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A B S T R A C T   

Background: Type 2 diabetes elevates the risk of severe outcomes in COVID-19 patients, with multiple studies reporting higher case fatality rates. Metformin is a 
widely used medication for glycemic management. We hypothesize that improved adherence to metformin may lower COVID-19 post-infection mortality risk in this 
group. Utilizing data from the Mexican Social Security Institute (IMSS), we investigate the relationship between metformin adherence and mortality following 
COVID-19 infection in patients with chronic metformin prescriptions. 
Methods: This is a retrospective cohort study consisting of 61,180 IMSS beneficiaries who received a positive polymerase chain reaction (PCR) or rapid test for SARS- 
CoV-2 and had at least two consecutive months of metformin prescriptions prior to the positive test. The hypothetical intervention is improved adherence to 
metformin, measured by proportion of days covered (PDC), with the comparison being the observed metformin adherence values. The primary outcome is all-cause 
mortality following COVID-19 infection. We defined the causal parameter using shift intervention, an example of modified treatment policies. We used the targeted 
learning framework for estimation of the target estimand. 
Findings: Among COVID-19 positive patients with chronic metformin prescriptions, we found that a 5% and 10% absolute increase in metformin adherence is 
associated with a respective 0.26% (95% CI: − 0.28%, 0.79%) and 1.26% (95% CI: 0.72%, 1.80%) absolute decrease in mortality risk. 
Interpretation: Subject to the limitations of a real-world data study, our results indicate a causal association between improved metformin adherence and reduced 
COVID-19 post-infection mortality risk.   

Introduction 

Multiple studies have reported higher COVID-19 case fatality rates 
among patients with pre-existing type 2 diabetes [1–4]. This increased 
mortality has also been documented in Mexico [5], where diabetes 
prevalence is substantial, affecting 14% of those aged 20 years and 
above and reaching up to 36% among individuals aged 60 to 69 years. A 
substantial body of research suggests that improved adherence to gly-
cemic control medications may reduce all-cause mortality risk (see 
Appendix A for a brief review) [6–11]. The potential of repurposing 
metformin, a widely used medication for glycemic management in type 
2 diabetes, as a treatment for COVID-19 has sparked recent interest due 
to its suggested therapeutic effects against the virus [12], including its 
ability to inhibit SARS-CoV-2 virus in cell cultures [13]. Because 

metformin is a long-term medication, poor adherence may reduce its 
effectiveness in glycemic control. Quantifying the degree to which 
improved adherence to metformin may influence COVID-19-related 
mortality remains a critical yet unresolved question. In this study, we 
evaluate the association between improved adherence to metformin and 
post-COVID-19 mortality by using data from the Mexican Institute of 
Social Security (IMSS). Metformin is the most prescribed chronic disease 
medication in the prescription database of IMSS, allowing us to obtain 
more accurate estimates of adherence. Our study population includes 
individuals who have health insurance coverage provided by IMSS, 
which consists of individuals working in the formal private sector and 
their families. The hypothetical intervention of interest is improved 
adherence to metformin, measured by proportion of days covered 
(PDC), with the comparison being the observed metformin adherence 
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values. The primary outcome is all-cause mortality following COVID-19 
infection. We leverage the comprehensive pharmacy prescription data-
base provided by IMSS, the nation's largest healthcare provider. Our 
study spans the first three waves of the pandemic from March 2020 to 
December 2021. 

Assessing the impacts of medication adherence using real-world data 
presents numerous challenges, predominantly due to the potential for 
confounding. The relationship between adherence and health outcomes 
is complex and can be confounded by a variety of patient, provider, and 
external factors such as age, education, disease severity and duration, 
comorbidities, and socioeconomic status [14–16]. As an example, 
adherent patients might have better access to healthcare resources or 
higher socioeconomic status, independently improving their health 
outcomes. Conversely, poor adherence might be associated with more 
severe disease or additional comorbidities, which independently lead to 
adverse health outcomes. Such confounding effects may exaggerate 
observed medication adherence benefits. On the other hand, patients 
with severe illness may receive stricter medication adherence recom-
mendations, or be more motivated to adhere, leading to an observed 
association between improved medication adherence and negative 
outcomes including death. 

Targeted minimum loss-based estimation (TMLE) within the targeted 
machine learning framework [17] has made significant advances in 
mitigating bias from model misspecification by enabling the use of an 
ensemble of state-of-the-art, flexible, machine learning algorithms (a.k.a 
super learner) to data-adaptively estimate the exposure-outcome rela-
tionship, while still delivering robust statistical inference because of its 
targeting step [18–20]. This method is particularly well-suited to big 
data settings, such as ours. Given the large sample size, we can aggres-
sively reduce bias without incurring significant costs to variance, 
thereby yielding more precise estimates. When the exposure of interest 
is continuous, such as ours, the choice of causal parameter is critical as 
certain parameters may have less support in the data, rendering their 
estimates unreliable. Conventional parameters used in the context of 
medication adherence, such as the average treatment effect, typically 
attempt to measure the impact of highly improbable interventions (such 
as converting low-adherence individuals into high-adherence in-
dividuals rather than marginally improving adherence from an in-
dividual's baseline adherence) and necessitate artificial discretization of 
the continuous spectrum of medication adherence. Such over-
simplifications can lead to loss of information and subsequently biased 
estimations. In contrast, we chose a parameter defined using shift 
intervention that satisfies two key conditions. Firstly, it has sufficient 
support in this data set, meaning there is enough variation within 
baseline groups to measure the targeted impact. Secondly, it provides an 
estimate of a realistic intervention – a small improvement on an in-
dividual's adherence. This target parameter can deliver more actionable 
and interpretable insights for policymakers and practitioners alike. 

Methods 

Study design and population 

This is a retrospective cohort study that draws upon a population of 
beneficiaries of the Mexican Institute of Social Security (IMSS). We 
included 61,180 individuals who received a positive polymerase chain 
reaction (PCR) or rapid test for SARS-CoV-2 and had a history of at least 
two consecutive months of metformin prescriptions prior to the positive 
test. Data was sourced from the IMSS Epidemiological Surveillance 
Online Notification System (SINOLAVE) and the IMSS pharmacy pre-
scription database, allowing for the identification of patient de-
mographics, COVID-19 test status, deceased status, and medication 
prescription history. A comprehensive description of the SINOLAVE data 
has been published previously [21]. The three epidemiological waves 
are defined as: the first wave from March 29th to October 3rd, 2020; the 
second wave from October 4th, 2020 to May 29th, 2021; the third wave 

from May 30th to December 18th, 2021 [22]. The period of COVID-19 
tests extended from March 2020 to October 2021, while prescription 
data spans from January 2018 to October 2021. 

A range of potential confounders (a total of 14), both at the indi-
vidual and facility level, were included in this analysis. Individual-level 
variables encompass age, sex, pre-existing conditions, duration on 
metformin, and the number of COVID-19 vaccine doses received. 
Facility-level variables include total population, proportion of the pop-
ulation with IMSS medical services affiliation, disabled population 
proportion, average education level, illiteracy rate, and average number 
of occupants per room (housing density). Only 17 patients with 
incomplete data on pre-existing conditions were excluded from the 
study. Facility-level variables contain between 3% to 12% missing data 
(for descriptive statistics on the distributions of metformin adherence, 
confounders, and COVID-19 mortality, refer to Appendix B). Missing 
values were imputed using respective median values, and an indicator 
variable was added to denote missing data for each variable with 
missing values. 

Medication adherence measure 

We measure medication adherence [23] using proportion of days 
covered (PDC), calculated by dividing the number of days covered by 
the medication dispensed by the total duration for which an individual is 
prescribed that medication [24]. The Pharmacy Quality Alliance (PQA) 
endorses the use of PDC as a reliable metric for assessing medication 
adherence [25]. The medication we consider in our study is metformin, 
with 30 tablets per box, each tablet containing 850 mg of metformin 
hydrochloride, administered orally. A detailed description on the 
calculation of PDC and assumptions involved can be found in Appendix 
C. 

PDC is traditionally categorized into “adherent” and “non-adherent” 
based on an established cutoff value [24]. A PDC value greater than or 
equal to 0.8 is conventionally considered sufficient for adherence and is 
an accepted cutoff for all class diabetes drugs as suggested by the PQA. 
Despite its widespread use, the justification for this cutoff value is 
seldom discussed in the literature. Baumgartner et al. suggested in their 
comprehensive review of medication adherence thresholds that these 
thresholds should correspond to an adherence rate above which the 
clinical outcome is deemed satisfactory, with the threshold varying 
depending on the disease, medication, and individual characteristics 
[26]. We concur with this recommendation, particularly when medi-
cation adherence is treated as an intervention in causal inference 
studies. Dichotomizing medication adherence measures based on a fixed 
threshold may lead to several issues. It may obscure the potential impact 
of differential access to medical resources on medication adherence, 
leading to less interpretable effects due to such inequalities. Moreover, 
dichotomization can lead to positivity violation–a lack of data support 
for individuals with certain characteristics–that may result in biased 
estimates, large variances, and uninterpretable estimates [27]. Addi-
tionally, if we adopt 0.8 as the cutoff for PDC, we lose the ability to 
distinguish the impact of 0.7 adherence on a clinical outcome from that 
of 0.1 adherence. Thus, crucial information embedded in the continuous 
nature of medication adherence may be lost due to dichotomization. 

To address these concerns, we propose defining a causal parameter 
for medication adherence using shift intervention [28–30], an innovative 
approach for quantifying causal effects of interventions on continuous 
variables (treatments or exposures). Specifically, our causal parameter is 
defined as the difference between the observed mortality risk and the 
expected mortality risk in a hypothetical world wherein everyone's 
medication adherence is increased by a small amount. The shift inter-
vention approach obviates the need for arbitrary dichotomization of 
medication adherence measures and allows for the formulation of more 
flexible and feasible causal parameters that are less susceptible to pos-
itivity violations [30]. 
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Structural causal model, causal parameter, and identification 

The principal objective of this study is to assess the causal effect of 
metformin adherence on COVID-19-related mortality, adjusting for 
confounding factors. For this purpose, we employ a nonparametric 
structural equation model (NPSEM) [19] to model the data-generating 
process, with W denoting confounders, A representing the adherence 
measure (PDC), and Y indicating deceased status: W = fW(UW), A =

fA(W,UA), Y = fY(W,A,UY), where UW, UA, and UY are variables for 
unobserved exogenous errors. The functional forms of fW, fA, and fY are 
unspecified, hence nonparametric. We observe data for n patients. The 
observed data for the i-th patient is given by Oi = (Wi,Ai,Yi), which is 
drawn from the unknown true data-generating distribution, P0, of the 
target population. We assume that O1,O2,…,On are independent and 
identically distributed. 

Shift intervention is one example of a modified treatment policy 
(MTP), in which the hypothetical intervention is characterized by a 
constant shift in the distribution of the observed treatment [29,31]. Shift 
intervention can be used to define causal parameters when the treatment 
is continuous such as medication adherence in our study. Consider an 
additive shift intervention that adds δ > 0 to everyone's medication 
adherence. We are interested in the causal effect of such δ-shift of 
adherence on COVID-19 mortality. We define our causal parameter as 
the decrease in the expected COVID-19 mortality after the δ-shift of 
adherence. Formally, suppose the distribution of metformin adherence 
A conditioned on patient characteristics W = w has support on the in-
terval [l(w) , u(w) ], we define the treatment rule d based on a δ-shift of 
observed treatment for a patient with observed metformin adherence 
A = a and characteristics W = w as d(a,w; δ) = a + δ if a ≤ u(w) − δ and 
d(a,w; δ) = a if a > u(w) − δ. In other words, we only shift the metformin 
adherence of a patient if there is still sufficient data support under such 
shift (we cannot improve adherence to >100%). Following the potential 
outcomes framework [32], our target parameter is Ψ(P) = EP(Y) −
EP

(
Yd), where Yd is the potential outcome of deceased status Y under 

the treatment rule d characterized by the δ-shift intervention. 
We made two key assumptions for the identification of the causal 

parameter. Firstly, the randomization assumption presumes that there 
are no unmeasured variables affecting both the treatment and the 
outcome. Secondly, the positivity assumption states that the shifted 
treatment for a patient with specific characteristics still lies within the 
support of the observed treatment given those characteristics. In this 
context, the randomization assumption infers the absence of unmea-
sured variables affecting both metformin adherence and COVID-19 
mortality. For example, disease severity of diabetes could potentially 
confound this relationship. The randomization assumption is made more 
plausible by adjusting for variables that might reflect disease severity, 
such as age, total number of metformin prescriptions, etc. However, the 
validity of this assumption cannot be assured, primarily due to the 
absence of data on critical markers like HbA1C values in patients. For 
the positivity assumption, in the context of our study, it suggests that the 
shifted level of metformin adherence for a patient, given their specific 
characteristics (like age, pre-existing conditions, etc.), should still lie 
within the range of observed adherence levels for patients with similar 
characteristics. Intuitively, this assumption ensures that our compari-
sons are “like with like” and that our intervention levels are not 
extrapolated beyond the data. However, it is hard to empirically validate 
this assumption as it requires knowledge about the full intervention 
distribution for everyone, which is unobservable in practice. To make 
this assumption more plausible, we chose two shifts of PDC value, 0.05 
and 0.1 increase of metformin adherence on the zero to one scale of 
percent adherence, that are within the realm of what is practically 
achievable based on our data support and likely to be clinically relevant. 
The choice of the two shift threshold values is determined such that the 
estimated ratio between the conditional density of the adherence under 
the counterfactual δ-shift and the conditional density of the observed 

adherence (conditioned on patient characteristics) remains below 10. 
With these two assumptions, we can express our causal parameter Ψ in 
terms of the observed data distribution P0 to construct a causal esti-
mand, given by Ψ(P0) = E0(Y) − E0E0(Y|A = d(A,W; δ) ,W). Thus, 
positive values of Ψ(P0) indicate reduced mortality risk under the shift 
intervention. 

Estimation and inference 

For the estimation of the causal parameter, we employed the tar-
geted minimum loss-based estimation (TMLE), which provides an 
asymptotically linear estimator with an optimal bias-variance trade-off, 
specifically tailored towards the target parameter of interest [19,20]. 
The estimator constructed under the TMLE framework is double-robust, 
meaning that if either the outcome regression model, Q0(A,W) =

E0(Y|A,W), or the conditional density of medication adherence, 
g0(AW) = p0(A|W), is correctly specified, the causal effect estimate 
would be unbiased. TMLE yields a substitution estimator, which ensures 
that the estimated causal effect remains within its possible range [20]. 

The estimation process involves two steps. Firstly, an initial substi-
tution estimator was constructed, with the empirical mean of the 
COVID-19 mortality, i.e., Y = 1

n
∑

iYi, used as an estimator for E0(Y). The 
outcome regression Q0(A,W) was estimated using super learner, a cross- 
validated ensemble machine learning algorithm, with metformin 
adherence A and patient characteristics W as covariates and COVID-19 
mortality Y as the outcome. For the marginal distribution of W, we 
use its empirical distribution as an estimator. Secondly, the estimated 
Qn(A,W) from the first step was fluctuated using a parametric submodel, 
resulting in an updated Q*

n(A,W). Thus, the updated estimator for 

E0E0(Y|A = d(A,W; δ) ,W) is given by 1
n
∑

iQ
*
n(d(Ai,Wi; δ) ,Wi). The 

resulting estimator is asymptotically linear, permitting the construction 
of a Wald-type 95% confidence interval around the point estimate. De-
tails of the estimation steps can be found in Appendix B. The learners 
and their hyperparameters used in the super learner libraries for both Q0 
and g0 are available in Appendix C. 

It is worth considering that the effect of metformin adherence on 
COVID-19 mortality may differ across the various waves of the 
pandemic. Prior research using data from the IMSS suggests that the 
relationship between risk factors and COVID-19 mortality declined over 
successive waves [22]. Moreover, the evolving nature of governmental 
interventions in response to the pandemic [33] may further modulate 
the impact of metformin adherence on COVID-19 mortality. Therefore, 
we also conduct a stratified analysis to examine the causal effect esti-
mate across different COVID-19 waves. To verify our findings' robust-
ness, we conduct a sensitivity analysis using the COVID-19 test result as 
a negative control outcome. We hypothesized that while metformin 
adherence shares common confounders with the COVID-19 test result, 
there should not be a causal relationship between them. Consequently, a 
null effect of metformin adherence on the COVID-19 test result esti-
mated using the same statistical analysis approach would further 
corroborate the robustness of the methodology we employed in our 
study. 

Results 

From the IMSS prescription database, we retrieved a total of 
5,959,306 metformin prescriptions associated with 433,779 patients. 
Among these patients, 90,812 had at least one documented positive 
result from a polymerase chain reaction (PCR) or rapid test for SARS- 
CoV-2. After eliminating expired prescriptions that were never filled 
and patients with a single metformin prescription, the final data set for 
analysis comprised 61,180 individuals. Of those individuals, classified 
by their most recent positive test, 21,715 were in wave 1, 28,425 were in 
wave 2, and 11,040 were in wave 3. The average PDC across the waves 
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was 0.81 (sd = 0.13), 0.81 (sd = 0.13), and 0.82 (sd = 0.13), respec-
tively. Corresponding mortality rates were 31.8%, 35.9%, and 35.8%. 
Details of patient characteristics are provided in Appendix B. 

Fig. 1 shows the distribution of metformin adherence across different 
age demographics. The median proportion of days covered (PDC) 
initially descends among patients aged 10–39 years, ascends to a peak 
among those in the 60–69 years age bracket, and then plateaus for in-
dividuals over 70 years. The interquartile range (IQR) generally narrows 
with advancing age, except for the youngest cohort. The youngest pa-
tient group (10–19 years old) exhibits the highest median PDC. We 
hypothesize that this may be associated with the high proportion of type 
1 diabetics among the 10–19 diabetic population, requiring greater 
adherence to avoid life-threatening hypo- or hyper-glycemia, as well as 
oversight from parents or guardians helping to ensure that medications 
are taken punctually. Conversely, lower adherence levels observed 
among young adults could stem from lower diabetes severity in a pop-
ulation where the majority of diabetes is now type 2. 

In Fig. 2, we present the estimated impact of two interventions - 
additive shifts of 0.05 and 0.1 in metformin adherence - on the reduction 
of COVID-19 mortality rates across all waves and within each individual 
wave. Under the randomization and positivity assumptions outlined in 
the Methods section, we can interpret these effect estimates causally. A 
0.1-additive shift in metformin adherence would lead to an estimated 
reduction in COVID-19 mortality of 1.26% (95% CI: 0.72%, 1.80%) for 
all COVID-19 waves combined. The estimated reductions in COVID-19 
mortality are 0.75% (95% CI: − 0.14%, 1.65%), 1.45% (95% CI: 
0.64%, 2.25%), and 2.14% (95% CI: 0.83%, 3.46%) respectively for the 
first, second, and third COVID-19 wave. From the first to the third wave, 
the estimated decrease in COVID-19 mortality progressively increases. 

To facilitate the visualization of the impact of improved metformin 
adherence across a range of baseline adherence values and add more 
transparency to the super learner ensemble model predictions, we pre-
dicted the change in COVID-19 mortality risk before and after the shift 
for every subject using the fitted super learner. We estimated the COVID- 
19 mortality risk before the shift by taking the empirical proportion. The 
top three plots in Fig. 3 show smooth curves fitted using generalized 
additive models on the super learner predicted change in mortality risk 
after the 0.1-additive shift for each subject. The smooth curves pre-
dominantly reside below zero, suggesting an overall positive effect of 
improved metformin adherence on the reduction of COVID-19 mortality 
risk. Note that individuals with baseline PDC above 0.9 were not shifted, 
therefore there is no change in the estimated mortality. The histograms 
in the bottom panel depict the distributions of baseline and 0.1-shifted 

adherence values for each COVID-19 wave. 

Discussion 

In our study, we found better metformin adherence diminishes 
mortality risk after COVID-19 infection, as highlighted by our shift 
intervention-defined causal target parameter. For context, envision a 
patient on metformin for 14 months (the median span for our study 
group). An adherence improvement equivalent to roughly one and a half 
months is associated with a 1.26% (95% CI: 0.72%, 1.80%) absolute 
reduction in COVID-19 post-infection mortality risk. Our findings 
emphasize the potential of shift intervention techniques in advancing 
causal inference studies when the exposure variable is continuous in 
nature. Compared to conventional methodologies that categorize 
adherence levels in a binary fashion, shift interventions enable in-
terventions to be contingent upon the naturally observed adherence 
values of individual subjects. This approach obviates the necessity for 
arbitrarily defining a threshold value and concurrently mitigates the 
violation of the positivity assumption. MTPs have garnered increasing 
attention within the causal inference community in recent years 
[30,34–37]. Our investigation is among the pioneering efforts to oper-
ationalize this approach. During the statistical estimation phase, we 
employed the targeted minimum loss-based estimation (TMLE) frame-
work. In contrast to parametric regression techniques (e.g., logistic 
regression) frequently utilized in existing research, TMLE utilizes an 
ensemble of state-of-the-art machine learning algorithms to capture the 
intricacies of the underlying data distribution, while also producing an 
estimator conducive to robust statistical inference. 

Practical implications 

Our results suggest that a 0.1 increase in metformin adherence re-
duces COVID-19 mortality. A smaller shift of 0.05 produces a similar 
pattern. A noticeable trend across COVID-19 waves in Fig. 2 suggests 
that the temporal heterogeneity of the effect may be influenced by 
factors such as COVID-19 vaccination rates, changes in the probability of 
prior infection, and/or changes in the circulating mix of viral variants. 
Wave 1, spanning from March to October 2020, occurred before the 
availability of COVID-19 vaccinations in our data. COVID-19 vaccina-
tions might augment the impact of metformin adherence. To explore this 
hypothesis, we conducted additional analyses comparing effect esti-
mates between unvaccinated individuals and those who received at least 
one COVID-19 vaccine dose. Under a 0.05 shift, the estimated effects 

Fig. 1. Side-by-side box plot for the distribution of PDC across age groups.  
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were 0.24% (95% CI: − 0.31%, 0.79%) for unvaccinated individuals and 
0.95% (95% CI: − 1.46%, 3.36%) for vaccinated ones. Under a 0.1 shift, 
the corresponding estimates were 1.08% (95% CI: 0.52%, 1.63%) and 
2.08% (95% CI: − 0.78%, 4.94%). Though the differences in the esti-
mated effects between the vaccinated and unvaccinated individuals are 
not significant due to a limited vaccinated sample size, point estimates 
are noticeably higher among vaccinated individuals, suggesting that it 

would be interesting to explore this further with additional data. In 
addition to vaccination efforts, previous study has reported a notable 
decline in diabetes prevalence among individuals who tested positive for 
COVID-19 [38]. They also pointed out that as the disease progresses, 
healthcare management of severe cases gets better. The beneficial effect 
of metformin on COVID-19 mortality may be overwhelmed by the high 
case fatality rate in the first wave. As the disease progresses, the 

Fig. 2. Estimated reduction in COVID-19 post-infection mortality rate overall and stratified by wave under 0.05 and 0.10 additive shifts in metformin adherence, 
adjusting for confounders. The error bars are 95% confidence intervals obtained using the efficient influence function approach (see Appendix C). 

Fig. 3. Super learner-based substitution estimates of the change in COVID-19 mortality and the empirical distribution of metformin adherence before and after the 
0.1-additive shift. The curves in the top three plots are fitted using generalized additive models on the super learner predicted change in COVID-19 mortality risk after 
the 0.1-additive shift on every subject for wave 1, 2, and 3 respectively. The bottom three histograms are the empirical distributions of metformin adherence 
(measured using PDC) before and after the 0.1-additive shift for wave 1, 2, and 3 respectively. 
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improvement in severe case management, in conjunction with changing 
epidemiological profiles of infected individuals, public health policies, 
healthcare system capacities, and the dynamic nature of the virus, could 
make the effect of metformin adherence on COVID-19 mortality risk 
more pronounced and hence explain the time-varying effect we observe. 

We are also aware of recent work exploring the possibility that 
metformin may have a direct effect on COVID-19 severity, independent 
of its effect at improving glycemic control in diabetic patients [39]. 
Clinical trials have been conducted to evaluate this effect [40–42]. Ev-
idence from clinical trials does not show conclusive evidence suggesting 
the beneficial effect of metformin on COVID-19 outcomes. However, the 
COVID-OUT trial found evidence suggesting that metformin may reduce 
long COVID incidence. Our IMSS colleagues are not aware of any pre-
scription of metformin as a COVID-19 prophylactic agent in the IMSS, 
and thus we believe that our sample is not affected by such off-label use. 
However, metformin is increasingly prescribed for pre-diabetic patients 
as evidence suggests that it help to forestall the development of type 2 
diabetes [43,44]. If subsequent analyses were able to access outpatient 
visit data as well as prescription data, it would be possible to do a sub- 
analysis of patients with pre-diabetes, with and without metformin 
prescriptions. A small proportion of the metformin prescriptions were to 
patients who self-reported either chronic liver disease or chronic renal 
disease. In light of these conditions being relative contraindications for 
use of metformin, it would be appropriate to review a sample of those 
cases to see if it would be appropriate to institute protections to ensure 
that metformin is only prescribed for such patients following a careful 
assessment of the potential risks and benefits. 

PDC as a measure of medication adherence 

One limitation of our study is the potential overestimation of true 
medication adherence by the PDC measure [45]. In calculating PDC, we 
postulated that any remaining medications from the current month 
would be carried over to the subsequent month. However, in actuality, 
medications may be misplaced, or patients may not consume all pre-
scribed pills. Although PDC overestimation may introduce bias into our 
findings, we contend that our methodology remains more robust in 
comparison to conventional techniques that dichotomize adherence. 
The PDC values we calculated may result in conservative effect esti-
mates. Therefore, we expect the true causal relationship to be larger if 
assumptions we made in calculating PDC is violated. We refer interested 
readers to Appendix C for a more detailed discussion on the calculation 
of PDC. 

In future studies, one may also consider a multifaceted approach for 
measuring medication adherence along with PDC. For example, re-
searchers could consider text messages/phone interviews asking 
whether patients are taking their medications on time. Researchers 
could also identify potential biomarkers that are associated with 
adherence. As an example, in heart failure, clinicians often examine the 
biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP) as a 
guide to assess disease management [46]. We advocate more research on 
biomarkers that are associated with disease management to be used in 
companion with PDC derived from pharmacy refill records to get a 
better estimate of patients' medication taking behavior. 

Effect of adherence on testing positive for COVID-19 

We have no reason to believe that adherence affects the probability 
that a patient with respiratory symptoms has COVID, thus, as a robust-
ness check we performed a sensitivity analysis using COVID-19 test 
result as a negative control outcome, examining the impact of adherence 
on the likelihood of obtaining a positive COVID-19 test outcome using a 
similar shift intervention strategy. The estimated effects for wave one, 
two, three are 0.32% (95% CI: − 0.40%, 1.04%), − 0.33% (95% CI: 
− 0.79%, 0.12%), and − 0.35% (95% CI: − 0.61%, 0.10%) respectively. 
The estimated null effects provide an additional layer of evidence that 

the method we use is robust. 

Conclusion 

In conclusion, our study demonstrated that improved metformin 
adherence among individuals with diabetes is associated with a reduc-
tion in COVID-19 mortality, as evidenced by the causal target parameter 
estimates derived using shift intervention, although it is not clear what 
the mechanism is for this effect. Explanations include more adherent 
patients have better controlled diabetes or metformin directly reduces 
the probability of severe disease. The utilization of the shift intervention 
target parameter and the targeted minimum loss-based estimation 
(TMLE) framework facilitated a robust analysis, enabling us to assess the 
average effect of metformin adherence on COVID-19 mortality without 
relying on arbitrary threshold values or binary categorization. Although 
our study employed the proportion of days covered (PDC) as a measure 
of medication adherence, which has some limitations, our methodology 
remains more robust compared to conventional techniques. We 
encourage further research to corroborate these findings and explore 
additional potential confounders, particularly the level of patients' gly-
cemic control and their adherence to other medications and health 
practices, ultimately enhancing our understanding of the relationship 
between metformin adherence and COVID-19 mortality, as well as the 
potential implications for public health policies and healthcare system 
management. 
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