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Abstract

The structure of a sialoglycan can be translated into to a biological response when it binds 

to a specific endogenous lectin. Among endogenous sialic acid-binding lectins in humans are 

those comprising the 15-member Siglec family, most of which are expressed on overlapping 

sets of immune cells. Endogenous Siglec ligands are sialoglycolipids (gangliosides) and/or 

sialoglycoproteins, on cell surfaces or in the extracellular milieu, that bind to and initiate 

signaling by cell surface Siglecs. In the nervous system, where gangliosides are the predominant 

sialoglycans, Siglec-4 (myelin-associated glycoprotein) on myelinating cells binds to gangliosides 

GD1a and GT1b on nerve cell axons to ensure stable and productive axon-myelin interactions. 

In the immune system, Siglec-7 on natural killer cells binds to gangliosides GD3 and GD2 

to inhibit immune signaling. Expression of GD3 and GD2 on cancer cells can lead to tumor 

immune evasion. Siglec-1 (sialoadhesin, CD169) on macrophages binds to gangliosides on 

tumors and enveloped viruses. This may enhance antigen presentation in some cases, or increase 

viral distribution in others. Several other Siglecs bind to gangliosides in vitro, the biological 

significance of which has yet to be fully established. Gangliosides, which are found on all human 

cells and tissues in cell-specific distributions, are functional Siglec ligands with varied roles 

driving Siglec-mediated signaling.
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Introduction

Sialic acid, because of its carboxylate, N-acyl group, and glycerol side chain, is particularly 

well suited for molecular recognition [1]. The history of sialic acid’s discovery is 

intertwined with its role as a ligand for sialic acid binding proteins [2]. Dr. Roland Schauer 

provided an account of that history in a recent review [3]. At a conference in Cambridge 
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in 1949 Gunnar Blix (Uppsala Sweden), who first described the chemical properties of 

sialic acid isolated from submaxillary mucin [4], spoke with Alfred Gottschalk (Melbourne 

Australia) about the chemical properties of small molecules that Gottschalk found were 

released from natural sources when incubated with intact influenza virus [5]. Blix wrote 

later “It struck me immediately that some of the properties Gottschalk mentioned strongly 
reminded me about those of sialic acid. When I got home I mailed Gottschalk what we 
had written about sialic acid and told him that we intended to test the matter closer.” The 

molecule released by influenza virus was indeed sialic acid. The enzyme that released it 

was the influenza neuraminidase, and sialic acid was established as the cell surface ligand 

for influenza hemagglutinin [3, 6, 7]. These discoveries raised interest in sialic acids as 

molecular recognition molecules and are part of the extensive literature on sialic acids as 

pathogen receptors for viruses, bacteria and protozoa [8]. This raises the question of why 

sialic acid is maintained in evolution despite being usurped by deadly pathogens. In this 

chapter we review some endogenous functions of sialoglycans, with a specific focus on 

gangliosides, with one family of native human sialic acid binding proteins, Siglecs.

Human Siglecs, Siglec ligands and Siglec functions

In the early 1990’s Sørge Kelm and Paul Crocker discovered that “a subgroup of the 
immunoglobulin superfamily can mediate diverse biological processes through recognition 
of specific sialylated glycans on cell surfaces” [9]. At that time, the subgroup included 

the macrophage surface protein sialoadhesin (Siglec-1), the B-cell surface protein CD22 

(Siglec-2), and myelin-associated glycoprotein (MAG, Siglec4), expressed on myelinating 

cells of the nervous system. The discovery that these three proteins constituted a structurally 

related family of sialic acid binding proteins was the birth of research on what are now 

called Siglecs, sialic acid-binding immunoglobulin-like lectins [10], of which there are 15 

in humans [11]. Each Siglec is a single-pass transmembrane protein with variable length 

short intracellular domains and variable numbers of extracellular immunoglobulin (Ig)-like 

domains. In each Siglec, the outermost Ig-like domain has the highest sequence similarity to 

other Siglecs, and contains a shallow surface that binds sialic acid via a conserved arginine 

residue that engages the sialic acid carboxylate in context of the larger glycan on which it is 

carried (Fig. 1).

The 15 members of the human Siglec family are notable for their variety of sialic acid 

binding specificities [11]. Different members of the family take advantage of different ways 

in which sialic acids are presented on larger glycans. For example, Siglec-1 binds selectively 

to α2–3 linked sialic acids, Siglec-2 is specific for α2–6 linked sialic acids, and Siglec-7 

binds preferentially to α2–8 linked sialic acids (along with certain branched α2,6-sialyl 

structures) [13]. Binding specificity may also extend further down the glycan chain [9] and 

include additional glycan constituents, such as sulfation [14]. Human Siglec-XII fails to bind 

sialic acid (thus its designation by roman numeral), and is included in the family based on 

its sequence similarity and evolutionary correspondence to sialic acid binding orthologs in 

primates [15].

Siglecs function in molecular recognition and cellular regulation [16]. Of the 15 human 

Siglecs, 13 are expressed in overlapping sets of immune cells. Nine of these have one or 
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more immunoreceptor tyrosine-based inhibitory motifs on their intracellular domains that 

down-regulate immune responses. Three others have basic residues in their transmembrane 

domains that associate with immune-activating adaptor proteins. A prevailing hypothesis 

is that Siglecs on the surface of immune cells encounter and bind to specific sialoglycan 

ligands in their local environment to initiate signaling pathways that down- or up-regulate 

of the immune response depending on the Siglec(s) engaged. From this perspective, most 

of the Siglec family evolved to keep immune responses properly tuned. The one Siglec that 

is not expressed on immune cells is MAG (Siglec-4), which is exclusively expressed on 

myelinating cells in the nervous system, as will be detailed further below.

Siglec ligands are sialoglycans that engage specific Siglecs. Endogenous human Siglec 

ligands range from the smallest class, gangliosides (sialylated glycosphingolipids, ~ 1.5–2.5 

kDa) to the largest class, mucins (which may exceed 4 MDa) [17]. In each case, a lipid or 

protein is decorated in the Golgi apparatus with specific Siglec-targeting sialoglycans. The 

sialoglycan synthetic machinery is regulated in some diseases resulting in altered expression 

of Siglec ligands [18-20], and is altered in certain congenital disorders of glycosylation 

resulting in Siglec-related genetic diseases [21].

Among endogenous Siglec ligands are gangliosides, defined as sialylated 

glycosphingolipids. All human cells and tissues express gangliosides, with quantities 

and structures that vary among cell types. Each ganglioside has a hydrophobic lipid 

moiety, ceramide, firmly embedded in the membrane (primarily the outer leaflet of the 

plasma membrane) and a glycan that typically extends outward from the cell surface. 

While there are hundreds of unique ganglioside glycans [22], and even more variation in 

ganglioside structures based on differences in their ceramide lipids [23], 8 glycan structures 

make up the majority of gangliosides in human tissues (Fig. 2). These range from the 

trisaccharide ganglioside GM3 common to many non-neuronal tissues to the four major 

brain gangliosides (GM1, GD1a, GD1b, GT1b) that comprise > 97% of the gangliosides 

and the majority of sialoglycans in the human brain [24]. Ganglioside biosynthesis is 

stepwise (Fig. 2), and mutations in two genes exclusive for glycolipid biosynthesis result 

in rare congenital disorders. In addition, some gangliosides are overexpressed in cancer, 

such as GD3 and GD2 in melanoma and neuroblastoma respectively [25, 26]. Changes 

in ganglioside structures and expression levels impact Siglec-ganglioside interactions and 

result in human pathology.

Siglec-4 (myelin-associated glycoprotein, MAG)

Among the first proteins identified as a member of the Siglec family was the previously 

well-characterized nervous system protein MAG (myelin-associated glycoprotein) [9]. MAG 

is the only human Siglec that is not expressed on immune cells, but instead is found 

on myelinating cells in the central and peripheral nervous systems (oligodendrocytes 

and Schwann cells respectively) [28]. MAG has 5 extracellular Ig-like domains and 

an intracellular domain of variable length that contains a site for Fyn tyrosine kinase 

phosphorylation. It was implicated as a sialic acid binding protein based on its sequence 

similarly to sialoadhesin and CD22 [9]. This was confirmed by demonstrating that an 

expressed soluble tagged form MAG bound to human erythrocytes in a sialidase-sensitive 
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manner. Erythrocyte re-sialylation using sialyltransferases with different specificities 

revealed that MAG failed to bind to α2–6 linked sialic acids and had a strong 

preference for the “3-O” sialoglycan structure: Neu5Acα2-3Galβ1-3GalNAc. Gangliosides 

are quantitatively the major sialoglycans in the brain [24], and some carry the “3-O” 

structure (Fig. 2). Subsequent studies confirmed that MAG binds to gangliosides in a 

physiologically and pathologically relevant interaction revealed by biochemistry [29], mouse 

genetics [30], and human congenital disorders of glycosylation [21].

Gangliosides are the major sialoglycans in the human brain, carrying over 75% of the total 

brain sialic acid [24]. Half of that sialic acid is found on two gangliosides, GD1a and GT1b, 

that carry the “3-O” terminus (Neu5Acα2-3Galβ1-3GalNAc). When gangliosides were 

stably adsorbed to microwells, they supported binding of cells engineered to express MAG 

on their surface (Fig. 3). As predicted, GD1a and GT1b supported robust MAG-mediated 

binding, whereas the gangliosides GM1 and GD1b, which lack the “3-O” terminus, did 

not. To test the functional roles of MAG-ganglioside binding in vivo, genetically altered 

mice were used. Mice with a disrupted B4galnt1 gene (Fig. 2) lack the “3-O” terminus 

specifically on gangliosides. These mice lack all of the major brain gangliosides and instead 

express comparable concentrations of the truncated gangliosides behind the biosynthetic 

block, GM3 and GD3 [31, 32]. B4galnt1-null mice demonstrated the pathologies of Mag-

null mice when compared side-by-side, including central and peripheral nervous system 

axon degeneration that resulted in loss of sensory and motor signal integrity leading to 

progressive motor behavioral deficits and hindlimb paralysis [30]. Subsequently, similar 

pathology was discovered in rare human congenital disorders targeting the B4GALNT1 gene 

and the MAG gene [21]. Mutations in the B4GALNT1 gene result in complex hereditary 

spastic paraplegia (SPG26) in several dozen individuals associated with 12 family pedigrees 

with 12 different B4GALNT1 gene mutations. The disorder is characterized by weakness 

and spasticity of the lower limbs with onset typically in childhood and progressing to 

spastic gait, dysreflexia, muscle atrophy, and speech deficits. Nerve histology revealed 

axonal neuropathy. In another study, a very rare gene mutation was identified in siblings 

suffering from a progressive gait disorder and cognitive impairment who were diagnosed 

with progressive axonal sensorimotor polyneuropathy [33]. The mutation was a single amino 

acid substitution, R118H, in MAG. That arginine is the very same residue that engages the 

terminal sialic acid carboxylate of gangliosides. Together, these data support the hypothesis 

that the “3-O” terminus of gangliosides GD1a and GT1b engage MAG (Siglec-4) to support 

axon-myelin interactions essential to long term axonal survival. Congenital loss of either the 

sialoglycan terminus of gangliosides or the amino acid on MAG that binds them results in 

axonal loss, progressive motor behavioral deterioration and intellectual disability.

The molecular basis for the functional interaction of MAG with gangliosides GD1a and 

GT1b has been solved (Fig. 4) [34]. The outermost N-terminal Ig-like domain has a 

shallow surface that binds the terminal Neu5Ac of the “3-O” sequence via a salt bridge 

to a conserved arginine (R118). When the elongated 5 Ig-like domain structure binds 

to ganglioside and dimerizes, it decreases the distance between the axon and myelin 

membranes and facilitates axon-myelin signaling.
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Siglec-7

Siglec-7 is expressed by human natural killer (NK) cells, and subsets of myeloid and 

dendritic cells [35]. It is an immune checkpoint (inhibitory) receptor on cells that functions 

in tumor surveillance. If sialoglycans expressed on the surface of cancer cells engage 

Siglec-7 on NK cells, the cancer cells may avoid immune surveillance and replicate. This 

concept is supported by the consistent finding of enhanced sialylation in many cancers, 

evidence that has led to the search for Siglec-7 ligands on human cancer cells [36, 37].

Using synthetic glycan arrays, Siglec-7 binds to disialoglycans, including the α2–8 

linked disialic acid moieties on gangliosides GD3, GD2, GD1b and GT1b (Fig. 2) [38]. 

Gangliosides GD3 and GD2 are robustly overexpressed on certain cancers [26] and are 

target epitopes for melanoma and neuroblastoma immunotherapies [39, 40]. Evidence 

that cancer cell disialogangliosides engage Siglec-7 to inhibit immune responses was 

obtained using human neuroblastoma cells [41]. In a multidrug protocol, anti-GD2 antibody 

sensitized human cancer cells to macrophage-mediated phagocytosis by blocking Siglec-7 

binding.

Structural studies revealed the sites on Siglec7 responsible for enhanced binding [12, 13, 

42]. In one study [12], the structure of the outermost Siglec-7 Ig-like domain bound to 

a synthetic analog of GT1b was reported (Fig. 1). The bound disialo moiety and core 

ganglioside disaccharide (Galβ1-4Glc) were well defined in the crystal such that the 

terminal sialic acid engaged the conserved arginine residue of Siglecs (R124) with the 

core disaccharide in a sharply bent configuration relative to the disialo moiety. Binding 

of the ganglioside mimetic resulted in a large conformational shift that opened up a 

large hydrophobic patch. It is inviting to speculate that glycan binding, notably of the 

Neu5Acα2-8Neu5Acα2-3Galβ1-4Glc of gangliosides GD3, GD2, GD1b and GT1b, then 

enhances engagement with the hydrophobic ceramide. This speculation is supported by 

a recent study that found that cell surface GD3 containing normal ceramide (see Fig. 2) 

supports Siglec-7 binding, whereas GD3 containing a ceramide with an extra hydroxyl 

group on sphingosine C4 (phytoceramide) or a 2-hydroxl group on the fatty acid amide 

failed to support functional Siglec-7 engagement [43]. These data imply that adding a 

hydrophilic hydroxyl group near the top of the ceramide may alter the way Siglec-7 interacts 

with disialo-bearing gangliosides.

Siglec-1 (sialoadhesin)

Sialoadhesin (Siglec-1, CD169) is selectively expressed on human macrophages where it 

engages self sialoglycans in the extracellular milieu as well as sialoglycans on human 

pathogens [44, 45]. It does not have immune inhibitory domains, and enhances macrophage 

phagocytosis of sialoglycan-bearing cargo. Binding to microwell-adsorbed gangliosides 

revealed that sialoadhesin binds to several gangliosides, with near equivalent binding 

to GM3, GD1a, GD1b and GT1b [46]. Since pathogenic viruses bud from cells that 

express some of these gangliosides, binding of viral surface gangliosides to sialoadhesin is 

implicated in viral uptake by macrophages [45]. This has dual effects depending on the virus 

and context. Sialoadhesin binding to viral surface gangliosides can result in phagocytosis, 

degradation, antigen presentation and enhanced viral clearing. Alternatively, gangliosides on 
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opportunistic viruses may enhance viral entry into macrophages and viral dissemination. 

Understanding both of these pathways has implications for understanding viral pathogenesis.

Whether helpful or harmful, the above observations led to the use of gangliosides in 

biotechnology to target nanoparticles to macrophages [47, 48]. A study of nanoparticles 

decorated with different gangliosides revealed selective binding of GD1a by sialoadhesin-

expressing human cells (Fig. 5), and the ability of several gangliosides to enhance 

nanoparticle internalization [48]. Notably, adding gangliosides to nanoparticles carrying 

human tumor antigens enhanced the immune response of sialoadhesin-expressing antigen-

presenting cells. These findings emphasize that ganglioside binding to Siglecs is a useful 

cell-targeting biotechnology with therapeutic potential.

Other ganglioside-binding siglecs

Siglec binding to gangliosides adsorbed on microwells was determined for a subset of 

CD33-related human Siglecs. A summary of the results based on those data are shown in 

Table 1. While the functional significance of these particular Siglecs binding to gangliosides 

has yet to be fully explored, it is notable that each tested Siglec had a different binding 

pattern. As expected, Siglec-7 bound to gangliosides having the α2–8 linked disialo group. 

Siglec-5 bound preferentially to GQ1b, which has α2–8 disialo groups on both the internal 

and external Gal residues, whereas Siglec-10 bound to GT1b but not the closely related 

structures GD1a or GQ1b. Siglec-9 bound to most of the gangliosides tested. In a separate 

set of studies using microwell-adsorbed gangliosides, Siglec-3 and Siglec-9 bound similar 

gangliosides, whereas Siglec-8 failed to bind any (Fig. 6). The implications of these findings 

for Siglec function are the subject of ongoing studies [49, 50].

Concluding statement

The 15 human Siglecs, most of which are immune regulatory receptors, have a variety of 

endogenous ligands that include sialoglycolipids and sialoglycoproteins that have evolved to 

serve specific functions in the tissues or on the cells where they are expressed [17]. Strong 

evidence indicates that certain Siglecs, such as Siglec-4 (MAG) and Siglec-7, are engaged 

by endogenous gangliosides to trigger important physiological and pathophysiological 

signaling events. For other Siglecs, the roles of gangliosides as ligands in the context of 

particular cells, tissues, and biological outcomes have yet to be established. Ongoing studies 

will provide insights to understand the roles of gangliosides in Siglec signaling. Whatever 

their endogenous functions, the ability to synthesize gangliosides and incorporate them into 

nanoparticles and even directly into cell membranes make them inviting Siglec targets for 

biomedical discovery and possibly therapeutics.
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Fig. 1. 
Binding of a ganglioside GT1b analog to Siglec7. A Stereo image of the outermost 

Ig-like domain of Siglec-7 bound to a synthetic GT1b analog. Five of the seven sugars 

of GT1b are resolved at the binding site in the crystal structure (Neu5Acα2-8Neu5Acα2–

3[GalNAcβ1-4Galβ1-4Glcβ-R). The terminal sialic acid (Neu5Ac) binds to the conserved 

Arg residue, R124 (blue). The circled area shows the terminal sialic acid binding via its 

carboxylate to R124. A convex shelf (marine blue), forms the base of the binding site 

over which the rest of the glycan lies. The synthetic trimethylsilyl aglycone (yellow) lies 

in a hydrophobic cup (green). B Stereo image of the network of potential hydrogen bonds 

(black-dashed lines) at the binding site. Stably associated water molecules are shown as 

orange spheres. Adapted from reference [12]
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Fig. 2. 
Ganglioside structure and biosynthesis. The structure of disialo ganglioside GD1a (top). 

Biosynthesis of major human gangliosides (bottom) using symbol nomenclature for glycans 

[27]. The biosynthetic gene B4GALNT1 discussed in the text is boxed. Cer = ceramide
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Fig. 3. 
MAG binding to major brain gangliosides. Fibroblasts were transfected to express full-

length MAG on their surface, then were placed in microwells adsorbed with the indicated 

concentrations of the indicated gangliosides. MAG-mediated cell adhesion is expressed as a 

percent of the MAG-transfected cells added to each well. Ganglioside structures are shown 

using symbol nomenclature for glycans [27]. Image adapted from reference [24]
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Fig. 4. 
MAG-ganglioside binding and a model for myelin-axon engagement. A crystal 

structure of MAG and its terminal Ig-like domain binding to the “3-O” trisaccharide 

(Neu5Acα2,3Galβ1-3GalNAc, orange). B Protein-ligand interactions with hydrogen bonds 

indicated by dashes and Van der Waals’ contacts by curved blue lines, C Model for 

MAG-mediated myelin-axon engagement and signaling. Dimerization of MAG restricts the 

distance between the innermost myelin sheath and axon membrane to 10 nm. Reproduced 

from reference [34]
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Fig. 5. 
Ganglioside-liposomes bind Siglec-1 on THP-1 human monocyte/macrophage cells and 

are internalized. Fluorescently-labeled ganglioside-liposomes were incubated with THP1 

cells overexpressing Siglec-1, and binding at 4 °C or uptake at 37 °C determined by 

flow cytometry. Binding or uptake of ganglioside-liposomes at different concentrations are 

shown. Data are from reference [48]
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Fig. 6. 
Binding of select Siglecs to major gangliosides. Gangliosides were adsorbed to microwell 

plates and overlaid with soluble expressed Siglec-Fc chimeras precomplexed to alkaline-

phosphatase(AP)-labeled anti-Fc antibody. After incubation and washing, bound Siglec was 

determined by measuring AP colorimetrically. Data are from references [52] and [53]
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Table 1

Siglec-ganglioside binding based on reference [51]

Ganglioside Siglec-5 Siglec-7 Siglec-9 Siglec-10

GM3 − − + −

GM2 − − − −

GD3 − ++ + −

GD1a − − − −

GT1b +/− + + ++

GQ1b + ++ + −
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