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Abstract

Genome-wide association studies (GWASs) have provided numerous associations between 

human single-nucleotide polymorphisms (SNPs) and health traits. Likewise, metagenome-wide 

association studies (MWASs) between bacterial SNPs and human traits can suggest mechanistic 

links, but very few such studies have been done thus far. In this study, we devised an MWAS 

framework to detect SNPs and associate them with host phenotypes systematically. We recruited 

and obtained gut metagenomic samples from a cohort of 7,190 healthy individuals and discovered 

1,358 statistically significant associations between a bacterial SNP and host body mass index 

(BMI), from which we distilled 40 independent associations. Most of these associations were 

unexplained by diet, medications or physical exercise, and 17 replicated in a geographically 

independent cohort. We uncovered BMI-associated SNPs in 27 bacterial species, and 12 of them 

showed no association by standard relative abundance analysis. We revealed a BMI association 
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of an SNP in a potentially inflammatory pathway of Bilophila wadsworthia as well as of 

a group of SNPs in a region coding for energy metabolism functions in a Faecalibacterium 
prausnitzii genome. Our results demonstrate the importance of considering nucleotide-level 

diversity in microbiome studies and pave the way toward improved understanding of interpersonal 

microbiome differences and their potential health implications.

The human gut microbiome is important for host health and is associated with a wide 

array of diseases, including inflammatory bowel disease, cardiovascular disease, obesity, 

diabetes and even cancer1-7. However, understanding of the mechanisms underlying these 

associations is still limited. The risk for obesity, for example, is suspected to be affected by 

the gut microbiome8, yet no microbiome-based treatment to prevent obesity exists.

Studies that associate the microbiome with disease are frequently based on a genus-level 

or species-level taxonomic characterization and its correlation with host health conditions. 

Although useful, this level of resolution may not be sufficient for a comprehensive 

understanding of the interconnections between the gut microbiome and human health. More 

recently, advancements in high-throughput sequencing technologies have enabled higher-

resolution investigations of the human microbiome, which uncovered vast intra-species 

diversity. Subspecies variations, such as strain diversity9, mobile gene composition10 and 

copy number variations11,12, were all shown to be associated with host traits and lifestyle 

habits. By examining gene-level differences between microbiomes rather than entire species 

genomes, such studies provide a finer-resolution view of host–microbiome interactions. 

They can point at specific bacterial functions that associate with host traits and result in 

discrete hypotheses regarding the mechanisms underlying these interactions.

Although there has been growing interest in subgenomic bacterial diversity and its impact on 

host–microbiome interactions, a level of diversity that has received relatively little attention 

is that of single-nucleotide variations. The substitution of one nucleotide in a genome 

can significantly alter organismal functions. Single-nucleotide polymorphisms (SNPs) can 

grant bacteria antibiotic resistance13 or the ability to infect a new host species14 and are, 

thus, often studied in pathogens in bacterial genome-wide association studies (GWASs)15. 

Previous studies16-18 showed the prevalence of SNPs in the microbiome, and SNPs in 

bacteria from fecal samples were shown to have an influence on bacterial drug metabolism 

in vitro and a potential role in interpersonal differences in drug response19. However, 

despite the extent of SNP-level diversity in the microbiome and its likely relevance for host–

microbiome interactions, to our knowledge, no study has thus far systematically investigated 

the associations between microbiome SNPs and host health.

Here we present the first metagenome-wide association study (MWAS) framework to 

comprehensively detect SNPs in the human gut microbiome and associate them with 

host traits. Although previous studies have used the term MWAS to describe studies that 

associate microbiome species with host traits20, in this study, we use MWAS to refer 

to the association of individual bacterial SNPs with host traits, similarly to how GWAS 

refers to the association of individual genomic SNPs with various traits. We designed this 

framework based on common GWAS practices, with modifications to address the differences 

between human genetics and metagenomic-based studies. In the present study, we used 
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this framework to investigate the associations between the human gut microbiome and host 

obesity and, specifically, to test whether individual bacterial SNPs are associated with host 

body mass index (BMI). To this end, we used a unique cohort of 7,190 healthy individuals 

from whom we obtained metagenomic samples. We demonstrate the importance of SNPs 

to the interactions between the microbiome and host health by revealing 1,358 associations 

between bacterial SNPs and host BMI, which represent 40 independent associations.

Results

A framework for MWASs

We devised a framework for MWASs to systematically detect nucleotide-level intra-species 

variability in the microbiome and identify associations between individual bacterial SNPs 

and host phenotypes (Fig. 1a). We used samples from 7,190 healthy individuals from Israel 

that we collected in this study as part of our ongoing ‘10K Project’21. Our cohort is, thus, 

one of the largest single cohorts of shotgun metagenomic microbiome samples that are 

coupled with host phenotypes.

To detect SNPs, we compared metagenomic samples from different individuals. Using 

metagenomic samples rather than cultured isolates enabled the analysis of a large number of 

samples, which is essential for this study, and a wide taxonomic range. However, it relies on 

the alignment of short reads to reference genomes, which makes discriminating intra-species 

SNPs from inter-species variations more challenging. To restrict our analyses to variations 

within bacterial species, we took several measures to ensure that we assigned reads to the 

correct species. First, we aligned the sequenced reads to an expanded high-quality reference 

set of species that was recently assembled by our group22. This genome set, which was 

built using thousands of gut microbiome samples from Israeli individuals, best represents 

the variety of bacterial species expected to exist in our cohort. As a first step, we used 

the Unique Relative Abundances (URA) algorithm23, which uses genomic sequences that 

are unique to single species in the reference set to determine which bacterial species exist 

in each microbiome sample. Finally, we mapped the sequenced reads of each sample and 

excluded reads that could be assigned with the same likelihood to multiple species that 

existed in the sample (Methods).

After the read assignment step, we compared all reads assigned to the same genomic 

position to find the global major allele (that is, the most prevalent nucleotide in this position 

across the cohort) and computed the frequency of this allele within each sample covering 

this position—the ‘major allele frequency’. Finally, we filtered all genomic positions by 

their coverage (1,000 samples or more) and variability (average major allele frequency ≤ 

99%; Methods). We found 12,686,191 positions that met these criteria, which we marked 

as SNPs, spread across the genomes of 348 of the bacterial species (Extended Data Fig. 1). 

The median number of SNPs detected in a genome was 3,221 SNPs, but 56 (16%) of the 

genomes had over 100,000 such variable positions.

We designed our MWAS framework to separately test each SNP’s association with host 

BMI, or any other trait of interest, following the common practice of human GWASs, which 

aims to discover associations between SNPs in the human genome and various phenotypes. 
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In contrast to human genetics in which a person can have one, two or no copies of an 

allele, the bacterial population in the microbiome can have any number of allele copies. 

Therefore, we modeled each sample’s genotype as a continuous number in the range of 

0 to 1, representing the ‘major allele frequency’—the frequency of the cohorts’ major 

allele out of the sample’s reads that mapped to a specific genomic position. For each SNP, 

we created a linear regression model with the major allele frequency as the independent 

variable and the BMI as the explained variable. With these models, we computed the 

statistical significance of the association between each SNP–trait pair, using the P value 

of the SNP estimated in the model. To isolate the SNP’s association with the phenotype 

in question from potentially confounding phenotypes (Fig. 1b), we used a common GWAS 

approach and added covariates for other host traits (age and sex; Methods). As an additional 

precaution to avoid mixing within-species and between-species variations, we also included 

the relative abundance of the species as a covariate. To account for the large number of 

hypotheses tested, we corrected all P values using the Bonferroni method. We only included 

participants with complete records for age, sex and BMI, resulting in the inclusion of 7,056 

of the 7,190 participants.

Because the bacterial species colonizing the gut often diversify into multiple strains24, 

we assumed that some SNPs may be correlated due to population structure or linkage 

disequilibrium (LD)25-27. Our goal in this work was to find point variations that are 

independently associated with host BMI, and we wanted to avoid inflated results of 

correlated SNPs. To exclude redundant associations, we applied a clumping procedure that 

is common in GWASs as a final step in our MWAS analysis. In this clumping procedure, 

the SNPs associated with the phenotype are sorted by the P value of the association. The 

SNP with the smallest P value is selected first, and all SNPs that are correlated to it are 

removed from the results. Then, the SNP with the smallest P value of those left is analyzed, 

and this process continues until all SNPs are selected. This procedure results in a filtered 

list of SNPs that are each correlated with the phenotype and uncorrelated with each other. 

We applied this procedure to the results of each species separately, choosing a stringent 

correlation coefficient threshold of 0.3 (Methods).

Bacterial SNPs associate with host BMI

To investigate whether individual microbiome SNPs associate with host health, we applied 

our MWAS framework to test the association of each of the 12,686,191 bacterial SNPs 

with host BMI. We discovered 1,358 bacterial SNPs that are associated with host BMI 

(Bonferroni-corrected P < 0.05; Fig. 2, Extended Data Figs. 2 and 3 and Methods).

In most species in which we found BMI-associated SNPs, there were only 1–13 such 

SNPs (21/27; Fig. 3 and Supplementary Table 1). However, other species had 49–909 

BMI-associated SNPs, which suggests that, in some species, there is a strain structure 

associated with BMI. This is further supported by the Q–Q plot (Extended Data Fig. 4). We 

then clumped these results to remove correlated SNPs. The clumping procedure reduced the 

number of uncorrelated BMI-associated SNPs in all species to four SNPs at most (Fig. 3, 

in white), implying that, in some species, there were indeed redundant associations arising 

due to LD and population structure (Extended Data Fig. 5). In total, after the clumping 
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procedure, we ended up with 40 uncorrelated SNPs associated with BMI (Supplementary 

Tables 2 and 3).

For the design of future MWAS studies, we used the estimated effect sizes of these 40 

associations and calculated the statistical power of a similar MWAS analysis with various 

sample sizes (Methods). We found that using only 1,000 samples covering each SNP and 

without a prior hypothesis on specific SNPs, only one of the 40 associations had a 0.5 

probability of being detected (Extended Data Fig. 6).

MWAS reveals associations independent of species-level analysis

A common approach to studying the human gut microbiome is associating species presence 

or relative abundance with host phenotypes. We were interested in the added value of the 

MWAS framework when investigating the relation between microbiome and health. For 

that aim, we compared the MWAS results with the species associated with host BMI by 

relative abundance. We found BMI-associated SNPs in the genomes of 27 different bacterial 

species. For each SNP–BMI association that we discovered, we investigated whether BMI 

is also associated with the relative abundance of the bacteria (Methods). In 44% (12/27; 

Fig. 4a and Supplementary Table 4) of cases in which a species has an SNP associated with 

BMI, the relative abundance of the species itself was not associated with the phenotype. 

Complementarily, 52% (21/40; Fig. 4b) of the BMI-associated SNPs that we discovered 

were in species that are not associated with BMI by their relative abundance. Thus, our 

SNP-level analysis identifies associations that exist at a higher level of resolution and often 

not in species relative abundance.

SNP–BMI associations replicate in an independent cohort

To assess the robustness and generalization of the above associations, we tested their 

replicability in samples from 8,204 individuals from the Netherlands (from the Dutch 

Microbiome Project cohort28). We tested all 40 SNPs, without filtering them for sample 

size or variability, which was, in some cases, lower in the second cohort. Notably, 17 of the 

40 associations replicated (42.5%, Bonferroni-corrected P < 0.05; Fig. 5 and Supplementary 

Table 5) in this geographically and technically independent cohort. One additional SNP was 

significantly associated with BMI but in the opposite direction than in the Israeli cohort. We 

estimated the required sample size to replicate the associations (Methods) and found that, in 

five of the 23 associations that did not replicate in the second cohort, the sample size was 

too small to achieve the desired statistical power. To test the statistical significance of these 

results, we also tested 40 SNPs chosen at random and repeated this experiment 1,000 times. 

In no random set of 40 SNPs, we found in the Dutch cohort as many associations with BMI 

(P < 0.001, mean: 0.23, maximum: 4, s.d.: 0.48; Extended Data Fig. 7), implying that, even 

though the cohorts have different age, sex and BMI distributions (Fig. 1b and Extended Data 

Fig. 8), as well as different genetic and environmental backgrounds, the associations that we 

discovered are not random and replicate significantly. Additionally, we tested whether SNPs 

reveal associations beyond those of species relative abundance. We found that, of the 14 

species in which we replicated SNP–BMI associations in the second cohort, seven species 

(accounting for eight of the 17 replicated associations; Supplementary Table 6) did not have 
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species-level relative abundance associations with BMI, demonstrating, again, the additional 

information found at the SNP level.

SNP–BMI associations highlight specific loci

To investigate the mechanisms underlying the SNP–BMI associations and to account for 

additional confounders, we conducted additional MWAS analyses for the 40 SNPs. We 

added diet, medications and exercise covariates to the regression analysis and tested whether 

the SNP P value in the model still passes the significance threshold. Because we had only 

some features for every participant, we tested each feature group separately (Methods and 

Supplementary Table 8). When we added the diet data, one SNP stopped being significant. 

With the exercise features, we could test only 35 of the SNPs, of which one SNP stopped 

being significant. None of the SNPs stopped being significant with the addition of the 

medication data (Supplementary Tables 9-11). We concluded that diet and exercise may have 

confounded two of the SNP–BMI associations, possibly affecting both bacterial genetics and 

host obesity status independently. Most SNP–BMI associations could not be explained by 

diet, exercise or medications.

We next sought to characterize the functional context of BMI-associated SNPs. We reasoned 

that genomic regions in which variation is associated with host health traits might contain 

functions that are central to the interactions between the bacteria and the physiology of the 

host. We annotated the reference genomes and compared SNP positions with predicted gene 

locations (Methods and Supplementary Tables 2 and 3).

Half (20/40) of the BMI-associated SNPs that we found are in six species annotated as 

Faecalibacterium prausnitzii and three species annotated as other Faecalibacterium species. 

F.prausnitzii is known to associate with various host health conditions. Its abundance is 

negatively correlated with host obesity29, and, in a Mendelian randomization analysis, it was 

shown to have a causal role in reduced trunk fat mass30.

The SNP whose association with BMI was the most statistically significant is a non-

synonymous polymorphism in a Faecalibacterium prausnitzii_G (Rep_3066) genome, 

within a predicted gene suspectedly encoding a flavodoxin—a redox-active protein. In the 

clumping analysis, we found that this SNP correlates with 47 other BMI-associated SNPs 

(Supplementary Table 7), all located within an 8,825-bp region. We conducted a functional 

enrichment analysis and discovered that the BMI-associated SNPs in this region are enriched 

with genes predicted to code for energy production and conversion function (P < 1 × 

10−30; Methods and Fig. 6). It was suggested that a way in which different gut microbiome 

compositions affect the risk of obesity is through variation in the efficiency of extracting 

energy from food31. A possible explanation for the associations between these SNPs, which 

reside in metabolic genes, and host BMI is that the SNPs affect the metabolic efficiency of 

the bacteria and consequently affect host BMI.

When there are multiple SNPs within a genome that are all correlated with the trait as 

well as with each other, we cannot directly deduce which genetic variation has led to the 

functional difference that underlies the association with the host. Some of the correlated 

SNPs may have no effect on the bacteria–BMI interaction and correlate with BMI only 
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because the SNPs are correlated—due to ancestry or LD—with variations that affect this 

interaction. Of the 40 SNPs that passed the clumping process, 18 represent singleton 

associations that were not correlated with any other BMI-associated SNP in the genome 

(that is, independent associations; Extended Data Fig. 2). We assumed that these SNPs 

are more likely to point toward the functional differences that directly affect host–bacteria 

interactions.

One of these singleton SNPs is in the genome of Bilophila wadsworthia (Rep_2746). It is 

thought that part of the influence of diet on obesity and obesity-related metabolic disorders 

is mediated by the activation of the immune system and a persistent state of low-grade 

inflammation32. There is evidence showing that this effect is mediated by microbiome 

lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria 

and a potent activator of the immune system. For example, a study in mice showed that, 

after a high-fat diet (HFD), serum LPS levels increased and that continuously injecting mice 

with LPS promoted weight gain and insulin resistance33. Specifically, B. wadsworthia was 

shown to expand in the microbiomes of mice on an HFD, and, when mice on an HFD 

were colonized with this species, microbiome LPS gene expression and host inflammation 

markers increased34. Interestingly, the BMI-associated SNP that we discovered in B. 
wadsworthia genome was located in a gene coding for UDP-4-amino-4-deoxy-L-arabinose-

oxoglutarate aminotransferase, an enzyme modifying an arabinose that is attached to lipid A. 

Lipid A is the most immunogenic component of LPS; its different modifications have great 

effect on the nature of the immune response and are adaptive to different environments35. 

Notably, this SNP was the one whose association with BMI lost its statistical significance 

with the addition of the diet covariates to the regression model. Taken together, we suggest 

that the genetic variation that we discovered interacts with the host diet and affects the levels 

or toxicity of LPS expressed by the bacteria and, consequently, may cause the host to gain 

weight.

Discussion

Although various bacterial species in the gut microbiome are known to associate with 

host health, the association of single-nucleotide variations with human health traits was 

not yet tested. In this work, we associated 12,686,191 bacterial SNPs with host BMI in a 

cohort of 7,190 healthy individuals. We discovered 1,358 associations between individual 

bacterial SNPs and host BMI, which represent 40 independent associations—considerably 

unconfounded by host diet, medications and physical activity and tested in an independent 

cohort. Although this study concentrated on BMI, both we and others can harness this 

versatile metagenomics-based framework for studying other traits, cohorts and body sites, 

to further the understanding of the associations between the microbiome and host health. 

We demonstrate that nucleotide-level intra-species diversity in the microbiome correlates 

with the diversity in human physiological states, highlighting the potential importance of 

incorporating this level of information, previously unaccounted for, in future studies of host–

microbiome interactions.

We show the advantage of the MWAS framework in creating mechanistic hypotheses. Each 

of the associations that we found can be mapped to a specific bacterium, gene and even 

Zahavi et al. Page 7

Nat Med. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein domain and can be further studied in its functional context. By contrast, SNP arrays 

used in most human GWASs provide only limited subsets of SNPs and may not identify 

causal SNPs. In this analogy, the MWAS framework is more similar to whole genome 

sequencing-based GWASs, which directly test all variable nucleotides and can point directly 

at causal loci. Our study highlights two associations related to energy metabolism and host 

inflammatory state that support leading hypotheses on the microbiome’s impact on host 

weight while also identifying genes with unknown function that call for further study and 

annotation.

We revealed 40 associations between bacterial SNPs and host BMI that may potentially 

improve future microbiome-based interventions. Some of the BMI-associated SNPs that we 

discovered may have a causal role. Alternatively, some of the phenotype-associated SNPs 

that we discovered may be adaptive. Zhao et al.36 showed that gut bacteria evolve at the 

nucleotide level during a host’s lifetime, but they did not compare these changes with 

physiological or exogenous host factors. The SNPs that we found may reflect the effect of 

host health and lifestyle on the microbiome. The two options are not necessarily mutually 

exclusive. Boehme et al.37 showed that fecal microbiota transplantation from young to 

old mice reverses some of the immune and cognitive effects of aging. This implies that, 

although the aging process affects the gut microbiome, the microbiome, in turn, has a causal 

role in some of the phenotypic differences associated with aging. Similarly, the abundance 

of various genetic variants may result from host lifestyle, for example, as well as affect 

host health. Identifying the causal nature of these associations necessitates a subsequent 

SNP-based microbiota transplantation study. This intricate task would require the isolation 

and cultivation of the specific strains, genetic manipulation to introduce individual variation 

and the development of an appropriate model system for a comprehensive exploration of 

the SNP impacts on both the bacteria and host. Such follow-up experimental work will also 

enable the validation of the independence of SNP associations with BMI from associations 

with bacterial relative abundance, which was, thus far, supported for all associations by 

using relative abundance as a covariate in the MWAS model and for a subset of associations 

by the lack of direct correlation between relative abundance and BMI.

Associations that result from causal SNPs, once validated, may be utilized for the 

development of therapeutics. Since the associations we found map to a specific genomic 

position, such treatments may be based on administering the bacteria with the health-

associated alleles, the enzyme which contains the health-associated residue, or the metabolic 

product of the enzyme variants. Some of the SNPs we found show a large phenotypic 

difference between individuals with the major or alternative alleles. For some SNPs, the 

average BMI difference between the allele groups was greater than 2 points—the equivalent 

of a 5.8 kg difference for a 1.7 meters tall person. If causal, treatments based on the 

SNPs can potentially have large effect sizes. Adaptive SNPs can also be used to improve 

microbiome-based treatments. In addition to their contribution to our general understanding 

of host-microbiome interactions, variants that are adapted to certain health states may be the 

basis for more robust—and possibly, personalized—microbiome modifications.

We note that this is not an exhaustive set. BMI-associated SNPs may be absent from 

our results because we filtered out reads from genomic regions shared between species 
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or for bacteria that were not prevalent enough to reach the 1,000 samples cutoff for 

inclusion or for the association to reach the metagenome-wide significance cutoff. Our 

results show the potential of the MWAS framework to shed light on the mechanisms 

underlying host–microbiome interactions, but the comprehensive interpretation of the 

MWAS results is still limited by our understanding of microbiome population structure. 

Although methods to control for population structure were developed in the field of human 

genetics, their translation into the metagenomic microbiome world is not straightforward: 

metagenotyping hinders the deduction of long-range linkage and haplotyping38, especially 

for low-abundance species and when using single-end sequencing; principal component 

analysis (PCA), which is often used in GWASs to account for population structure, is also 

problematic in a metagenomic framework due to the high missingness in the data. Basing 

the study on cultured isolates rather on metagenomic sequencing could have helped resolve 

the population structure but at the expense of sample size and taxonomic range. We aimed 

for a systematic analysis of microbiome SNPs across species and, therefore, prioritized 

obtaining a large sample size by using metagenomic data and including both low-coverage 

and high-coverage species and samples. The existence of population structure and linked 

SNPs can lead to false discoveries due to correlation among SNPs, population stratification, 

structural variations or pangenome variations. It may also lead to missed discoveries because 

testing many correlated SNPs independently and multiple-hypotheses adjustments impairs 

the statistical power in the study. In one species, we originally found 908 correlated BMI-

associated SNPs. In this species, the large number of correlated SNPs may indicate that there 

are separate strains that are associated with host BMI, perhaps through nucleotide variation 

but possibly due to other strain differences, such as gene content variations, which were not 

the focus of this study.

Because, in most species, we found fewer than a dozen BMI-associated SNPs, we assume 

that, in these species, the associations that we discovered were probably not confounded by 

population structure. Additionally, we adopted the GWAS clumping procedure to remove 

redundant associations and identify singleton SNPs whose associations with the phenotype 

are more likely direct. This further increased the MWAS potential to highlight specific loci 

of potential importance to host–microbiome interactions and separate those from correlated 

SNPs that result from population structure and LD. The clumping procedure revealed that 

some SNPs were correlated, which implies that we lost statistical power—the number of 

independent hypotheses that we tested in the study is smaller than the number that we 

corrected for. Although we likely set the Bonferroni thresholds too high for that reason, 

we nonetheless discovered numerous significant associations. Finally, although additional 

validation is needed, observing the correlation between SNPs and BMI in a second cohort 

of people from a different continent, which represent different host and bacterial ancestry, 

also reduces the likelihood of population stratification and other population structure biases. 

Future research can further improve the MWAS framework by developing more MWAS-

appropriate methods to account for bacterial population structure.

In summary, we presented a framework to study the associations between single-nucleotide 

variations in the microbiome and host phenotypes and show that individual SNPs in the 

microbiome associate with host BMI. These associations can be mapped to specific loci, 
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suggesting specific genes that may stand at the center of host–microbiome associations for 

future studies and may pave the way to designing novel microbiome-based treatments.

Methods

Cohort

We analyzed a cohort of 7,190 healthy Israeli individuals. Participants in this cohort 

included 3,816 (53.1%) women and 3,374 men who were recruited as part of an ongoing 

prospective study—’the 10K Project’21. Ages ranged from 25 years to 75 years, and most 

were between 40 years and 70 years (7,116/7,190, 99%). Exclusion criteria are detailed 

in Shilo et al.21 and include antibiotics usage in the 3 months before recruitment. A 

single sample from each participant was included in this observational study. Samples were 

collected between April 2019 and March 2022.

The year of birth and the sex of the participants were self-reported. BMI was calculated 

based on height and weight that were measured on site. We handled outliers in the BMI 

measurements using the following procedure: first, we found the fraction of the data that 

includes 98% of the values within the smallest range; next, we calculated the mean and s.d. 

of BMI distribution, based on these 98% of the data; and then, we removed values that are 

more than 9 s.d. away from the mean and clipped values that are 5 s.d. away from the mean 

or farther. We obtained complete age, sex and BMI data for 7,056 of the 7,190 participants 

and removed the remaining individuals from the analysis. Diet, medication and exercise 

habits data were also self-reported. Diet was self-recorded using a designated mobile app in 

the 14-d period around sampling.

All participants signed an informed consent form upon arrival to the research site. The 10K 

cohort study is conducted according to the principles of the Declaration of Helsinki and was 

approved by the institutional review board of the Weizmann Institute of Science (protocol 

no. 964-1).

Microbiome sample collection and processing

Microbiome sampling was done using an OMNIgene·GUT (OMR-200, DNA Genotek) stool 

collection kit, which has the advantage of maintaining DNA integrity in typical ambient 

temperature fluctuations. Each participant was given a kit and was requested to collect a 

fecal sample at home. The collected samples were transferred at room temperature to our 

participant reception center at Weizmann Institute of Science, where they were documented 

and frozen at −20 °C immediately. Then, samples were transferred in a cooler to our 

research facilities where they were stored at −20 °C until DNA extraction was performed. 

Laboratory work was done in the Segal laboratory at the Weizmann Institute of Science.

Metagenomic DNA was purified using PowerMag Microbial DNA Isolation Kit (MO 

BIO Laboratories, 27200-4) optimized for the Tecan automated platform. Libraries for 

next-generation sequencing were prepared using NEBNext Ultra II DNA Library Prep Kit 

for Illumina (New England Biolabs, E7775) and sequenced on a NovaSeq sequencing 

platform (Illumina). Sequencing was performed with a 100-bp single-end reads kit and 

a depth of 10 million reads per sample, using Illumina unique dual sequencing indexes 
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(IDT–Syntezza Bioscience). DNA purification, library preparation and sequencing were 

performed in batches of 384 samples. A standard microbial community (ZymoBIOMICS 

Gut Microbiome Standard, D6331) was inserted into each batch for quality control. No 

batch corrections were performed.

We filtered metagenomic reads containing Illumina adapters and low-quality reads and 

trimmed low-quality read edges. We detected host DNA by mapping reads to the human 

genome using Bowtie 2 (ref. 39) with inclusive parameters and removed those reads.

Metagenomic reads mapping

We mapped the processed reads to a reference set of genomes representing bacterial species 

from the human gut microbiome. The reference set that we used, as well as the procedures 

for its taxonomic annotation, gene prediction and gene annotation, are described in detail in 

Leviatan et al.22.

We mapped the metagenomic reads to the reference genomes twice: first to estimate the 

list of bacterial species present in each sample and their relative abundances and then to 

compare reads aligned to the same genomic position at the SNP stage.

To determine species relative abundance in samples, we used the URA algorithm23, which 

uses genomic sequences that are unique to single species in the reference set to determine 

which bacterial species exist in each microbiome sample. We clipped the relative abundance 

at a minimum of 0.0001 (that is, this is the smallest possible value of a species relative 

abundance in this framework).

For the SNPs stage, we assigned each metagenomic read to a position within a bacterial 

genome using Bowtie2 (version 2.2.9, option ‘–very-sensitive-local’)39. If Bowtie2 found 

multiple target genomes to which the read could map with the same score, we compared 

the list of potential targets with the list of species that we assumed (based on the previous 

step) exist in the sample. When a read could be assigned with the same likelihood to 

more than one species that existed in the sample, we excluded it from the analysis. We 

chose this approach for two reasons: on the one hand, excluding ambiguously mapped reads 

is important for not mistaking polymorphisms that mark the difference between different 

species with a similar genomic region as actual (intra-species) SNPs; on the other hand, 

considering only species present in each sample as potential targets helped us retain more 

reads and increase the sample size.

Finding variable positions, calling the major allele and genotyping samples

The first step was to find the cohort-wide major of each genomic position of each species 

in our samples. For each position within the reference genome, for each sample, we counted 

the number of reads that mapped to this position containing each of the four nucleotides 

(up to a limit of 255 reads per nucleotide per sample). Then, for each position, we summed 

these four values over all of the samples that covered this genomic position to determine the 

cohort-wide major allele of that position as well as the second major allele. We note that this 

stage also included samples that are not included in this study (from other cohorts that we 
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analyze in our group23,40), which may have affected our perception of the cohort-wide major 

allele.

Next, we genotyped the samples. For each sample and each genomic position, we computed 

the fraction of reads that contained the cohort-wide major allele—its major allele frequency.

Lastly, we detected the variable positions. We binarized each sample as either ‘major’ or 

‘non-major’ (major allele frequency > 0.05 or major allele frequency ≤ 0.05, respectively) 

and marked as ‘SNPs’ the positions in which the fraction of samples with mostly the 

major allele was at most 99% of the samples covering the positions, based on the common 

definition for SNP.

Statistics and reproducibility

No sample size calculations were done as part of the study design. Because this is the 

first study, to our knowledge, to associate microbiome SNPs with host BMI, no prior 

knowledge on the expected effect sizes exists, and, thus, a sample size calculation was not 

feasible. Samples included are all the samples that met the criteria described in the ‘Cohort’ 

subsection.

Data analysis was done using Python 3.7.4, with packages numpy 1.21.0, pandas 1.2.5, 

statsmodels 0.12.2 and scipy 1.7.0.

SNP–phenotype associations

For each SNP that we associated with BMI, we excluded samples with any missing value for 

one of the covariates or for the explained variable. We then verified that (1) there remained 

at least 1,000 samples; (2) the position is sufficiently variable—there are at least 1% and at 

least 50 samples in which the dominant allele is the major allele and, similarly, at least 1% 

and 50 samples in which the dominant allele is different than the major allele; and (3) the 

most common value of the explained variable (that is, the most common BMI label among 

samples) is not more common than 95% of samples. We only analyzed SNPs that fulfilled 

all these criteria.

We tested the association between each SNP and BMI using a linear regression model with 

the microbial genotype (major allele frequency), species relative abundance (log10) of the 

species to which the SNP belongs, age and sex as covariates and the BMI value as the 

explained variable. Only samples with complete data were included in the analysis of each 

SNP.

For the linear regression, we used statsmodels.regression.linear_model.OLS41. We 

performed Bonferroni’s adjustment for the statistical significance 0.05 cutoff: 0.05 / 

12,686,191 = 3.94 × 10−9.

Clumping

We applied the clumping procedure to extract independent associations from the list of 

BMI-associated SNPs. For each species separately, we began the process with the list of 

SNPs whose associations with BMI passed the significance threshold (metagenome-wide 
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Bonferroni ≤ 0.05) and filtered it in an iterative procedure. In each step, we added to 

the final list the SNP with the smallest P value and removed from the analysis all SNPs 

that were correlated to it. In the next step, we added to the final list the SNP with the 

next-smallest P value (out of the SNPs that were not excluded in the previous step). This 

process removes from the list of BMI-associated SNPs those that are correlated with each 

other and keeps only one representative SNP from each correlated SNP group, based on its 

strongest association with BMI. To avoid including redundant associations in our final list 

of results, we chose a stringent threshold for correlation and excluded SNPs correlated with 

Spearman’s correlation coefficient equal to or higher than 0.3 (with P ≤ 0.05).

Power estimation

To estimate the power to discover the 40 BMI-associated SNPs using different sample sizes, 

we used statsmodels.stats.power.tt_solve_power41. We calculated the standardized effect 

size of each SNP based on the regression model in the discovery MWAS, dividing the SNP’s 

estimated coefficient by the s.d. of the coefficient and the squared root of the discovery 

sample size: standardized effect size = coef / (s.d.(coef) × sqrt (N)). We set the alpha to 3.9 

× 10−9 based on a cutoff of 0.05 and a Bonferroni correction for 12,686,191 hypotheses. We 

repeated this calculation for varying sample sizes and set the power variable to ‘None’ for 

the algorithm to estimate it. It is important to note that ‘sample size’ in this case refers to the 

number of samples with reads covering the specific SNP, which is usually smaller than the 

total number of samples in a study and even smaller than the number of samples including 

the species.

We estimated the sample required sample size for the replication in a similar manner, setting 

the sample size to ‘None’, the power to 0.9 and the alpha to 0.05 / 40 based on a cutoff of 

0.05 and a Bonferroni correction for 40 hypotheses.

Associating phenotypes with species abundance

For each species in which we found SNPs significantly associated with BMI, we tested 

whether the relative abundance of the species also associates with this phenotype. We 

excluded samples for which the BMI value was missing and computed the P value of 

the Spearman’s correlation between the relative abundance of species and BMI (using 

scipy.stats.spearmanr42). We performed Bonferroni’s adjustment for multiple hypotheses by 

multiplying each P value by the total number of species tested and setting the significance 

threshold at 0.05.

Replication in a second cohort

We obtained the metagenomic samples from Gacesa et al.28 and processed them using the 

same computational pipeline that we used for the discovery cohort. To use the same pipeline, 

we used only one of the paired-end reads (either forward or reverse) and truncated reads at 

75 bp. We repeated the MWAS analysis for the 40 SNPs that were significantly associated 

with BMI in the discovery cohort. We tested all 40 SNPs, even if they did not meet the 

criteria set for SNPs in the discovery MWAS; we did not require a minimum sample size, 

variability in the SNP among tested samples or variability in the BMI. We performed 

Bonferroni’s adjustment for the statistical significance 0.05 cutoff: 0.05 / 40 = 0.00125.
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Replication randomization

To estimate the statistical significance of the replication rate of the associations in the second 

cohort, we tested how many significant associations could be found in a random set of 40 

SNPs. We repeated this experiment 1,000 times, each time choosing 40 of the SNPs that 

were tested in the discovery MWAS for an MWAS analysis with the replication cohort. We 

used the same parameters as described in the ‘Replication in a second cohort’ subsection 

and corrected for 40 hypotheses in each repetition. In 137 of the 1,000 repetitions, one or 

two SNPs could not be analyzed. We then compared the number of statistically significant 

associations found in each random set of 40 SNPs with the number of associations found 

when testing the 40 SNPs that were associated with BMI in the discovery cohort. In none of 

the 1,000 repetitions did we find as many statistically significant associations, and, thus, we 

estimated the P value for the replication to be less than 0.001.

Controlling for additional confounders

To analyze the potentially confounding effect of host diet, exercise and medications on 

the SNP–BMI associations, we repeated the MWAS analysis of the 40 post-clumping 

BMI-associated SNPs with additional covariates. We only included medication categories 

reported by at least 50 participants. Diet covariates of each participant were generated by 

dividing the logged food items into categories, calculating the daily fraction of caloric intake 

attributed to each food category and averaging these fractions over days with at least 500 

logged calories. Diet, exercise and medication covariates are listed in Supplementary Table 

7.

Because our records for these self-reported features are partial, and because, for each 

SNP, we only analyzed samples with complete covariate information, the addition of each 

covariate reduced the sample size for the MWAS. Therefore, we tested each of the three 

categories separately. For each of the 40 SNPs, after reducing the set of samples to those 

with complete information on the additional covariates, we conducted a second regression 

analysis with the original set of covariates: the bacterial genotype and relative abundance, 

age and sex. Only if the SNP passed the statistical significance cutoff again, we conducted 

a third regression analysis, adding the extra covariates of the analyzed category. If the 

SNP–BMI association met the significance cutoff with the reduced set of samples but was 

not significant after adding the extra covariates, we deduced that the association might be 

confounded by the lifestyle variables of that category.

Annotating SNPs

To functionally annotate each SNP, we compared its genomic position with the location 

of predicted genes along the reference genome. Accordingly, SNPs were annotated as 

either within a gene or in an intergenic region. In some contigs, there were no predicted 

genes. In those, we marked the function of the SNPs as unknown. We further classified 

SNPs that were within predicted genes as either within protein-coding genes or within 

non-protein-coding genes (mainly RNA genes, such as tRNA and rRNA).

To determine the synonymy of SNPs within protein-coding genes, we compared its 

surrounding codon with the SNP’s major allele and with its second major allele. First, we 
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compared the location of the SNP with the predicted open reading frame (ORF) to compute 

the location of the SNP’s surrounding codon. Then, we extracted the cohort-wide major 

allele of the three nucleotides within its surrounding codon. Finally, we compared the amino 

acid translation of this codon with the translation of the codon when the SNP’s allele is 

changed to its second major allele. If the two codons translated to different amino acids, we 

classified the SNP as non-synonymous.

Because we designed our MWAS framework to test the effect of each individual SNP 

independently, we did not test whether more than one SNP existed within a codon. In these 

cases, our synonymy classification may be wrong. Additionally, we note that, in samples 

where the allele is neither the cohort-wide major nor its second major, the effect of the 

genetic variation on the coded protein may be different than we predicted.

Functional enrichment

To test the potential functional enrichment of the 48 correlated BMI-associated SNPs 

in Rep_3066, we compared the fraction of SNPs in genes annotated with the COG 

category ‘C: Energy production and conversion’ out of all tested Rep_3066 SNPs, with the 

fraction of this COG category among the 48 SNPs. We used a hypergeometric distribution 

(scipy.stats.hypergeom42) to estimate the likelihood of obtaining these many ‘C’ category 

genes among the BMI-associated SNPs with a random choice of Rep_3066 SNPs.

Visualization

For visualization, we used Matplotlib43. To minimize the overlap between gene tags in 

Manhattan and volcano plots, we used adjust-Text (https://github.com/Phlya/adjustText; ref. 

44).

Extended Data

Extended Data Fig. 1 ∣. SNPs overview.
(a) Distribution of the 12,686,191 detected SNPs across 348 species. (b) Number of samples 

covering different SNPs.
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Extended Data Fig. 2 ∣. Volcano plot.
Volcano plot shows for each SNP the difference between the average BMI in individuals 

with mostly the alternative allele (major allele frequency ≤ 0.5) and the average BMI 

in individuals with mostly the major allele (major allele frequency > 0.5; x-axis); and 

its p-value (y-axis). Red annotations show gene symbols of the protein-coding SNPs left 

after the clumping stage (if a gene symbol exists). X-axis was truncated to the range of 

statistically significant associations ±10%.
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Extended Data Fig. 3 ∣. BMI differences.
For each of the 40 BMI-associated SNPs that remained after the clumping stage, boxplots 

(center, median; box, interquartile range; whiskers, 5th and 95th percentiles; notches, 95% 

confidence interval around the median based on 1,000 times bootstrap) compare host BMI 

distribution of individuals with no bacteria of this species (left box; Methods), hosts of 

bacteria with the major allele (middle box; major allele frequency ≥ 0.99) and hosts of 

bacteria with the minor allele (right box; major allele frequency ≤ 0.01). The grey scale 

indicates the difference between medians. Groups were compared in a two-sided Mann-

Whitney test, and p-values were Bonferroni corrected for 120 hypotheses (40 SNPs, 3 

comparisons per SNP).
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Extended Data Fig. 4 ∣. Quantile-quantile (Q-Q) plots.
Expected (uniform distribution between 1/[the total number of tested SNPs] and 1) p-values 

compared to the SNPs p-values estimated in the MWAS analysis. (a) All tested SNPs. 

Red dots are the 40 BMI-associated SNPs remaining after the clumping procedure. (b) 
Each species estimated and plotted separately using a random color. Straight lines connect 

adjacent SNP dots to increase readability. (c) Species with more than 13 BMI-associated 

SNPs. Straight lines connect adjacent SNP dots to increase readability.
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Extended Data Fig. 5 ∣. Number of correlated SNPs in each linkage group.
Histograms show the number of correlated SNPs that were found in the clumping stage in 

each linkage group. The total number of groups is 40, which is the final number of SNPs 

that remained post the clumping procedure. (a) Full range of group sizes. (b) Groups with 1 

to 100 SNPs.

Extended Data Fig. 6 ∣. Power analysis.
Boxplots (center, median; box, interquartile range; whiskers, 1.5 * interquartile range or the 

most extreme data point) show the calculated power for associating the 40 SNPs with BMI, 

given the effect size observed in our cohort and various effective sample sizes (N). Alpha 

was set to 3.9 × 10−9 based on a cutoff of 0.05 and a Bonferroni correction for 12,686,191 

hypotheses.
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Extended Data Fig. 7 ∣. Random replication control.
For 1000 random choices of 40 SNPs from the discovery analysis, showing how many 

passed the 0.05 Bonferroni adjusted cutoff for association with BMI in the replication 

cohort. For reference, the red dotted line shows the number of SNPs that passed the cutoff 

when the 40 SNPs that were associated with BMI in the discovery cohort were tested – 17.

Extended Data Fig. 8 ∣. Replication cohort characteristics.
Age, sex, and BMI distribution of the 8,204 study participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Study overview.
a, illustration of the study design. b, Age, sex and BMI distribution of the study participants. 

The purple and orange lines in the right panel show the trend of the age–BMI relation for 

females and males, respectively. The P value of the slope is 10−17 for the purple and 10−10 

for the orange lines.
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Fig. 2 ∣. Bacterial SNPs associate with host BMI.
a, Manhattan plot showing the P value of each SNP’s association with BMI. SNPs are sorted 

along the x axis based on taxonomy. The red dashed line marks the Bonferroni-adjusted 0.05 

P value threshold = 3.94 × 10−9. SNPs that were excluded in the clumping stage are colored 

in light gray. Red annotations show gene symbols of the protein-coding SNPs left after the 

clumping stage (if a gene symbol exists). b, For the SNPs with the smallest P value (left 

two) or largest difference between allele groups (right two) out of the SNPs that were not 

filtered in the clumping stage, box plots (center, median; box, interquartile range; whiskers, 

5th and 95th percentiles; notches, 95% confidence interval around the median based on 

1,000 times bootstrap) compare host BMI distribution of individuals with no bacteria of 

this species (Methods), hosts of bacteria with the major allele (major allele frequency ≥ 

0.99) and hosts of bacteria with the minor allele (major allele frequency ≤ 0.01). The gray 

line indicates the difference between medians. Groups were compared in a two-sided Mann–

Whitney test, and P values were Bonferroni corrected for 120 hypotheses (40 SNPs, three 

comparisons per SNP). All 40 SNPs are shown in Extended Data Fig. 3. The q values in the 

titles are the Bonferroni-adjusted P values of SNPs in the original MWAS regression. NS, 

not significant.
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Fig. 3 ∣. Number of BMI-associated SNPs per species.
Bar height and black numbers show the number of SNPs achieving the Bonferroni-adjusted 

0.05 significance cutoff for association with BMI. White numbers show the number of 

associations retained after the clumping procedure. Species with no BMI-associated SNPs 

are not shown.
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Fig. 4 ∣. Comparison of MWAS results and relative abundance analysis.
a, Pie plot shows the fraction of bacterial species not correlated with BMI by species relative 

abundance out of the 27 species in which we found BMI-associated SNPs. b, Pie plot 

shows which of the 40 BMI-associated SNPs are in species associated with BMI by relative 

abundance.
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Fig. 5 ∣. Results replicate in a geographically independent cohort.
Comparison of each SNP’s estimated coefficient (center) and 95% confidence interval (bars) 

in the MWAS regression in the discovery (x axis) and the replication (y axis) cohorts. SNPs 

are colored according to whether their Bonferroni-adjusted P value in the replication cohort 

is below 0.05. SNPs in the upper-right and lower-left quarters have the same correlation 

directionality in both cohorts.
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Fig. 6 ∣. BMI-associated SNPs in Rep_3066.
Top plot, a fraction of the Manhattan plot from Fig. 2a, zoomed-in to show a region of 

Rep_3066, contig 257, where there are SNPs significantly associated with BMI. SNPs are 

plotted according to their genomic position (x axis) and P value (y axis). The red dashed line 

marks the Bonferroni-adjusted 0.05 P value threshold. In the clumping procedure, the SNP 

with the smallest P value was retained, and other significantly associated SNPs were filtered 

out. Bottom plot, position of predicted ORFs in the shown genomic region, colored based on 

their predicted function.
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