhang H; Sindagi V; Patel VM Image de-raining using a conditional generative adversarial 
network. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3943–3956.

(299). Zhu L; Chen Y; Ghamisi P; Benediktsson JA Generative adversarial networks for hyperspectral 
image classification. IEEE Trans. Geosci. Electron. 2018, 56, 5046–5063.

(300). Lin E; Lin C-H; Lane H-Y De Novo Peptide and Protein Design Using Generative Adversarial 
Networks: An Update. J. Chem. Inf. Model. 2022, 62, 761–774. [PubMed: 35128926] 

(301). Kong J; Kim J; Bae J HiFi-GAN: Generative adversarial networks for efficient and high 
fidelity speech synthesis. In Advances in Neural Information Processing Systems 33 (NeurIPS 
2020)2020, Vol. 33, pp 17022–17033

(302). Mira R; Vougioukas K; Ma P; Petridis S; Schuller BW; Pantic M End-to-end video-to-speech 
synthesis using generative adversarial networks. IEEE Trans. Cybern. 2023, 53, 3454–3466. 
[PubMed: 35439155] 

(303). Tian Q; Chen Y; Zhang Z; Lu H; Chen L; Xie L; Liu S TFGAN: Time and frequency 
domain based generative adversarial network for high-fidelity speech synthesis. arXiv 2020, 
arXiv.2011.12206.

(304). Cao Y-J; Jia L-L; Chen Y-X; Lin N; Yang C; Zhang B; Liu Z; Li X-X; Dai H-H Recent 
advances of generative adversarial networks in computer vision. IEEE Access 2019, 7, 14985–
15006.

(305). Park S-W; Ko J-S; Huh J-H; Kim J-C Review on generative adversarial networks: focusing on 
computer vision and its applications. Electronics 2021, 10, 1216.

Dou et al. Page 58

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(306). Sampath V; Maurtua I; Aguilar Martín JJ; Gutierrez A A survey on generative adversarial 
networks for imbalance problems in computer vision tasks. J. Big Data 2021, 8, 27. [PubMed: 
33552840] 

(307). Mishra D; Prathosh AP; Jayendran A; Srivastava V; Chaudhury S Mode matching in GANs 
through latent space learning and inversion. arXiv 2018, arXiv.1811.03692.

(308). Kingma DP; Welling M Auto-encoding variational Bayes. arXiv 2013, arXiv.1312.6114.

(309). Makhzani A; Shlens J; Jaitly N; Goodfellow I; Frey B Adversarial autoencoders. arXiv 2015, 
arXiv.1511.05644.

(310). Bao J; Chen D; Wen F; Li H; Hua G CVAE-GAN: fine-grained image generation through 
asymmetric training. Proceedings of the IEEE International Conference on Computer Vision; 
IEEE, 2017; pp 2745–2754.

(311). Chen X; Kingma DP; Salimans T; Duan Y; Dhariwal P; Schulman J; Sutskever I; Abbeel P 
Variational lossy autoencoder. arXiv, 2016, arXiv.1611.02731.

(312). Cai L; Gao H; Ji S Multi-stage variational auto-encoders for coarse-to-fine image generation. 
Proceedings of the 2019 SIAM International Conference on Data Mining; SIAM, 2019; pp 630–
638.

(313). Tolstikhin I; Bousquet O; Gelly S; Schoelkopf B Wasserstein auto-encoders. arXiv, 2017, 
arXiv.1711.01558.

(314). Ma C; Zhang X GF-VAE: A Flow-based Variational Autoencoder for Molecule Generation. 
Proceedings of the 30th ACM International Conference on Information & Knowledge 
Management; ACM, 2021; pp 1181–1190.

(315). Feng H; Gao K; Chen D; Shen L; Robison AJ; Ellsworth E; Wei G-W Machine learning 
analysis of cocaine addiction informed by DAT, SERT, and NET-based interactome networks. J. 
Chem. Theory Comput. 2022, 18, 2703–2719. [PubMed: 35294204] 

(316). Gómez-Bombarelli R; Wei JN; Duvenaud D; Hernández-Lobato JM; Sánchez-Lengeling 
B; Sheberla D; Aguilera-Iparraguirre J; Hirzel TD; Adams RP; Aspuru-Guzik A Automatic 
chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 
2018, 4, 268–276. [PubMed: 29532027] 

(317). Glushkovsky A AI discovering a coordinate system of chemical elements: dual representation 
by variational autoencoders. arXiv 2020, arXiv.2011.12090.

(318). Gircha A; Boev AS; Avchaciov K; Fedichev P; Fedorov AK Training a discrete variational 
autoencoder for generative chemistry and drug design on a quantum annealer. arXiv 2021, 
arXiv.2108.11644.

(319). Gregor K; Danihelka I; Graves A; Rezende D; Wierstra D Draw: A recurrent neural network for 
image generation. International Conference on Machine Learning, 2015; pp 1462–1471.

(320). Bowman SR; Vilnis L; Vinyals O; Dai AM; Jozefowicz R; Bengio S Generating sentences from 
a continuous space. arXiv 2015, arXiv.1511.06349.

(321). Jang M; Seo S; Kang P Recurrent neural network-based semantic variational autoencoder for 
sequence-to-sequence learning. Inf. Sci. 2019, 490, 59–73.

(322). Liu X; Zhang F; Hou Z; Mian L; Wang Z; Zhang J; Tang J Self-supervised learning: Generative 
or contrastive. IEEE Trans. Knowl. Data Eng. 2023, 35, 857–876.

(323). Bachman P; Hjelm RD; Buchwalter W Learning representations by maximizing mutual 
information across views. Conference on Neural Information Processing Systems, 2019; pp 
15535–15545.

(324). Devlin J; Chang M-W; Lee K; Toutanova K BERT: Pretraining of deep bidirectional 
transformers for language understanding. arXiv 2018, arXiv.1810.04805.

(325). Chithrananda S; Grand G; Ramsundar B ChemBERTa: Large-scale self-supervised pretraining 
for molecular property prediction. arXiv 2020, arXiv.2010.09885.

(326). Rong Y; Bian Y; Xu T; Xie W; Wei Y; Huang W; Huang J Self-supervised graph transformer on 
large-scale molecular data. InAdvances in Neural Information Processing Systems 33 (NeurIPS 
2020), 2020; Vol. 33, pp 12559–12571

(327). Li P; Wang J; Qiao Y; Chen H; Yu Y; Yao X; Gao P; Xie G; Song S An effective self-supervised 
framework for learning expressive molecular global representations to drug discovery. Briefings 
Bioinform. 2021, 22, bbab109.

Dou et al. Page 59

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(328). Mo S; Fu X; Hong C; Chen Y; Zheng Y; Tang X; Shen Z; Xing EP; Lan Y Multi-
modal Self-supervised Pre-training for Regulatory Genome Across Cell Types. arXiv 2021, 
arXiv.2110.05231.

(329). He K; Fan H; Wu Y; Xie S; Girshick R Momentum contrast for unsupervised visual 
representation learning. Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition; IEEE, 2020; pp 9729–9738.

(330). Chen T; Kornblith S; Norouzi M; Hinton G A simple framework for contrastive learning of 
visual representations. International Conference on Machine Learning. 2020; pp 1597–1607.

(331). Zhou K; Wang H; Zhao WX; Zhu Y; Wang S; Zhang F; Wang Z; Wen J-R S3-Rec: Self-
supervised learning for sequential recommendation with mutual information maximization. 
Proceedings of the 29th ACM International Conference on Information & Knowledge 
Management; ACM, 2020; pp 1893–1902.

(332). Lopez-del Rio A; Picart-Armada S; Perera-Lluna A Balancing data on deep learning-based 
proteochemometric activity classification. J. Chem. Inf. Model. 2021, 61, 1657–1669. [PubMed: 
33779173] 

(333). Sermanet P; Lynch C; Chebotar Y; Hsu J; Jang E; Schaal S; Levine S; Brain G Time-contrastive 
networks: Self-supervised learning from video. 2018 IEEE International Conference on Robotics 
and Automation (ICRA); IEEE, 2018; pp 1134–1141.

(334). Chen D; Gao K; Nguyen DD; Chen X; Jiang Y; Wei G-W; Pan F Algebraic graph-assisted 
bidirectional transformers for molecular property prediction. Nat. Commun. 2021, 12, 3521. 
[PubMed: 34112777] 

(335). Shen X; Liu Y; Wu Y; Xie L MoLGNN: Self-supervised motif learning graph neural network 
for drug discovery. Machine Learning for Molecules Workshop at NeurIPS, 2020; 1–8.

(336). Zheng J; Qian Y; He J; Kang Z; Deng L Graph Neural Network with Self-Supervised Learning 
for Noncoding RNA–Drug Resistance Association Prediction. J. Chem. Inf. Model. 2022, 62, 
3676–3684. [PubMed: 35838124] 

(337). Wu Z; Hruby VJ Backbone Alignment Modeling of the Structure–Activity Relationships of 
Opioid Ligands. J. Chem. Inf. Model. 2011, 51, 1151–1164. [PubMed: 21488692] 

(338). Wu K; Wei G-W Quantitative toxicity prediction using topology based multitask deep neural 
networks. J. Chem. Inf. Model. 2018, 58, 520–531. [PubMed: 29314829] 

(339). Gao K; Nguyen DD; Sresht V; Mathiowetz AM; Tu M; Wei G-W Are 2D fingerprints 
still valuable for drug discovery? Phys. Chem. Chem. Phys. 2020, 22, 8373–8390. [PubMed: 
32266895] 

(340). Karim A; Mishra A; Newton MH; Sattar A Efficient toxicity prediction via simple features 
using shallow neural networks and decision trees. Acs Omega 2019, 4, 1874–1888.

(341). Jiang J; Wang R; Wang M; Gao K; Nguyen DD; Wei G-W Boosting tree-assisted multitask 
deep learning for small scientific datasets. J. Chem. Inf. Model. 2020, 60, 1235–1244. [PubMed: 
31977216] 

(342). Wu K; Zhao Z; Wang R; Wei G-W TopP–S: Persistent homology-based multi-task deep neural 
networks for simultaneous predictions of partition coefficient and aqueous solubility. J. Comput. 
Chem. 2018, 39, 1444–1454. [PubMed: 29633287] 

(343). Cheng T; Zhao Y; Li X; Lin F; Xu Y; Zhang X; Li Y; Wang R; Lai L Computation of octanol- 
water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 
2007, 47, 2140–2148. [PubMed: 17985865] 

(344). Yang X; Yang G; Chu J Self-supervised Learning for Label Sparsity in Computational Drug 
Repositioning. arXiv 2022, arXiv.2206.00262.

(345). Luo H; Wang J; Li M; Luo J; Peng X; Wu F-X; Pan Y Drug repositioning based on 
comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016, 32, 
2664–2671. [PubMed: 27153662] 

(346). Hirschfeld L; Swanson K; Yang K; Barzilay R; Coley CW Uncertainty quantification using 
neural networks for molecular property prediction. J. Chem. Inf. Model. 2020, 60, 3770–3780. 
[PubMed: 32702986] 

(347). Li H; Zhao D; Zeng J KPGT: Knowledge-Guided Pretraining of Graph Transformer for 
Molecular Property Prediction. arXiv 2022, arXiv.2206.03364.

Dou et al. Page 60

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(348). Chithrananda S; Grand G; Ramsundar B ChemBERTa: large-scale self-supervised pretraining 
for molecular property prediction. arXiv 2020, arXiv.2010.09885.

(349). Cai T; Lim H; Abbu KA; Qiu Y; Nussinov R; Xie L MSA-regularized protein sequence 
transformer toward predicting genome-wide chemical-protein interactions: application to 
GPCRome deorphanization. J. Chem. Inf. Model. 2021, 61, 1570–1582. [PubMed: 33757283] 

(350). Chen C; Zhou J; Wang F; Liu X; Dou D Structure-aware protein self-supervised learning. arXiv 
2022, arXiv.2204.04213 DOI: 10.48550/arXiv.2204.04213.

(351). Sanner MF; Dieguez L; Forli S; Lis E Improving Docking Power for Short Peptides Using 
Random Forest. J. Chem. Inf. Model. 2021, 61, 3074–3090. [PubMed: 34124893] 

(352). Thrun S; Littman ML A Review of Reinforcement Learning. AI Mag. 2000, 21, 103–103.

(353). Szepesvári C Algorithms for reinforcement learning. In Synthesis Lectures on Artificial 
Intelligence and Machine Learning; Springer International: Cham, 2010; Vol. 4, pp 1–103.

(354). White CC A survey of solution techniques for the partially observed Markov decision process. 
Ann. Oper. Res. 1991, 32, 215–230.

(355). White DJ A survey of applications of Markov decision processes. J. Oper. Res. Soc. 1993, 44, 
1073–1096.

(356). Moerland TM; Broekens J; Jonker CM Model-based reinforcement learning: A survey. arXiv 
2020, arXiv.2006.16712.

(357). Çalısı̧r S; Pehlivanoğlu MK. Model-free reinforcement learning algorithms: A survey. In 2019 
27th Signal Processing and Communications Applications Conference; SIU, 2019; pp 1–4.

(358). Renaudo E; Girard B; Chatila R; Khamassi M Respective advantages and disadvantages 
of model-based and model-free reinforcement learning in a robotics neuro-inspired cognitive 
architecture. Procedia Comput. Sci. 2015, 71, 178–184.

(359). Epshteyn A; Vogel A; DeJong G Active reinforcement learning. Proceedings of the 25th 
International Conference on Machine Learning. 2008; pp 296–303.

(360). Mitchell TM Machine learning and data mining. Commun. ACM 1999, 42, 30–36.

(361). François-Lavet V; Henderson P; Islam R; Bellemare MG; Pineau J. An introduction to deep 
reinforcement learning. Found. Trends Mach. Learn. 2018, 11, 219–354.

(362). Lei C Deep Learning and Practice with MindSpore; Springer, 2021; pp 217–243.

(363). Gottipati SK; Pathak Y; Sattarov B; Nuttall R; Amini M; Taylor ME; Chandar S Towered 
actor critic for handling multiple action types in reinforcement learning for drug discovery. In 
Proceedings of the AAAI Conference on Artificial Intelligence; AAAI, 2021; pp 142–150.

(364). Padalkar GR; Patil SD; Hegadi MM; Jaybhaye NK Drug discovery using generative 
adversarial network with reinforcement learning. In 2021 International Conference on Computer 
Communication and Informatics; ICCCI, 2021; pp 1–3.

(365). Lutz ID; Wang S; Norn C; Borst AJ; Zhao YT; Dosey A; Cao L; Li Z; Baek M; King 
NP; Ruohola-Baker H; Baker D Top-down design of protein nanomaterials with reinforcement 
learning. bioRxiv 2022, 2022–09, 2022.09.25.509419.

(366). McNaughton AD; Bontha MS; Knutson CR; Pope JA; Kumar N De novo design of 
protein target specific scaffold-based Inhibitors via Reinforcement Learning. arXiv 2022, 
arXiv.2205.10473.

(367). Joy M; Kaisare NS Approximate dynamic programming-based control of distributed parameter 
systems. Asia-Pac. J. Chem. Eng. 2011, 6, 452–459.

(368). Lee JM; Lee JH Approximate dynamic programming-based approaches for input–output data-
driven control of nonlinear processes. Automatica 2005, 41, 1281–1288.

(369). Mousavi HK; Nazari M; Takáč M; Motee N Multi-agent image classification via reinforcement 
learning. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 
IEEE, 2019; pp 5020–5027.

(370). Baker B; Gupta O; Naik N; Raskar R Designing neural network architectures using 
reinforcement learning. arXiv 2016, arXiv.1611.02167.

(371). Meng TL; Khushi M Reinforcement learning in financial markets. Data 2019, 4, 110.

Dou et al. Page 61

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(372). Dou H; Tan J; Wei H; Wang F; Yang J; Ma X-G; Wang J; Zhou T Transfer inhibitory potency 
prediction to binary classification: A model only needs a small training set. Comput. Methods 
Programs Biomed. 2022, 215, 106633. [PubMed: 35091229] 

(373). Cui L; Lu Y; Sun J; Fu Q; Xu X; Wu H; Chen J Rflmda: a novel reinforcement learning-based 
computational model for human microRNA-disease association prediction. Biomolecules 2021, 
11, 1835. [PubMed: 34944479] 

(374). Clifton J; Laber E Q-learning: theory and applications. Annu. Rev. Stat. Appl. 2020, 7, 279–
301.

(375). Zheng X; Ding H; Mamitsuka H; Zhu S Collaborative matrix factorization with multiple 
similarities for predicting drug-target interactions. In Proceedings of the 19th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining; Association for Computing 
Machinery, 2013; pp 1025–1033.

(376). Liu Y; Wu M; Miao C; Zhao P; Li X-L Neighborhood regularized logistic matrix factorization 
for drug-target interaction prediction. PLoS Comput. Biol. 2016, 12, No. e1004760. [PubMed: 
26872142] 

(377). Xia Z; Wu L-Y; Zhou X; Wong STC Semi-supervised drug-protein interaction prediction from 
heterogeneous spaces. BMC Syst. Biol. 2010, 4, 56. [PubMed: 20438628] 

(378). Pereira T; Abbasi M; Oliveira JL; Ribeiro B; Arrais J Optimizing blood–brain barrier 
permeation through deep reinforcement learning for de novo drug design. Bioinformatics 2021, 
37, i84–i92. [PubMed: 34252946] 

(379). Prathik A; Vinodhini M; Karthik N; Ebenezer V Intelligent Data Communication Technologies 
and Internet of Things; Springer, 2022; pp 541–552.

(380). Rokhlin V; Szlam A; Tygert M A randomized algorithm for principal component analysis. 
SIAM J. Matrix Anal. Appl. 2010, 31, 1100–1124.

(381). Wu Y-H; Lin S-D A low-cost ethics shaping approach for designing reinforcement learning 
agents. Thirty-Second AAAI Conference on Artificial Intelligence 2018, 32, 1687–1694.

(382). Ståhl N; Falkman G; Karlsson A; Mathiason G; Bostrom J Deep reinforcement learning for 
multiparameter optimization in de novo drug design. J. Chem. Inf. Model. 2019, 59, 3166–3176. 
[PubMed: 31273995] 

(383). Popova M; Isayev O; Tropsha A Deep reinforcement learning for de novo drug design. Sci. Adv. 
2018, 4, No. eaap7885. [PubMed: 30050984] 

(384). Leibo JZ; d’Autume C. d. M.; Zoran D; Amos D; Beattie C; Anderson K; Castaǹeda AG; 
Sanchez M; Green S; Gruslys A, et al. Psychlab: a psychology laboratory for deep reinforcement 
learning agents. arXiv 2018, arXiv.1801.08116.

(385). Subramanian A; Chitlangia S; Baths V Reinforcement learning and its connections with 
neuroscience and psychology. Neural Networks 2022, 145, 271–287. [PubMed: 34781215] 

(386). Kappen HJ An introduction to stochastic control theory, path integrals and reinforcement 
learning. In AIP Conference Proceedings, 2007; pp 149–181.

(387). Kretchmar RM A Synthesis of Reinforcement Learning and Robust Control Theory. Ph.D. 
Thesis. Colorado State University, 2000.

(388). Pachocki J; Brockman G; Raiman J; Zhang S; Pondé H; Tang J; Wolski F; Dennison C; 
Jozefowicz R; Debiak P, et al. Openai Five, 2018; https://openai.com/research/openai-five.

(389). Silver D; Hubert T; Schrittwieser J; Hassabis D AlphaZero: Shedding New Light on the 
Grand Games of Chess, Shogi and Go. DeepMind blog 2018; https://www.deepmind.com/blog/
alphazero-shedding-new-light-on-chess-shogi-and-go.

(390). Taylor ME; Stone P Transfer learning for reinforcement learning domains: a survey. J. Mach. 
Learn. Res. 2009, 10, 1633–1685.

(391). Lin L-J Self-improving reactive agents based on reinforcement learning, planning and teaching. 
Mach. Learn. 1992, 8, 293–321.

(392). Pan SJ; Yang Q A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–
1359.

(393). Liu X; LUAN X; Xie Y; Huang M Transfer learning research and algorithm review. J. Changsha 
Univ. 2018, 32, 29–36.

Dou et al. Page 62

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openai.com/research/openai-five
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go


(394). Jang Y; Lee H; Hwang SJ; Shin J Learning What and Where to Transfer; International 
Conference on Machine Learning. 2019; pp 3030–3039.

(395). Li X; Grandvalet Y; Davoine F; Cheng J; Cui Y; Zhang H; Belongie S; Tsai Y-H; Yang M-H 
Transfer learning in computer vision tasks: Remember where you come from. Image Vision 
Comput. 2020, 93, 103853.

(396). Brodzicki A; Piekarski M; Kucharski D; Jaworek-Korjakowska J; Gorgon M Transfer learning 
methods as a new approach in computer vision tasks with small datasets. Found. Comput. Decis. 
Sci. 2020, 45, 179–193.

(397). Shao L; Zhu F; Li X Transfer learning for visual categorization: A survey. IEEE Trans. Neural 
Networks Learn. Syst. 2015, 26, 1019–1034.

(398). Liu R; Liu Q; Zhu H; Cao H Multistage Deep Transfer Learning for EmIoT-Enabled Human-
Computer Interaction. IEEE Internet Things J. 2022, 9, 15128–15137.

(399). Xiao Z; Wang L; Du J Improving the performance of sentiment classification on imbalanced 
datasets with transfer learning. IEEE Access. 2019, 7, 28281–28290.

(400). Liu B; Xiao Y; Hao Z A selective multiple instance transfer learning method for text 
categorization problems. Knowledge-Based Syst. 2018, 141, 178–187.

(401). Zheng D; Zhang C; Fei G; Zhao T Research on text categorization based on a weakly-
supervised transfer learning method. International Conference on Intelligent Text Processing and 
Computational Linguistics, 2012; pp 144–156.

(402). Malmgren-Hansen D; Kusk A; Dall J; Nielsen AA; Engholm R; Skriver H Improving SAR 
automatic target recognition models with transfer learning from simulated data. IEEE Geosci. 
Remote Sens. Lett. 2017, 14, 1484–1488.

(403). Wang Z; Du L; Mao J; Liu B; Yang D SAR target detection based on SSD with data 
augmentation and transfer learning. IEEE Geosci. Remote Sens. Lett. 2019, 16, 150–154.

(404). Du X; Sun S; Hu C; Yao Y; Yan Y; Zhang Y DeepPPI: boosting prediction of protein–protein 
interactions with deep neural networks. J. Chem. Inf. Model. 2017, 57, 1499–1510. [PubMed: 
28514151] 

(405). Kozlovskii I; Popov P Protein–peptide binding site detection using 3D convolutional neural 
networks. J. Chem. Inf. Model. 2021, 61, 3814–3823. [PubMed: 34292750] 

(406). Pio G; Mignone P; Magazzù G; Zampieri G; Ceci M; Angione C Integrating genome-scale 
metabolic modelling and transfer learning for human gene regulatory network reconstruction. 
Bioinformatics 2022, 38, 487–493. [PubMed: 34499112] 

(407). Lopez-Garcia G; Jerez JM; Franco L; Veredas FJ Transfer learning with convolutional neural 
networks for cancer survival prediction using gene-expression data. PloS one 2020, 15, No. 
e0230536. [PubMed: 32214348] 

(408). Aldayel MS; Ykhlef M; Al-Nafjan AN Electroencephalogram-based preference prediction using 
deep transfer learning. IEEE Access 2020, 8, 176818–176829.

(409). Kim Y; Zheng S; Tang J; Jim Zheng W; Li Z; Jiang X Anticancer drug synergy prediction in 
understudied tissues using transfer learning. J. Am. Med. Inf. Assoc. 2021, 28, 42–51.

(410). El-allaly E.-d.; Sarrouti M; En-Nahnahi N; El Alaoui SO. MTTLADE: A multi-task transfer 
learning-based method for adverse drug events extraction. s. 2021, 58, 102473.

(411). Taroni JN; Grayson PC; Hu Q; Eddy S; Kretzler M; Merkel PA; Greene CS MultiPLIER: a 
transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell 
Syst. 2019, 8, 380–394. [PubMed: 31121115] 

(412). Ye Z; Yang Y; Li X; Cao D; Ouyang D An integrated transfer learning and multitask learning 
approach for pharmacokinetic parameter prediction. Mol. Pharmaceutics 2019, 16, 533–541.

(413). Sharifi-Noghabi H; Peng S; Zolotareva O; Collins CC; Ester M AITL: Adversarial Inductive 
Transfer Learning with input and output space adaptation for pharmacogenomics. Bioinformatics 
2020, 36, i380–i388. [PubMed: 32657371] 

(414). Snell J; Swersky K; Zemel R Prototypical networks for few-shot learning. In Advances in 
Neural Information Processing Systems 30 (NIPS 2017), 2017; Vol. 30.

(415). Tzeng E; Hoffman J; Saenko K; Darrell T Adversarial discriminative domain adaptation. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp 
7167–7176.

Dou et al. Page 63

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(416). Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H Transfer learning: making retrosynthetic 
predictions based on a small chemical reaction dataset scale to a new level. Molecules 2020, 25, 
2357. [PubMed: 32438572] 

(417). Liu B; Ramsundar B; Kawthekar P; Shi J; Gomes J; Luu Nguyen Q; Ho S; Sloane J; Wender 
P; Pande V Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS 
Cent. Sci. 2017, 3, 1103–1113. [PubMed: 29104927] 

(418). Chen Y-K; Shave S; Auer M MRlogP: transfer learning enables accurate logP prediction using 
small experimental training datasets. Processes 2021, 9, 2029.

(419). Cang Z; Wei G-W TopologyNet: Topology based deep convolutional and multi-task neural 
networks for biomolecular property predictions. PLoS Comput. Biol. 2017, 13, No. e1005690. 
[PubMed: 28749969] 

(420). Sakkiah S; Leggett C; Pan B; Guo W; Valerio LG Jr; Hong H. Development of a nicotinic 
acetylcholine receptor nAChR α7 binding activity prediction model. J. Chem. Inf. Model. 2020, 
60, 2396–2404. [PubMed: 32159345] 

(421). Imrie F; Bradley AR; van der Schaar M; Deane CM Protein family-specific models using deep 
neural networks and transfer learning improve virtual screening and highlight the need for more 
data. J. Chem. Inf. Model. 2018, 58, 2319–2330. [PubMed: 30273487] 

(422). Hurtado DM; Uziela K; Elofsson A Deep transfer learning in the assessment of the quality of 
protein models. arXiv 2018, arXiv.1804.06281.

(423). Turki T; Wei Z; Wang JT Transfer learning approaches to improve drug sensitivity prediction in 
multiple myeloma patients. IEEE Access 2017, 5, 7381–7393.

(424). Cai C; Wang S; Xu Y; Zhang W; Tang K; Ouyang Q; Lai L; Pei J Transfer learning for drug 
discovery. J. Med. Chem. 2020, 63, 8683–8694. [PubMed: 32672961] 

(425). Kulis B; Saenko K; Darrell T What you saw is not what you get: Domain adaptation using 
asymmetric kernel transforms. CVPR 2011 2011, 1785–1792.

(426). Duan L; Xu D; Tsang I Learning with augmented features for heterogeneous domain adaptation. 
arXiv 2012, arXiv.1206.4660.

(427). Zhu Y; Chen Y; Lu Z; Pan S; Xue G-R; Yu Y; Yang Q Heterogeneous transfer learning for 
image classification. Proceedings of the AAAI Conference on Artificial Intelligence; AAAI, 
2011; pp 1304–1309.

(428). Wang C; Mahadevan S Heterogeneous domain adaptation using manifold alignment. IJCAI 
Proceedings-International Joint Conference on Artificial Intelligence; IJCAI, 2011; p 1541.

(429). Cao Z; Zhou Y; Yang A; Peng S Deep transfer learning mechanism for fine-grained cross-
domain sentiment classification. Connect. Sci. 2021, 33, 911–928.

(430). Liu R; Shi Y; Ji C; Jia M A survey of sentiment analysis based on transfer learning. IEEE 
Access 2019, 7, 85401–85412.

(431). Mahmud M; Ray S Transfer learning using Kolmogorov complexity: Basic theory and empirical 
evaluations. In Advances in Neural Information Processing Systems 20 (NIPS 2007) 2007; Vol. 
20, pp 985–992.

(432). Lewis DD A sequential algorithm for training text classifiers: Corrigendum and additional data. 
Acm Sigir Forum 1995, 29, 13–19.

(433). Dagan I; Engelson SP Machine Learning Proceedings 1995; Elsevier, 1995; pp 150–157.

(434). Krishnamurthy V Algorithms for optimal scheduling and management of hidden Markov model 
sensors. IEEE Trans. Signal Process. 2002, 50, 1382–1397.

(435). Zhan X; Liu H; Li Q; Chan AB A Comparative Survey: Benchmarking for Pool-based Active 
Learning; IJCAI, 2021; pp 4679–4686.

(436). Kelz JI; Takahashi GR; Safizadeh F; Farahmand V; Crosby MG; Uribe JL; Kim SH; Sprague-
Piercy MA; Diessner EM; Norton-Baker B; et al. Active Learning Module for Protein Structure 
Analysis Using Novel Enzymes. The Biophysicist 2022, 3, 49–63.

(437). Kleiman DE; Shukla D Active Learning of the Conformational Ensemble of Proteins using 
Maximum Entropy VAMPNets. J. Chem. Theory Comput. 2023, DOI: 10.1021/acs.jctc.3c00040.

Dou et al. Page 64

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(438). Shmilovich K; Mansbach RA; Sidky H; Dunne OE; Panda SS; Tovar JD; Ferguson AL 
Discovery of self-assembling π-conjugated peptides by active learning-directed coarse-grained 
molecular simulation. J. Phys. Chem. B 2020, 124, 3873–3891. [PubMed: 32180410] 

(439). Polash AH; Nakano T; Rakers C; Takeda S; Brown J Active learning efficiently converges on 
rational limits of toxicity prediction and identifies patterns for molecule design. Comput. Toxicol. 
2020, 15, 100129.

(440). Morger A; Garcia de Lomana M; Norinder U; Svensson F; Kirchmair J; Mathea M; Volkamer 
A Studying and mitigating the effects of data drifts on ML model performance at the example of 
chemical toxicity data. Sci. Rep. 2022, 12, 7244. [PubMed: 35508546] 

(441). Zhang Y; Lee AA Bayesian semi-supervised learning for uncertainty-calibrated prediction of 
molecular properties and active learning. Chem. Sci. 2019, 10, 8154–8163. [PubMed: 31857882] 

(442). Liu Q; Wang D Stein variational gradient descent: A general purpose bayesian inference 
algorithm. In 30th Conference on Neural Information Processing Systems (NIPS 2016), 2016, 
Vol. 30, pp 2378–2386.

(443). Barrett R; White AD Investigating Active Learning and Meta-Learning for Iterative Peptide 
Design. J. Chem. Inf. Model. 2021, 61, 95–105. [PubMed: 33350829] 

(444). Cicuto CAT; Torres BB Implementing an active learning environment to influence students 
motivation in biochemistry. J. Chem. Educ. 2016, 93, 1020–1026.

(445). Budd S; Robinson EC; Kainz B A survey on active learning and human-in-the-loop deep 
learning for medical image analysis. Med. Image Anal. 2021, 71, 102062. [PubMed: 33901992] 

(446). Taylor AT; Berrueta TA; Murphey TD Active learning in robotics: A review of control 
principles. Mechatronics 2021, 77, 102576.

(447). Qiu J; Wu Q; Ding G; Xu Y; Feng S A survey of machine learning for big data processing. 
EURASIP J. Adv. Signal Process. 2016, 2016, 67.

(448). Ienco D; Pensa RG Positive and unlabeled learning in categorical data. Neurocomputing 2016, 
196, 113–124.

(449). Hu R; Mac Namee B; Delany SJ Active learning for text classification with reusability. Expert. 
Syst. Appl. 2016, 45, 438–449.

(450). Zhang Z; Strubell E; Hovy E A Survey of Active Learning for Natural Language Processing. 
arXiv 2022, arXiv.2210.10109.

(451). Wu T; Ortiz J: RLAD: Time series anomaly detection through reinforcement learning and active 
learning. arXiv 2021, arXiv.2104.00543.

(452). de Aquino Afonso BK; Berton L Analysis of label noise in graph-based semi-supervised 
learning. In SAC '20: Proceedings of the 35th Annual ACM Symposium on Applied Computing; 
ACM, 2020; pp 1127–1134.

(453). Afonso B. K. d. A.; Berton L. Analysis of label noise in graph-based semi-supervised learning. 
arXiv 2020, arXiv.2009.12966

(454). Van Zyl G Graph-Based Semi-Supervised Learning for the Detection of Potential Disease 
Causing Genes. Ph.D. Thesis. Stellenbosch University: Stellenbosch, 2020.

(455). Chen C; Li Y; Qian H; Zheng Z; Hu Y Multi-view semi-supervised learning for classification on 
dynamic networks. Knowledge-Based Syst. 2020, 195, 105698.

(456). Hayes N; Rapinchuk E; Wei G-W Integrating transformer and autoencoder techniques with 
spectral graph algorithms for the prediction of scarcely labeled molecular data. Comput. Biol. 
Med. 2023, 153, 106479. [PubMed: 36610214] 

(457). Morgan HL The generation of a unique machine description for chemical structures-a technique 
developed at chemical abstracts service. J. Chem. Doc. 1965, 5, 107–113.

(458). Merkurjev E; Nguyen DD; Wei G-W Multiscale LaPlacian Learning. arXiv 2021, 
arXiv.2109.03718.

(459). Merriman B; Bence JK; Osher S Diffusion Generated Motion by Mean Curvature; Department 
of Mathematics, University of California: Los Angeles, 1992.

(460). Calder J; Cook B; Thorpe M; Slepcev D Poisson learning: Graph based semi-supervised 
learning at very low label rates. In International Conference on Machine Learning, 2020; pp 
1306–1316.

Dou et al. Page 65

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(461). Guillaumin M; Verbeek J; Schmid C Multimodal semi-supervised learning for image 
classification. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, 2010; pp 902–909.

(462). Han Y; Liu Y; Jin Z Sentiment analysis via semi-supervised learning: a model based on dynamic 
threshold and multi-classifiers. Neural Comput. Appl. 2020, 32, 5117–5129.

(463). Zhang Y; Park DS; Han W; Qin J; Gulati A; Shor J; Jansen A; Xu Y; Huang Y; Wang S; et 
al. Bigssl: Exploring the frontier of large-scale semi-supervised learning for automatic speech 
recognition. IEEE J. Sel. Top. Signal Process. 2022, 16, 1519–1532.

(464). Liu S Generalized Mahalanobis Depth in Point Process and Its Application in Neural Coding 
and Semi-Supervised Learning in Bioinformatics. Ph.D. thesis. The Florida State University, 
2018.

(465). Sahoo P; Roy I; Wang Z; Mi F; Yu L; Balasubramani P; Khan L; Stoddart JF MultiCon: a 
semi-supervised approach for predicting drug function from chemical structure analysis. J. Chem. 
Inf. Model. 2020, 60, 5995–6006. [PubMed: 33140954] 

(466). Shi S; Nie F; Wang R; Li X Semi-supervised learning based on intra-view heterogeneity and 
inter-view compatibility for image classification. Neurocomputing 2022, 488, 248–260.

(467). Bair E Semi-supervised clustering methods. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 
349–361. [PubMed: 24729830] 

(468). Zhao M; Zhang Z; Chow TW; Li B A general soft label based linear discriminant analysis 
for semi-supervised dimensionality reduction. Neural Networks 2014, 55, 83–97. [PubMed: 
24819874] 

(469). Wu Q; Liu Y; Li Q; Jin S; Li F The application of deep learning in computer vision. In 2017 
Chinese Automation Congress (CAC), 2017; pp 6522–6527.

(470). Leidner F; Kurt Yilmaz N; Schiffer CA Deciphering Antifungal Drug Resistance in 
Pneumocystis jirovecii DHFR with Molecular Dynamics and Machine Learning. J. Chem. Inf. 
Model. 2021, 61, 2537–2541. [PubMed: 34138546] 

(471). Yilancioglu K; Weinstein ZB; Meydan C; Akhmetov A; Toprak I; Durmaz A; Iossifov I; 
Kazan H; Roth FP; Cokol M Target-independent prediction of drug synergies using only drug 
lipophilicity. J. Chem. Inf. Model. 2014, 54, 2286–2293. [PubMed: 25026390] 

(472). Otter DW; Medina JR; Kalita JK A survey of the usages of deep learning for natural language 
processing. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 604–624.

(473). Wigh DS; Goodman JM; Lapkin AA A review of molecular representation in the age of 
machine learning. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, No. e1603.

(474). Staszak M; Staszak K; Wieszczycka K; Bajek A; Roszkowski K; Tylkowski B Machine learning 
in drug design: Use of artificial intelligence to explore the chemical structure–biological activity 
relationship. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, No. e1568.

(475). Yang C-I; Li Y-P Explainable uncertainty quantifications for deep learning-based molecular 
property prediction. J. Cheminform. 2023, 15, 13. [PubMed: 36737786] 

(476). Yang Y; Wu Z; Yao X; Kang Y; Hou T; Hsieh C-Y; Liu H Exploring Low-Toxicity Chemical 
Space with Deep Learning for Molecular Generation. J. Chem. Inf. Model. 2022, 62, 3191–3199. 
[PubMed: 35713712] 

(477). Pandey M; Fernandez M; Gentile F; Isayev O; Tropsha A; Stern AC; Cherkasov A The 
transformational role of GPU computing and deep learning in drug discovery. Nat. Mach. Intell. 
2022, 4, 211–221.

(478). Cover T; Hart P Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 
21–27.

(479). Pearl J Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan 
Kaufmann, 1988.

(480). Vapnik V The Nature of Statistical Learning Theory; Springer Science & Business Media, 1999.

(481). Friedman JH Greedy function approximation: a gradient boosting machine. Ann. Statist. 2001, 
29, 1189–1232.

(482). Martin T Users Guide for T.E.S.T. (version 4.2). In Toxicity Estimation Software Tool) A 
Program to Estimate Toxicity from Molecular Structure; EPA/600/R-16/058; U.S. EPA Office of 
Research and Development: Washington, DC, 2016.

Dou et al. Page 66

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(483). Qiu W; Lv Z; Hong Y; Jia J; Xiao X BOW-GBDT: a GBDT classifier combining with 
artificial neural network for identifying GPCR–drug interaction based on wordbook learning 
from sequences. Front. Cell Dev. Biol. 2021, 8, 623858. [PubMed: 33598456] 

(484). Chawla NV; Bowyer KW; Hall LO; Kegelmeyer WP SMOTE: synthetic minority over-sampling 
technique. J. Artif. Intell. Res. 2002, 16, 321–357.

(485). Xiao X; Min J-L; Wang P; Chou K-C iGPCR-Drug: A web server for predicting interaction 
between GPCRs and drugs in cellular networking. PLoS One 2013, 8, No. e72234. [PubMed: 
24015221] 

(486). Deng D; Chen X; Zhang R; Lei Z; Wang X; Zhou F XGraphBoost: extracting graph neural 
network-based features for a better prediction of molecular properties. J. Chem. Inf. Model. 
2021, 61, 2697–2705. [PubMed: 34009965] 

(487). Chen T; Guestrin C Xgboost: A scalable tree boosting system; Proceedings of the 22nd ACM 
SIGDD International Conference on Knowledge Discovery and Data Mining, 2016; p 785.

(488). Liu Q; He D; Wang J; Hou Y Intelligent Equipment, Robots, and Vehicles; Springer, 2021; pp 
755–764.

(489). Parkinson J; Hard R; Ainsworth RI; Li N; Wang W Engineering a histone reader protein by 
combining directed evolution, sequencing, and neural network based ordinal regression. J. Chem. 
Inf. Model. 2020, 60, 3992–4004. [PubMed: 32786513] 

(490). Gyires-Tóth BP; Gyires-Tóth M; Papp D; Szücs G. Deep learning and SVM classification for 
plant recognition in content-based large scale image retrieval. Cybernetics Information Technol. 
2019, 19, 88–100.

(491). Chaganti SY; Nanda I; Pandi KR; Prudhvith TG; Kumar N Image Classification Using 
SVM and CNN. In 2020 International Conference on Computer Science, Engineering and 
Applications; ICCSEA, 2020; pp 1–5.

(492). Fu R; Li B; Gao Y; Wang P Content-based image retrieval based on CNN and SVM. In 2016 
2nd IEEE International Conference on Computer and Communications (ICCC); IEEE, 2016; pp 
638–642.

(493). Nguyen DD; Cang Z; Wei G-W A review of mathematical representations of biomolecular data. 
Phys. Chem. Chem. Phys. 2020, 22, 4343–4367. [PubMed: 32067019] 

(494). Schneider J; Korshunova K; Si Chaib Z; Giorgetti A; Alfonso-Prieto M; Carloni P Ligand 
pose predictions for human G protein-coupled receptors: insights from the Amber-based hybrid 
Molecular Mechanics/Coarse-Grained approach. J. Chem. Inf. Model. 2020, 60, 5103–5116. 
[PubMed: 32786708] 

(495). Bai Q; Liu S; Tian Y; Xu T; Banegas-Luna AJ; Pérez-Sánchez H; Huang J; Liu H; Yao X 
Application advances of deep learning methods for de novo drug design and molecular dynamics 
simulation. WIREs Comput. Mol. Sci. 2022, 12, No. e1581.

(496). Chmiela S; Sauceda HE; Müller K-R; Tkatchenko A. Towards exact molecular dynamics 
simulations with machine-learned force fields. Nat. Commun. 2018, 9, 3887. [PubMed: 
30250077] 

(497). Han Y; Ali I; Wang Z; Cai J; Wu S; Tang J; Zhang L; Ren J; Xiao R; Lu Q; et al. Machine 
learning accelerates quantum mechanics predictions of molecular crystals. Phys. Rep. 2021, 934, 
1–71.

(498). Dral PO Quantum chemistry in the age of machine learning. J. Phys. Chem. Lett. 2020, 11, 
2336–2347. [PubMed: 32125858] 

(499). Parr RG Density functional theory. Annu. Rev. Phys. Chem. 1983, 34, 631–656.

(500). Metropolis N; Ulam S The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. 
[PubMed: 18139350] 

(501). Bhavikatti S Finite Element Analysis; New Age International, 2005.

(502). Zhang Y; Wang L; Wang X; Zhang C; Ge J; Tang J; Su A; Duan H Data augmentation and 
transfer learning strategies for reaction prediction in low chemical data regimes. Org. Chem. 
Front. 2021, 8, 1415–1423.

(503). Jian Y; Kruus E; Min MR T-Cell Receptor–Peptide Interaction Prediction with Physical 
Model Augmented Pseudo-Labeling. Proceedings of the 28th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining, 2022; pp 3090–3097.

Dou et al. Page 67

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(504). Xie X; Li P; Xu Y; Zhou L; Yan Y; Xie L; Jia C; Guo X Single-molecule junction: A reliable 
platform for monitoring molecular physical and chemical processes. ACS Nano 2022, 16, 3476–
3505. [PubMed: 35179354] 

(505). Pogozheva ID; Armstrong GA; Kong L; Hartnagel TJ; Carpino CA; Gee SE; Picarello DM; 
Rubin AS; Lee J; Park S; et al. Comparative Molecular Dynamics Simulation Studies of Realistic 
Eukaryotic, Prokaryotic, and Archaeal Membranes. J. Chem. Inf. Model. 2022, 62, 1036–1051. 
[PubMed: 35167752] 

(506). Li TE; Hammes-Schiffer S QM/MM Modeling of Vibrational Polariton Induced Energy 
Transfer and Chemical Dynamics. J. Am. Chem. Soc. 2023, 145, 377–384. [PubMed: 36574620] 

(507). Mulliken RS; Roothaan CC Broken bottlenecks and the future of molecular quantum mechanics. 
Proc. Natl. Acad. Sci. 1959, 45, 394–398. [PubMed: 16590398] 

(508). Hassan-Harrirou H; Zhang C; Lemmin T RosENet: improving binding affinity prediction by 
leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks. 
J. Chem. Inf. Model. 2020, 60, 2791–2802. [PubMed: 32392050] 

(509). YazdanYar A; Aschauer U; Bowen P Interaction of biologically relevant ions and organic 
molecules with titanium oxide (rutile) surfaces: A review on molecular dynamics studies. 
Colloids Surf., B 2018, 161, 563–577.

(510). Bengtson A; Nam HO; Saha S; Sakidja R; Morgan D First-principles molecular dynamics 
modeling of the LiCl–KCl molten salt system. Comput. Mater. Sci. 2014, 83, 362–370.

(511). Zepeda-Ruiz LA; Stukowski A; Oppelstrup T; Bulatov VV Probing the limits of metal plasticity 
with molecular dynamics simulations. Nature 2017, 550, 492–495. [PubMed: 28953878] 

(512). Yu W; Wang Z; Stroud D Empirical molecular-dynamics study of diffusion in liquid 
semiconductors. Phys. Rev. B 1996, 54, 13946.

(513). Bauchy M; Laubie H; Abdolhosseini Qomi MA; Hoover C; Ulm F-J; Pellenq R-M Fracture 
toughness of calcium–silicate–hydrate from molecular dynamics simulations. J. Non-Cryst. 
Solids 2015, 419, 58–64.

(514). Pasichnyk I; Dünweg, B. Coulomb interactions via local dynamics: A molecular-dynamics 
algorithm. J. Phys.: Condens. Matter 2004, 16, S3999.

(515). Plimpton S Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 
117, 1–19.

(516). Soares TA; Hünenberger PH; Kastenholz MA.; Kräutler V; Lenz T; Lins RD; Oostenbrink 
C; van Gunsteren s. An improved nucleic acid parameter set for the GROMOS force field. J. 
Comput. Chem. 2005, 26, 725–737. [PubMed: 15770662] 

(517). Shen L; Yang W Molecular dynamics simulations with quantum mechanics/molecular 
mechanics and adaptive neural networks. J. Chem. Theory Comput. 2018, 14, 1442–1455. 
[PubMed: 29438614] 

(518). Case DA; Cheatham TE III; Darden T; Gohlke H; Luo R; Merz KM Jsr; Onufriev A; 
Simmerling C; Wang B; Woods RJ. The Amber biomolecular simulation programs. J. Comput. 
Chem. 2005, 26, 1668–1688. [PubMed: 16200636] 

(519). Suárez D; Díaz N SARS-CoV-2 main protease: A molecular dynamics study. J. Chem. Inf. 
Model. 2020, 60, 5815–5831. [PubMed: 32678588] 

(520). Guterres H; Im W Improving protein-ligand docking results with high-throughput molecular 
dynamics simulations. J. Chem. Inf. Model. 2020, 60, 2189–2198. [PubMed: 32227880] 

(521). Homeyer N; Gohlke H Free energy calculations by the molecular mechanics Poisson-Boltzmann 
surface area method. Mol. Inf. 2012, 31, 114–122.

(522). Do P-C; Lee EH; Le L Steered molecular dynamics simulation in rational drug design. J. Chem. 
Inf. Model. 2018, 58, 1473–1482. [PubMed: 29975531] 

(523). Hohenberg P; Kohn W Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864.

(524). Kohn W; Sham LJ Self-consistent equations including exchange and correlation effects. Phys. 
Rev. 1965, 140, A1133.

(525). Rai BK; Sresht V; Yang Q; Unwalla R; Tu M; Mathiowetz AM; Bakken GA TorsionNet: A 
Deep Neural Network to Rapidly Predict Small-Molecule Torsional Energy Profiles with the 
Accuracy of Quantum Mechanics. J. Chem. Inf. Model. 2022, 62, 785–800. [PubMed: 35119861] 

Dou et al. Page 68

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(526). Ban F; Rankin KN; Gauld JW; Boyd RJ Recent applications of density functional theory 
calculations to biomolecules. Theor. Chem. Acc. 2002, 108, 1–11.

(527). Senn HM; Thiel W QM/MM methods for biomolecular systems. Angew. Chem., Int. Ed. 2009, 
48, 1198–1229.

(528). Tavakoli M; Mood A; Van Vranken D; Baldi P Quantum mechanics and machine learning 
synergies: graph attention neural networks to predict chemical reactivity. J. Chem. Inf. Model. 
2022, 62, 2121–2132. [PubMed: 35020394] 

(529). Qiao Z; Welborn M; Anandkumar A; Manby FR; Miller TF III OrbNet: Deep learning for 
quantum chemistry using symmetry-adapted atomic-orbital features. J. Chem. Phys. 2020, 153, 
124111. [PubMed: 33003742] 

(530). Bennett WD; He S; Bilodeau CL; Jones D; Sun D; Kim H; Allen JE; Lightstone FC; 
Ingólfsson HI Predicting small molecule transfer free energies by combining molecular dynamics 
simulations and deep learning. J. Chem. Inf. Model. 2020, 60, 5375–5381. [PubMed: 32794768] 

(531). Jamal S; Grover A; Grover S Machine learning from molecular dynamics trajectories to predict 
caspase-8 inhibitors against Alzheimers disease. Front. Pharmacol. 2019, 10, 780. [PubMed: 
31354494] 

(532). Botu V; Batra R; Chapman J; Ramprasad R Machine learning force fields: construction, 
validation, and outlook. J. Phys. Chem. C 2017, 121, 511–522.

(533). Schlick T; Portillo-Ledesma S Biomolecular modeling thrives in the age of technology. Nat. 
Comput. Sci. 2021, 1, 321–331. [PubMed: 34423314] 

(534). Soares TA; Nunes-Alves A; Mazzolari A; Ruggiu F; Wei G-W; Merz K The (Re)-Evolution of 
Quantitative Structure–Activity Relationship (QSAR) Studies Propelled by the Surge of Machine 
Learning Methods. J. Chem. Inf. Model. 2022, 62, 5317–5320. [PubMed: 36437763] 

(535). Liu D; Xu P; Ren L TPFlow: Progressive partition and multidimensional pattern extraction for 
large-scale spatio-temporal data analysis. IEEE Trans. Visual Comput. Graphics 2019, 25, 1–11.

(536). Trine A; Monson BB Extended high frequencies provide both spectral and temporal information 
to improve speech-in-speech recognition. Trends Hearing 2020, 24, 2331216520980299.

(537). Kormilitzin A; Vaci N; Liu Q; Nevado-Holgado A Med7: A transferable clinical natural 
language processing model for electronic health records. Artif. Intell. Med. 2021, 118, 102086. 
[PubMed: 34412834] 

(538). Sridharan B; Goel M; Priyakumar UD Modern machine learning for tackling inverse problems 
in chemistry: molecular design to realization. Chem. Commun. 2022, 58, 5316–5331.

(539). Roth GA; Picece VC; Ou BS; Luo W; Pulendran B; Appel EA Designing spatial and temporal 
control of vaccine responses. Nat. Rev. Mater. 2022, 7, 174–195. [PubMed: 34603749] 

(540). Goel M; Aggarwal R; Sridharan B; Pal PK; Priyakumar UD Efficient and enhanced sampling 
of drug-like chemical space for virtual screening and molecular design using modern machine 
learning methods. WIREs Comput. Mol. Sci. 2023, 13, No. e1637.

(541). Wang Y; Sun Y; Liu Z; Sarma SE; Bronstein MM; Solomon JM Dynamic graph cnn for learning 
on point clouds. ACM Trans. Graph. 2019, 38, 1–12.

(542). Yu Y; Si X; Hu C; Zhang J A review of recurrent neural networks: LSTM cells and network 
architectures. Neural Comput. 2019, 31, 1235–1270. [PubMed: 31113301] 

(543). Fu R; Zhang Z; Li L Using LSTM and GRU Neural Network Methods for Traffic Flow 
Prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association of 
Automation (YAC), 2016; pp 324–328.

(544). Azad R; Asadi-Aghbolaghi M; Fathy M; Escalera S Bidirectional ConvLSTM U-Net with 
densley connected convolutions. In Proceedings of the IEEE/CVF International Conference on 
Computer Vision Workshops; IEEE, 2019.

(545). Bao W; Yue J; Rao Y A deep learning framework for financial time series using stacked 
autoencoders and long-short term memory. PloS one 2017, 12, No. e0180944. [PubMed: 
28708865] 

(546). Chowdhary K Natural Language Processing; Fundamentals of Artificial Intelligence, 2020; pp 
603–649.

(547). Minaee S; Kalchbrenner N; Cambria E; Nikzad N; Chenaghlu M; Gao J Deep learning–based 
text classification: a comprehensive review. ACM Comput. Surv. 2022, 54, 1–40.

Dou et al. Page 69

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(548). Liu P; Yuan W; Fu J; Jiang Z; Hayashi H; Neubig G Pretrain, prompt, and predict: A systematic 
survey of prompting methods in natural language processing. ACM Comput. Surv. 2023, 55, 
1–35.

(549). Khurana D; Koli A; Khatter K; Singh S Natural language processing: State of the art, current 
trends and challenges. Multimedia Tools Appl. 2023, 82, 3713.

(550). Suta P; Lan X; Wu B; Mongkolnam P; Chan JH An overview of machine learning in chatbots. 
Int. J. Mech. Eng. Robot. Res. 2020, 9, 502–510.

(551). Nemes L; Kiss A Social media sentiment analysis based on COVID-19. J. Inf. Telecommun. 
2021, 5, 1–15.

(552). Karthikeyan A; Priyakumar UD Artificial intelligence: machine learning for chemical sciences. 
J. Chem. Sci. 2022, 134, 134.

(553). Singh S; Sunoj RB A transfer learning protocol for chemical catalysis using a recurrent neural 
network adapted from natural language processing. Digital Discovery 2022, 1, 303–312.

(554). Winter B; Winter C; Schilling J; Bardow A A smile is all you need: predicting limiting activity 
coefficients from SMILES with natural language processing. Digital Discovery 2022, 1, 859–
869. [PubMed: 36561987] 

(555). Lu J; Zhang Y Unified deep learning model for multitask reaction predictions with explanation. 
J. Chem. Inf. Model. 2022, 62, 1376–1387. [PubMed: 35266390] 

(556). Mukherjee S; Ben-Joseph J; Campos M; Malla P; Nguyen H; Pham A; Oates T; Janarthanan 
V Predicting Physiological Effects of Chemical Substances Using Natural Language Processing. 
In 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE); IEEE, 
2021; pp 1–6.

(557). Xie Y; Le L; Zhou Y; Raghavan VV Handbook of Statistics; Elsevier, 2018; Vol. 38; pp 317–
328.

(558). Brown PF; Della Pietra VJ; Desouza PV; Lai JC; Mercer RL Class-based n-gram models of 
natural language. Comput. Linguist. 1992, 18, 467–480.

(559). Li Y; Yang T Guide to Big Data Applications; Springer, 2018; pp 83–104.

(560). Yin W; Kann K; Yu M; Schütze H. Comparative study of CNN and RNN for natural language 
processing. arXiv 2017, arXiv.1702.01923.

(561). Wolf T; Debut L; Sanh V; Chaumond J; Delangue C; Moi A; Cistac P; Rault T; Louf R; 
Funtowicz M, et al. Transformers: State-of-the-art natural language processing. In Proceedings 
of the 2020 Conference on Empirical Methods in Natural Language Processing: System 
Demonstrations, 2020; pp 38–45.

(562). Aziz MVG; Prihatmanto AS; Henriyan D; Wijaya R Design and implementation of natural 
language processing with syntax and semantic analysis for extract traffic conditions from social 
media data. In 2015 5th IEEE International Conference on System Engineering and Technology 
(ICSET); IEEE, 2015; pp 43–48.

(563). G M H; Gourisaria MK; Pandey M; Rautaray SS A comprehensive survey and analysis of 
generative models in machine learning. Comput. Sci. Rev. 2020, 38, 100285.

(564). Bilodeau C; Jin W; Jaakkola T; Barzilay R; Jensen KF Generative models for molecular 
discovery: Recent advances and challenges. WIREs Comput Mol Sci. 2022, 12, No. e1608.

(565). Tong X; Liu X; Tan X; Li X; Jiang J; Xiong Z; Xu T; Jiang H; Qiao N; Zheng M Generative 
models for De Novo drug design. J. Med. Chem. 2021, 64, 14011–14027. [PubMed: 34533311] 

(566). Yakubovich A; Odinokov A; Nikolenko S; Jung Y; Choi H Computational Discovery of TTF 
Molecules with Deep Generative Models. Front. Chem. 2021, 9, 800133. [PubMed: 35004615] 

(567). Kingma DP; Welling M An introduction to variational autoencoders. Found. Trends Mach. 
Learn. 2019, 12, 307–392.

(568). Gao K; Nguyen DD; Tu M; Wei G-W Generative network complex for the automated 
generation of drug-like molecules. J. Chem. Inf. Model. 2020, 60, 5682–5698. [PubMed: 
32686938] 

(569). Van Den Oord A; Kalchbrenner N; Kavukcuoglu K Pixel recurrent neural networks. 
International Conference on Machine Learning, 2016; pp 1747–1756.

Dou et al. Page 70

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(570). Radford A; Narasimhan K; Salimans T; Sutskever I Improving Language Understanding by 
Generative Pre-Trainingt. 2018.

(571). Zhang Y; Sun S; Galley M; Chen Y-C; Brockett C; Gao X; Gao J; Liu J; Dolan B 
DialoGPT: Large-scale generative pretraining for conversational response generation. arXiv 
2019, arXiv.1911.00536 DOI: 10.48550/arXiv.1911.00536.

(572). Zhang Y; Wang L; Wang X; Zhang C; Ge J; Tang J; Su A; Duan H Data augmentation and 
transfer learning strategies for reaction prediction in low chemical data regimes. Org. Chem. 
Front. 2021, 8, 1415–1423.

(573). Hao Z; Lu C; Huang Z; Wang H; Hu Z; Liu Q; Chen E; Lee C ASGN: An active semi-
supervised graph neural network for molecular property prediction. In Proceedings of the 26th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020; pp 
731–752.

(574). Unke OT; Chmiela S; Sauceda HE; Gastegger M; Poltavsky I; Schutt KT; Tkatchenko A; Muller 
K-R Machine learning force fields. Chem. Rev. 2021, 121, 10142–10186. [PubMed: 33705118] 

(575). Poltavsky I; Tkatchenko A Machine Learning Force Fields: Recent Advances and Remaining 
Challenges. J. Phys. Chem. Lett. 2021, 12, 6551–6564. [PubMed: 34242032] 

(576). Noé F; De Fabritiis G; Clementi C Machine learning for protein folding and dynamics. Curr. 
Opin. Struct. Biol. 2020, 60, 77–84. [PubMed: 31881449] 

(577). dos Passos Gomes G; Pollice R; Aspuru-Guzik A Navigating through the maze of homogeneous 
catalyst design with machine learning. Trends Chem. 2021, 3, 96–110.

(578). Mo Y; Guan Y; Verma P; Guo J; Fortunato ME; Lu Z; Coley CW; Jensen KF Evaluating and 
clustering retrosynthesis pathways with learned strategy. Chem. Sci. 2021, 12, 1469–1478.

(579). Maldonado AM; Poltavsky I; Vassilev-Galindo V; Tkatchenko A; Keith JA Modeling molecular 
ensembles with gradient-domain machine learning force fields. Digital Discovery 2023, 2, 871–
880.

(580). Allen AE; Tkatchenko A Machine learning of material properties: Predictive and interpretable 
multilinear models. Sci. Adv. 2022, 8, No. eabm7185. [PubMed: 35522750] 

(581). Jumper J; Evans R; Pritzel A; Green T; Figurnov M; Ronneberger O; Tunyasuvunakool K; Bates 
R; Žídek A; Potapenko A; et al. Highly accurate protein structure prediction with AlphaFold. 
Nature 2021, 596, 583–589. [PubMed: 34265844] 

(582). Qiu Y; Wei G-W Persistent spectral theory-guided protein engineering. Nat. Comput. Sci. 2023, 
3, 149–163. [PubMed: 37637776] 

(583). Liu B; Li C-C; Yan K DeepSVM-fold: protein fold recognition by combining support vector 
machines and pairwise sequence similarity scores generated by deep learning networks. Briefings 
Bioinf. 2020, 21, 1733–1741.

(584). Benkovic SJ; Hammes-Schiffer S A perspective on enzyme catalysis. Science 2003, 301, 1196–
1202. [PubMed: 12947189] 

(585). Liao W; Liu P Enhanced descriptor identification and mechanism understanding for catalytic 
activity using a data-driven framework: revealing the importance of interactions between 
elementary steps. Catal. Sci. Technol. 2022, 12, 3836–3845.

(586). Wan X; Zhang Z; Yu W; Guo Y A density-functional-theory-based and machine-learning-
accelerated hybrid method for intricate system catalysis. Mater. Rep.: Energy 2021, 1, 100046.

(587). Corey EJ; Wipke WT Computer-Assisted Design of Complex Organic Syntheses: Pathways for 
molecular synthesis can be devised with a computer and equipment for graphical communication. 
Science 1969, 166, 178–192. [PubMed: 17731475] 

(588). Lin G-M; Warden-Rothman R; Voigt CA Retrosynthetic design of metabolic pathways to 
chemicals not found in nature. Curr. Opin. Syst. Biol. 2019, 14, 82–107.

(589). Shen Y; Borowski JE; Hardy MA; Sarpong R; Doyle AG; Cernak T Automation and computer-
assisted planning for chemical synthesis. Nat. Rev. Methods Primers 2021, 1, 23.

(590). Badowski T; Gajewska EP; Molga K; Grzybowski BA Synergy between expert and machine-
learning approaches allows for improved retrosynthetic planning. Angew. Chem., Int. Ed. 2020, 
59, 725–730.

(591). Sun Y; Sahinidis NV Computer-aided retrosynthetic design: fundamentals, tools, and outlook. 
Curr. Opin. Chem. Eng. 2022, 35, 100721.

Dou et al. Page 71

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(592). Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O FCHL revisited: Faster 
and more accurate quantum machine learning. J. Chem. Phys. 2020, 152, 044107. [PubMed: 
32007071] 

(593). Ceriotti M; Clementi C; Anatole von Lilienfeld O Introduction: machine learning at the atomic 
scale. Chem. Rev. 2021, 121, 9719–9721. [PubMed: 34428897] 

(594). Bartók AP; De S; Poelking C; Bernstein N; Kermode JR; Csányi G; Ceriotti M Machine 
learning unifies the modeling of materials and molecules. Sci. Adv. 2017, 3, No. e1701816. 
[PubMed: 29242828] 

(595). Paesani F; Bajaj P; Riera M Chemical accuracy in modeling halide ion hydration from many-
body representations. Adv. Phys.: X 2019, 4, 1631212.

(596). Artrith N; Butler KT; Coudert F-X; Han S; Isayev O; Jain A; Walsh A Best practices in machine 
learning for chemistry. Nat. Chem. 2021, 13, 505–508. [PubMed: 34059804] 

(597). Duan C; Nandy A; Meyer R; Arunachalam N; Kulik HJ A transferable recommender approach 
for selecting the best density functional approximations in chemical discovery. Nat. Comput. Sci. 
2023, 3, 38–47. [PubMed: 38177951] 

(598). Folmsbee D; Hutchison G Assessing conformer energies using electronic structure and machine 
learning methods. Int. J. Quantum Chem. 2021, 121, No. e26381.

(599). Kolluru A; Shuaibi M; Palizhati A; Shoghi N; Das A; Wood B; Zitnick CL; Kitchin JR; Ulissi 
ZW Open Challenges in Developing Generalizable Large-Scale Machine-Learning Models for 
Catalyst Discovery. ACS Catal 2022, 12, 8572–8581.

(600). Kitchin JR Machine learning in catalysis. Nat. Catal. 2018, 1, 230–232.

Dou et al. Page 72

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Calculation protocol for molecular classification. For each activity class, eight independent 

trials with different seeds were carried out. For each trial, a test data set was randomly 

chosen containing 100 active and 100 inactive compounds. For each training set size, 

training and validation data sets were assembled. Reproduced with permission from ref 114. 

Copyright 2022 Elsevier.
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Figure 2. 
Flowchart of developing models for SM-miRNA regulation prediction. Data set1 was used 

to construct models to predict the upregulation pairs of small molecules and miRNAs. 

Similarly, data set2 was used to construct models to predict down-regulation pairs. 

Reproduced with permission from ref 115. Copyright 2022 Frontiers Media SA.
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Figure 3. 
MD assisted ANN prediction of the nucleation of dislocations in homogeneous lattices. (a) 

Nucleation of a dislocation loop by gradual displacement of a part of the atoms along the 

loop area. (b) The following mechanical growth of a supercritical dislocation loop by slip of 

dislocation lines. Reproduced with permission from ref 135. Copyright 2022 Elsevier.
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Figure 4. 
Architecture of a DL model for screening of DILI compounds. The model consists of an 

embedding layer, a convolutional block and a fully connected block. The fully connected 

block consists of three fully connected layers. Except for the fully connected blocks in the 

last layer, the others are designed with batch normalization. Reproduced with permission 

from ref 168. Copyright 2020 American Chemical Society.
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Figure 5. 
Encoding–decoding CNN construction for the molecular adsorption density prediction. The 

proposed CNN mainly consisted of four parts: input layer, encoding module, decoding 

module and output layer. Reproduced with permission from ref 172. Copyright 2022 

Elsevier.
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Figure 6. 
Submanifold sparse convolution based U-Net in a 2D perspective. The difference between it 

and traditional 3D-CNN is illustrated in (a) and (b). In (c), we demonstrate the architecture 

of U-Net. Reproduced with permission from ref 193. Copyright 2022 American Chemical 

Society.
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Figure 7. 
Architecture of a GNN-based classifier for toxicity classification. PAR is optimized over a 

set of tasks. Within each task Tτ, the modules with dotted lines are fine-tuned on support 

set Sτ and those with solid lines are fixed. A query molecule xτ, i will first be represented as 

gτ, i using a graph-based molecular encoder, then transformed to pτ, i by our property-aware 

embedding function. This pτ, i further coadapts with embeddings of molecules in Sτ on the 

relation graph as ℎτ, i, which is taken as the final molecular embedding and used for class 

prediction. Reproduced with permission from ref 229. Copyright 2021 NeurlPs.
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Figure 8. 
Overall framework of a Meta-MGNN model for toxicity predictions: It first samples a batch 

of training tasks. For each task, there are a few data examples in the support set. These 

examples are fed into a GNN parametrized by θ. Then the support loss ℒsupport is calculated 

and utilized to update the GNN parameters to θ′. Next, the examples in the corresponding 

query set are fed into the GNN parametrized by θ′ and calculate the loss ℒquery
′  for this task. 

The same process is repeated for other training tasks. Later, we compute the summation of 

ℒquery
′  over all sampled tasks and use it to further update the GNN parameters for testing. 

Reproduced with permission from ref 232. Copyright 2021 Web of Conferences.

Dou et al. Page 80

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Illustration of a LSTM architecture utilizing k-mer sparse matrices and binary contour 

features for predicting anticancer peptides.263
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Figure 10. 
Structure of ProDec-BLSTM for protein remote homology detection. The input layer 

converts the pseudo proteins into feature vectors by one-hot encoding. Next, the 

subsequences within the sliding window are fed into the BLSTM layer for the extraction of 

the sequence patterns. Then, the time-distributed dense layer weighs the extracted patterns. 

Finally, the extracted feature vectors are fed into an output layer for prediction. Reproduced 

with permission from ref 264. Copyright 2017 Springer Nature.
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Figure 11. 
Framework of a general-purpose GAN model. It consists of a discriminator and a generator.
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Figure 12. 
Workflow of an autoencoder-assisted multitask ANN model for enhancing small data sets 

inferred by interactomics networks of cocaine addition targets.315 (a) Sequence-to-sequence 

autoencoder model is used to create uniform features for different data sets. BLSTM and 

LSTM are used in encoder and decoder networks, respectively. (b) An MT-DNN model is 

connected to the autoencoder for regression predictions.
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Figure 13. 
Illustration of the AGBT model. For a given molecular structure and its SMILES strings, 

AG-FPs are generated from an element-specific algebraic subgraphs module and BT-FPs 

are generated from a deep bidirectional transformer module, as shown inside the dashed 

rectangle, which contains the pretraining and fine-tuning processes, and then finally 

completes the feature extraction using task-specific SMILES as input. Then the RF 

algorithm is used to fuse, rank, and select optimal fingerprints (AGBT-FPs) for ML.334
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Figure 14. 
RL model for feature selection in protein–ligand binding. The DQN based reinforcement 

learning is used to further select features to train a classifier. We formulate a new reward 

function to balance classification accuracy and number of features. The action set contains 

two basic operations, adding and deleting based on the χ2 test, to search for the optimal 

state. Reproduced with permission from ref 372. Copyright 2022 Elsevier.
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Figure 15. 
General framework of molecular generation contains 4 DL modules: an unbiased generator 

(A), a biased generator (B) which shares the same architecture, and two QSAR models 

for predicting the binding affinity (C) and BBB permeation (D). The DL modules were 

interconnected by a policy-based reinforcement Learning approach (G) applied with a 

particular exploration/exploitation strategy (F) based on a multiobjective reward function 

(E). Reproduced with permission from ref 378. Copyright 2021 Oxford University Press.
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Figure 16. 
Illustration of transfer-learning-aided retrosynthetic analysis. To improve the accuracy of the 

antisynthetic analysis, a migration learning strategy in terms of the seq2seq and transformer 

models was employed. In this analysis, a large chemical reaction data set was pretrained 

to acquire specialized knowledge of chemical reactions. Such learned knowledge is then 

successfully transferred to a smaller data set. With the chemical information attained from 

the pretraining, the final model yields higher accuracy. Reproduced with permission from ref 

416. Copyright 2020 Multidisciplinary Digital Publishing Institute.
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Figure 17. 
Schematic illustration of a multitask topological DL model.419 Topological invariants 

extracted by element-specific persistent homology are shared among globular proteins and 

membrane proteins.

Dou et al. Page 89

Chem Rev. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 18. 
Neural network structure for active learning. Here, Lmax is the maximum width of a peptide 

in the data set (although a convolution can use any length), K is the number of motif classes, 

and A is the length of the amino acid alphabet. Peptides are first translated to a one-hot 

encoding Lmax × A  and a vector of normalized amino acid counts 1 × N . The output of 

the max pool layer is passed through one fully connected layer with ReLU activation, then, 

amino acid counts are appended to the output. This is then passed into two more fully 

connected layers with a final output dimension of 2 for positive and negative class labels. 

Labels below neural network layers indicate the dimensionality of the data as they pass 

through the layer. Reproduced with permission from ref 443. Copyright 2020 American 

Chemical Society.
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Figure 19. 
Comparison of MBO-based proposed methods (shown in red) with other methods (shown in 

blue) on the five benchmark molecular data sets for 1% labeled data.456
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Figure 20. 
Illustration of a three-step process that can continuously select features to improve the 

accuracy of drug interactions during the experiment. In the first step, features are obtained 

through a GPCR module and merged with molecular fingerprints. Then, SMOTE (synthetic 

minority oversampling technique) and ANN are employed to generate the final features. 

Finally, GBDT is used to predict drug interactions. Reproduced with permission from ref 

483. Copyright 2021 Frontiers Media SA.
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Figure 21. 
Workflow of a joint GNN and XGBoost model. Molecular descriptors are extracted by 

a GNN model, and the prediction is produced by a supervised learner XGBoost for 

classification or regression. Reproduced with permission from ref 486. Copyright 2021 

American Chemical Society.
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Figure 22. 
Illustration of speed differences in computing a given molecular property for a database 

of 1 million molecules using DFT versus ML. On average, QM simulations require 

approximately 5 h per molecular structure, leading to a total processing time of 5 × 3600(s) 

× 106 ≈ 500 years. In contrast, a trained DL model needs only 5 ms per molecular structure 

and just a few hours for 1 million molecules. Reproduced with permission from ref 528. 

Copyright 2022 American Chemical Society.
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Figure 23. 
Illustration of the ORBNET workflow. (a) A low-cost mean-field electronic structure 

calculation is performed for the molecular system, and (b) the resulting SAAOs and the 

associated quantum operators are constructed. (c) An attributed graph representation is built 

with node and edge attributes corresponding to the diagonal and off-diagonal elements of the 

SAAO tensors. (d) The attributed graph is processed by the embedding layer and message-

passing layers to produce transformed node and edge attributes. (e) The transformed node 

attributes for the encoding layer and each message passing layer are extracted and (f) passed 

to MPL-specific decoding networks. (g) The node-resolved energy contributions εu are 

obtained by summing the decoding networks outputs nodewise, and (h) the final extensive 

energy prediction is obtained from a one-body summation over the nodes. Reproduced with 

permission from ref 529. Copyright 2020 AIP Publishing.
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Figure 24. 
Illustration of a deep CNN. The relative free energy for moving 15 000 small molecules 

between water and cyclohexane was computed with atomistic MD simulations. From the 

simulations, features, such as each atom’s partial charge, the average number of water 

contacts, and molecular features, including the number of hydrogen bonds and size/shape, 

were extracted. A 3D-CNN and spatial graph CNN were then constructed using the atomic 

and molecular features to predict the free energies of transfer. Reproduced with permission 

from ref 530. Copyright 2020 American Chemical Society.
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Figure 25. 
Schematic illustration of a generative network complex for molecular generation.568
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Table 1.

Prediction Results Based on Different ML Methods for Identifying Drug–Target Interactionsa

Method AUC Accuracy

Naive Bayes 0.54285 0.445622

neural net 0.55611 0.544142

SVM 0.56119 0.597514

logistic regression 0.62449 0.619996

nearest neighbors 0.71011 0.663864

random torest 0.87473 0.817584

our approach 0.91095 0.871931

a
Reproduced with permission from ref 40. Copyright 2018 Springer Nature.
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Table 4.

Classification Results for Different Classifiers for Cancer Dataa

classifiers accuracy (mean)

Decision tree 0.608

KNN (k = 3) 0.864

SVM 0.84

VGG 0.781

ResNet 0.849

Gene-GAN (nonamplified) 0.85

Gene-GAN (mixed) 0.892

a
Reproduced with permission from ref 74. Copyright 2022 Springer Nature.
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Table 6.

Comparison of Prediction Accuracy on Different Data Setsa

data sets algorithms breast cancer (%) glioblastoma (%) lung cancer (%)

proposed DRL model 98.3 99.2 97.34

SVM 91.32 92.34 93.42

RF 78.9 81.23 82.34

ANN 94.5 93.47 94.5

a
Reproduced with permission from ref 379. Copyright 2022 Springer Nature.
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Table 7.

Performance of the Three Models on Six Data Setsa

data set graph convolution with dropout semi-supervised with dropout semi-supervised with SVGD

FreeSolv 0.531 ± 0.061 0.439 ± 0.093 0.688 ± 0.053

ESOL 0.112 ± 0.035 0.306 ± 0.079 0.553 ± 0.026

CatS 0.049 ± 0.036 0.066 ± 0.044 0.310 ± 0.019

MeltingPoint 0.192 ± 0.016 0.284 ± 0.035 0.337 ± 0.013

p450 0.167 ± 0.015 0.185 ± 0.049 0.213 ± 0.010

malaria 0.315 ± 0.028 0.317 ± 0.031 0.378 ± 0.019

a
Reproduced with permission from ref 441. Copyright 2019 Royal Society of Chemistry.
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Table 8.

Results of the R2 Comparison of Accuracy between the Model in the Text and Other Methods for Molecular 

Property Predictions341

method IGC50 LC50 LC50-DM average

BTAMDL 2 0.793 0.778 0.741 0.771

BTAMDL 1 0.795 0.776 0.733 0.768

MDL consensus 0.792 0.772 0.721 0.762

GBDT consensus 0.777 0.692 0.472 0.647

hierarchical482 0.719 0.710 0.695 0.708

single-model482 NA 0.704 0.697 0.701

FDA482 0.747 0.626 0.565 0.646

group contribution482 0.682 0.686 0.671 0.680

nearest neighbor482 0.600 0.667 0.733 0.667

test consensus482 0.764 0.728 0.739 0.744

3D MDL consensus338 0.802 0.789 0.678 0.765
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Table 9.

An Overview of Major Machine Learning and Deep Learning Approaches in Different Fields with a Variety of 

Algorithms for Small Data Challenge

applied field algorithm ref

Basic Machine Learning Algorithm Approach

drug–target interaction gradient boosted decision trees (GBDT) 40

drug-induced ototoxicity support vector machine (SVM), message-passing neural networks (MPNNs) 111

compound activity random forest (RF), k-nearest neighbor (KNN) 114

miRNA expression random forest (RF) 115

Artificial Neural Networks Approach

molecule lipophilicity MRlogP, a neural network-based predictor of log P 131

molecule lipophilicity multiple linear regression (MLR) and artificial neural network (ANN) 132

molecule lipophilicity GA-MLR and GA-ANN 133

pharmacokinetics quantitative structure–pharmacokinetic relationship model 134

dislocation nucleation artificial neural networks (ANNs), random forest (RF), support vector machine (SVM) 135

molecular dynamics simulations k-nearest neighbor (k-NN) and artificial neural network (ANN) 136

Convolutional Neural Networks Approach

drug-induced liver injury natural language processing (NLP) inspired convolutional neural networks (CNNs) 168

environmental applications molecular image-convolutional neural networks (CNNs) with transfer learning 169

molecular dynamics simulations deep learning encoder–decoder convolutional neural networks (CNNs) 172

U-Net Approach

binding sites prediction Voxel-based 3D U-Net 200

protein structure prediction single-sequence-based U-Net convolutional network 201

medical image segmentation an automatic liver parenchyma segmentation network based on the U-Net architecture 202

Graph Neural Networks Approach

molecular property prediction property-aware relation networks with graph neural networks-based classifier 229

machine learning algorithm model agnostic meta-learning (MAML) and first-order MAML (FO-MAML) 231

molecular property prediction meta-MGNN 232

Long Short-Term Memory Approach

protein structure prediction deep asymmetric convolutional LSTM neural network (DeepACLSTM) 258

medicinal science deep learning long short-term memory (DL-LSTM) 263

protein remote homology detection ProDec-BLSTM 264

anticancer peptide prediction bidirectional long short-term memory (BLSTM) 272

short-term load forecasting bidirectional LSTM 273

Generative Adversarial Networks Approach

protein solubility prediction protein log S generative adversarial nets (Pro-GAN) 281

multiclassification for cancer staging Generative Adversarial Network (GAN) combined with a deep neural network (DNN) 284

Generative Adversarial Networks Approach

cancer classification Gene-GAN Wasserstein generative adversarial 74

cancer prognosis prediction network-based deep adversarial data augmentation (wDADA) 289

brain network BrainNetGAN 290

antiviral drug sequence-based binary classifier 291
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applied field algorithm ref

Autoencoders Approach

materials science variational autoencoder (single task learning) (VAE), VAE-L with linear regression (multitask 
learning), VAE-NL with nonlinear regression (multitask learning)

64

biopolymerization VAE+ANN, VAE+GAN, VAE+RF, GAN+RF, ANN, RF 41

drug discovery autoencoder-assisted multitask ANN 315

Transformers Approach

drug discovery self-supervised Motif Learning Graph Neural Network (MoLGNN) 335

molecular property prediction algebraic graph-assisted bidirectional transformer 334

drug repositioning multitask self-supervised learning 344

Reinforcement Learning Approach

molecular property prediction deep reinforcement learning with new reward function 372

human microRNA-disease association RFLMDA (combining the Q-learning algorithm with reinforcement learning) 373

molecule design deep reinforcement learning 378

cancer type classification deep reinforcement learning 379

Transfer Learning Approach

pharmacokinetic parameter prediction integrated transfer learning and multitask learning approach 412

pharmacogenomics adversarial inductive transfer learning (AITL) 413

retrosynthetic analysis sequence-to-sequence (seq2seq) transfer learning 416

chemical reaction prediction transformer-transfer learning 572

molecular property prediction MRlogP (neural network-based predictor of log P) 418

protein structure prediction algebraic topology-based multitask and multichannel CNN 419

Active Learning Approach

domain applicability semi-supervised learning and Bayesian deep learning 441

molecular property prediction active learning -based semi-supervised GNN 573

Graph-Based Semi-supervised Learning Approach

graph-based semi-supervised learning an autoencoder coupled with Merriman Bence Oshe scheme (AE-MBO) and a bidirectional 
encoder transformer coupled with Merriman Bence Oshe scheme (BT-MBO)

456

machine learning algorithm Multikernel manifold learning (MML) and multiscale MBO (MMBO) 458

machine learning algorithm Poisson Merriman Bence Oshe (MBO) 460

Chem Rev. Author manuscript; available in PMC 2024 April 07.


	Abstract
	Graphical Abstract
	INTRODUCTION
	MACHINE LEARNING PRELIMINARIES
	Supervised, Unsupervised, Semi-Supervised, and Self-Supervised Learning Strategies
	Regression, Classification, Clustering, and Dimensionality Reduction Tasks

	METHODS FOR SMALL MOLECULAR DATA CHALLENGES
	Basic Machine Learning Algorithms
	Artificial Neural Networks
	Convolutional Neural Networks
	U-Net
	Graph Neural Networks
	Long Short-Term Memory
	Generative Adversarial Networks
	Autoencoders
	Transformers
	Reinforcement Learning
	Transfer Learning
	Active Learning
	Graph-Based Semi-Supervised Learning

	PERSPECTIVES FOR MOLECULAR SCIENCE
	Combining Deep Learning with Traditional Machine Learning
	Physical Model-Based Data Augmentation
	Spatial and Temporal Pattern Extractions for Molecules
	Natural Language Processing for Molecular Sequences
	Generative AI for Molecular Generation
	Material Science

	OUTLOOK
	Machine Learning Force Fields
	Biomolecular Properties Discovery
	Protein Folding Prediction
	Catalyst Design
	Retrosynthetic Pathways
	Computational Chemistry
	Modelability Metrics
	Small and Diverse Data Sets
	Small and High-Dimensional Data Sets
	Small and Noisy Data Sets
	Small and Imbalanced Data Sets
	Data Imputation in Small Data Sets
	Data Representability
	Machine/Deep Learning Complexes
	Data Understanding

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Figure 14.
	Figure 15.
	Figure 16.
	Figure 17.
	Figure 18.
	Figure 19.
	Figure 20.
	Figure 21.
	Figure 22.
	Figure 23.
	Figure 24.
	Figure 25.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9.

