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A B S T R A C T

Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various
neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate
mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the
current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the sub-
thalamic nucleus (STN) as a key target in PD management.

The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with
myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the
modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and
the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic
modifications, add further complexity to the DBS landscape.

Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the contro-
versial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests
neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease
modification due to enrollment timing and methodology limitations. The discussion underscores the need for
robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-
modifying therapy in PD.
Introduction

Present-day deep brain stimulation (DBS) evolved from the observation
that high-frequency electrical current delivered to the ventral intermediate
nucleus of the thalamus can elicit effects similar to those of ablative
procedures [1]. In non-human primates (NHPs) treated with 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subthalamic nucleus (STN)
lesions and high-frequency STN stimulation both ameliorated cardinal
symptoms of Parkinson's disease (PD) [2,3], thus leading to human trials
followed by regulatory approval of STN DBS [4]. Since its introduction in
the late 1980's [5], DBS has been performed in over 200,000 patients, most
commonly targeting the STN for PD, but also at other targets and for other
to.ca (B. Davidson).
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disorders, including epilepsy, pain, and several psychiatric conditions [6].
Despite advancements in treatments, indications, and technology, the
mechanisms underlying DBS are not fully understood, and are still under
investigation [7,8]. This brief reviewwill outline current understandings of
local, circuit, and neurobiochemical mechanisms of DBS, focusing on STN
DBS, and then discuss current controversies related to whether DBS may
offer disease-modifying effects in PD.

Local Effects of DBS

To begin to characterize the local effects exerted by DBS at its target
site, several key factors must be considered [9,10], including: (i) whether
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the target is grey matter (i.e., cell bodies), white matter (i.e., axons), or
some combination [11]; (ii) the anatomical make-up of the stimulated
structure (i.e., distribution of inputs/outputs) and the functional prop-
erties of engaged synapses [12,13]; (iii) the diameter and degree of
myelination on any stimulated axons; (iv) the orientation of axons [14];
(v) the distance of stimulation to target [15]; and the local microenvi-
ronment around the electrode, including astrocytes and microglia [16].

Due to similar clinical effects of stimulation and lesioning, the
mechanism of STN DBS was initially thought to be that of a ‘titratable
lesion’ [17]. In untreated PD, STN neurons fire with increased frequency,
bursting, and synchrony [18,19], and DBS reduces intrinsic STN neuronal
firing [20–22], largely through stimulation of afferent axons terminating
within the STN (Fig. 1A).

Using concepts such as rheobase and chronaxie, which refer to the
amplitude and duration of current required to elicit an action potential
(AP), respectively, it has been shown that DBS acts preferentially on large
myelinated axons [23–25]. In the case of high-frequency DBS (>100 Hz),
with stimulation delivered at more than twice the intrinsic firing rate of a
neuron, APs are generated on nearby axons, including DBS target afferent
(input) and efferent (output) fibers. These APs can propagate both
orthodromically (downstream, toward the terminal synapse) and anti-
dromically (upstream, back towards the afferent cell body) (Fig. 1A and
B) [26].

In the example of subthalamic nucleus (STN) DBS, both afferent and
efferent axons are likely to be stimulated, triggering bidirectional APs in
both axon populations [27–29]. Antidromic effects on STN afferent fibers
can block the input of naturally generated information from upstream
neurons (e.g., cortical or pallidal inputs), whereas antidromic effects on
the STN efferent fibers can block the output of information from the STN.
Optogenetic studies in pre-clinical PD models suggest that antidromic
effects on the cortical-STN (hyperdirect) pathway may be sufficient to
alleviate the cardinal features of PD (Fig. 1B) [30].

The acute effects of stimulation on a grey matter target are dependent
on the proportion of inhibitory/excitatory inputs [13]. The STN receives
approximately 60% inhibitory GABAergic afferents (mostly from the
Fig. 1. Schematic illustration of the multiple and varied mechanisms by which DBS c
nucleus; GPi: globus pallidus interna; GPe: globus pallidus externa; GABAergic: gamm
and figures 2 and 3 from ref 8.
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globus pallidus), and 40% excitatory glutamatergic afferents (mostly
from the cortex via the hyperdirect pathway) [31]. A single pulse of
electrical stimulation, triggers release of neurotransmitters from these
afferents, eliciting a weak net inhibition of the STN neuronal cell bodies
(Fig. 1A) [13]. With prolonged high frequency stimulation, neural ac-
tivity of the STN neurons continues to be silenced by mechanisms
including decreased synaptic potentiation and synaptic depletion [12,
13]; this phenomenon is also seen at other targets, such as the ventral
intermedius (ViM), with chronic stimulation, despite having a high
proportion of excitatory inputs [12,13]. Perhaps the surest indication
that STN DBS does not act solely through local inhibition of STN neurons,
is that stimulation drives downstream globus pallidus activity through
activation of STN glutamatergic efferents (Fig. 1C) [32,33]. Further ev-
idence that STN DBS acts through more complex mechanisms than sim-
ply local suppression of STN neuron firing, is the fact that blood flow and
glucose metabolism are elevated by stimulation (Fig. 1D) [34–37].

Demonstration of orthodromic and antidromic effects on STN afferent
and efferent fibers gave rise to the so-called “axon-soma decoupling”
theory of DBS [38]. Orthodromic effects on the STN afferent fibers
however can result in the release of neurotransmitter at local STN syn-
apses (i.e., gamma aminobutyric acid [GABA] from the globus pallidus
externa [GPe], or glutamate from cortex), whereas orthodromic effects
on the STN efferent fibers can produce downstream glutamate release at
target structures. Thus, an important consideration is the reliability of
information transfer, which depends on the functional properties of
engaged synapses (i.e., short term plasticity). To this end, cortical inputs
to STN have been shown to depress rapidly, whereas GPe inputs and STN
outputs are able to maintain neurotransmitter release even with a high
rate of activation, effectively uncoupling the cortex from basal ganglia
circuitry [39,40].

Circuit Effects of DBS

In its early years, DBS was heralded as a method for producing a
reversible and titratable lesion through a depolarization blockade [1,11].
an act, shown in the context of STN DBS. AP: action potential; STN: subthalamic
a amino butyric acid releasing neurons. Figure inspired from figure 3 in ref 12,
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Today, it is understood that DBS acts through far more complex and
varied mechanisms, with the prevailing theory being that DBS disrupts
aberrant oscillatory activities, or ‘circuitopathies’, allowing circuits to
normalize to a less pathological state [41,42]. In 2004, Grill introduced
the term “informational lesion” in describing how DBS delivers thera-
peutic effects in disease states [43], and subsequent research has
strengthened this assertion of a neuro-restorative mechanism [44].

Deep brain structures, particularly those in the basal ganglia, are
linked together as part of multi-nodal circuits, which transmit informa-
tion through changes in temporal-alignment of neuronal oscillatory ac-
tivity. Oscillations refer to rhythmic fluctuations in local field potential
(LFP), driven by nested oscillators, which reflect a conglomerate of local
neural activity [7]. Oscillations can occur across a range of frequencies
(delta: 1–4 Hz, theta: 4–7 Hz, alpha: 7–13 Hz, beta: 13–35 Hz, gamma:
35–80 Hz), and are conserved across species [45]. Increased power in the
theta and beta range LFP's is thought to be anti-kinetic, helping to
maintain a physiologic status quo, whereas increased gamma-range
power is pro-kinetic and seen during movement [11,46,47]. In PD
(pre-clinical models and in humans), bradykinesia and rigidity are linked
to pathological elevations in beta power throughout the basal ganglia,
which persists through movements [48,49]. The extent of beta-power
elevation scales directly with the severity of symptoms [50].
Levodopa-induced-dyskinesia is associated with heightened gamma
power, and the oscillations contributing to tremor remain more difficult
to parse out [48,49,51,52].

PD involves a state of exaggerated synchrony, and therefore it follows
that high-frequency (i.e., 130 Hz) DBS could disrupt this synchrony to
alleviate cardinal symptoms, while very-low frequency (i.e., 10 Hz) can
actually increase pathological synchrony and worsen symptoms [53].
Intriguingly, stimulation at 60 Hz (which many refer to as ‘low frequency
stimulation’) may offer superior relief of freezing of gait and other axial
symptoms compared to traditional high-frequency stimulation [54,55].
Theories for the different therapeutic effect of 60 Hz stimulation include
reduced current spread to the nearby pedunculopontine nucleus area, or
alternatively, by boosting prokinetic gamma oscillations [56].

Early work in the field demonstrated that both levodopa and DBS
reduce pathological beta activity in the acute setting [48,49]. More
recently, by using dual recording/stimulating DBS systems, it has been
demonstrated that clinically-effective stimulation lowers beta activity in a
dose-dependent manner (Fig. 1E) [57]. Within the beta range, it appears
that low-beta (13–20 Hz) frequency is most closely associated with motor
symptoms in PD [58–60], whereas coherence between the STN and cortex
ismediated by high-beta (20–35Hz) [61–63]which is transmitted through
the hyperdirect pathway [64]. Another process of information transfer
through the cortical-striatal-thalamic motor circuit involves fluctuations in
amplitude at a higher frequency band driving oscillations at a lower fre-
quency, a phenomenon called phase-amplitude-coupling (PAC) [65].
Mounting evidence suggests that elevated beta power is linked to fluctu-
ations in the amplitude of gamma oscillations in the primary motor cortex
(M1) [65,66]. In addition to mitigating exaggerated low-beta power, STN
DBS also reduces PAC between the STN andM1 [67,68]. It should be noted
that treating beta oscillations is not a silver-bullet for PD, as not all patients
show clear beta pathology, and furthermore, beta rhythmsmayfluctuate in
consistency during various states, such as sleep [69]. Other neural signa-
tures, such as evoked resonant neural activity (ERNA) show promise for
being a complimentary biomarker in PD [70,71].

Studies examining the placement of electrodes in relation to clinical
response support the notion that DBS acts through circuit-wide modu-
lation. In STN DBS, the strongest response is seen in patients when
stimulation is delivered to regions of the STN structurally connected to
the supplementary motor area and functionally anti-correlated to M1
[72]. STN DBS acts on brain-wide circuits, and with chronic
clinically-effective stimulation, circuit activity begins to more closely
resemble healthy controls [44,73]. All told, DBS in PD exerts a multitude
of local effects, which effectively isolate a nucleus from a structural and
functional neurocircuit (i.e., the dorsolateral STN being isolated from the
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cortical-basal ganglia-thalamic-cortical motor circuit), and promotes
re-emergence of normal circuit activity.

Neurobiochemical Effects of DBS

STN DBS increases striatal extracellular dopamine levels in rodent PD
models both during active stimulation and for extended periods of time
following cessation of stimulation [74,75]. Despite these reports from
animal models, positron emission tomography (PET) studies of humans
undergoing STN DBS have not consistently demonstrated increases in
striatal dopamine [76–78]. Possible reasons for this discrepancy include
the fact that humans with PD already have extensive loss of nigrostriatal
dopaminergic neurons, the inability of PET to pick up on subtle changes,
or the fact that the small unmyelinated dopaminergic neurons are more
difficult to stimulate compared to large myelinated fibers [79].

As suggested above, the activation of inputs and outputs can give rise
to neurotransmitter release. In STN, this results in persistent activation
and release of GABA at the level of STN [39,40] and glutamate at
downstream structures [32,80]. Activation of similar circuitry may also
be associated with globus pallidus interna (GPi) DBS [81,82], which
perhaps gives rise to similarities in the functional cortical network acti-
vation response [83]. With other targets, such as the nucleus accumbens
or the ventromedial prefrontal cortex (rat homologue to the subcallosal
cingulate cortex), other neurotransmitters such as noradrenaline and
serotonin have been found to be increased at efferently-connected
structures [84,85].

Even the mere insertion of an electrode triggers a cascade of neuro-
cytochemical events, including microgliosis/astrocytosis, inflammation,
trophic factor release (brain-derived neurotrophic factor [BDNF] and
granulocyte-colony-stimulating factor), and depending on the target,
possibly even neurogenesis [86]. These changes are most dynamic and
pronounced in the first 2–4 weeks after implantation, which is part of the
rationale for waiting several weeks after electrode placement before
initiating stimulation in clinical settings [87].

Astrocytes, as part of the “tripartite synapse”, may also play a key role
in driving DBS effects [88]. In response to electrical stimulation, astro-
cytes may release adenosine and glutamate, and through activation of
calcium influx via voltage-gated calcium (Ca2þ) channels, demonstrate
waves of Ca2þ currents propagating away from the source of stimulation
[89,90]. DBS can trigger astrocytes to release extracellular matrix pro-
teins such as insulin growth factor 1 (IGF1), which may offer protection
against excitotoxicity [91,92]. In PD, astrocytes are prone to adopt an
activated ‘A1’ phenotype, to play a deleterious role in promoting cyto-
kine release, inflammation, and microglial activation. High frequency
DBS appears to shift astrocytes from an activated A1 to a more quiescent
A0 phenotype, through inhibition of the transcriptional factors like nu-
clear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
(Fig. 1F) [93]. The overall effects of astrocytes remain to be fully un-
derstood, as there is evidence that they can either counteract or perpet-
uate the inactivating effect of DBS on a grey matter structure [89,90,94].

DBS also appears to exert epigenetic effects. PD is noted to impair
transcriptional regulatory processes, which can be quantified with DNA
methylation markers and microRNA analyses on peripheral blood sam-
ples [95–97]. PD patients treated with STN DBS have marked reversals in
these microRNA and DNA methylation markers to the point of more
closely resembling healthy controls [95–97]. However, these results must
be interpreted with caution due to small sample size and the possibility
that analysis of peripheral blood may not be representative of what is
occurring in the brain at the site of stimulation.

Does DBS Exert Disease-Modifying Effects in PD?

There are two powerful, symptomatic treatments available for PD:
dopamine replacement and DBS [98]. Both treatments have revolutionized
the care of patients with PD, dramatically improving motor performance,
quality of life, and the natural history of PD. The positive effects on the
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natural history raise the question as to whether they in fact reduce the
neurodegenerative process and thereby have disease-modifying properties.
In the case of levodopa and dopamine agonists, randomized-controlled
trials (RCTs) comparing early versus later initiation of pharmacotherapy
demonstrated that overall disease progression is unchanged between
groups, refuting their disease modifying effects [99,100]. DBS may be
more challenging to evaluate for disease-modifying effects because it is
offered when the disease is already quite advanced – on average at least 7
years following onset of symptoms, and after at least 1.5 years of motor
fluctuations or levodopa-induced-dyskinesia [101,102] and thus when
substantial loss of dopaminergic neurons has already occurred [103].

The question of whether DBS can alter the neurodegenerative process
in PD is especially intriguing given the extent of pre-clinical evidence
revealing that DBS promotes neurogenesis, synaptogenesis, and neuro-
protection [104]. STN DBS results in increased survival of dopaminergic
neurons in toxin-mediated PD models in rodents [105–107] and
non-human primates [108]. Increased survival of dopaminergic neurons
with active STN DBS was also shown in an α-synuclein overexpressing
rodent model [109,110]. A leading theory to explain this neuroprotective
effect is that DBS induces the release of BDNF, which binds to
topomyosin-related kinase type 2 (trkB) receptors. BDNF and trkB pro-
mote survival and plasticity within the nigrostriatal pathway [111–113].
Other theories to explain the survival of dopaminergic cells in pre-clinical
models with STN DBS include reduced excitotoxicity and increased
dendritic spine density [114,115].

There were high hopes that the EARLYSTIM trial - which randomized
251 patients with PD and early motor complications to early DBS versus
continued medical management - would shed light on whether STN DBS
can alter the course of PD [101]. However, the active-stimulation group
experienced significant motor and quality of life improvements, while
the sham-stimulation arm remained stable over 24 months, making it
impossible to assess for a disease-modifying effect (at least through
clinical scores) [101]. Longer-term outcomes from the EARLYSTIM trial
have not yet been published, and these may help uncover if earlier DBS
can modify the trajectory of PD, but even for this trial, the average
enrollment was 7.5 years after diagnosis and thus may prove inconclu-
sive. A group at Vanderbilt went one step further than EARLYSTIM,
performing a 30-patient RCT which implanted patients at a much earlier
timepoint than EARLYSTIM - prior to the onset of motor complications
[116]. The Vanderbilt group found that there may be some signal for
improved control of rest tremor and reduction of medications [116];
however, due to small numbers and other limitations, it was not possible
to assess for disease-modifying effects [116–118]. Furthermore, there are
important concerns about considering patients with early PD, prior to
onset of motor or medication-related complications, for a neurosurgical
procedure [119], including but not limited to the need for an early
biomarker for the diagnosis of PD.

Arguing against a disease-modifying effect are the often-reported
rapid DBS withdrawal effects from accidental cessation of stimulation,
resulting in emergence of akinetic-rigid symptoms [120]. Compared to
patients treated only with medications, PD symptoms seem to progress at
a similar rate in patients with chronic STN DBS [121]. Also arguing
against disease-modifying DBS effects is a PET biomarker study showing
no change in 18F-fluorodopa between DBS and non-DBS patients [122],
as well as 2 post-mortem studies [123,124]. Standard MRI sequences and
even PET using dopamine markers may not be powered to detect subtle
reductions in cell death. Similar arguments exist for treatments in Alz-
heimer disease [125] and as such much investigation is still needed in
both the preclinical and clinical space to understand if there is a role for
DBS to be a disease-modifying therapy. This will require development of
robust and sensitive biomarkers that allow for the early diagnosis of PD
and for tracking disease progression.

DBS is an effective symptomatic treatment in PD and growing list of
other indications. Its mechanisms of action are still being studied, but
several decades of research have converged on the theory that DBS can
4

relatively inactivate and isolate a grey-matter target, blocking pathologic
oscillations from engaging that structure. Relatedly, the fact that APs are
more readily generated in large myelinated neurons results in DBS
driving activity along white matter tracts to modulate widespread cir-
cuits. Based on animal literature, robust long-term improvements in
human RCTs, and the circuit-modifying effects of DBS, there is a reason to
suspect that DBS may have disease-modifying properties, but decisive
evidence in humans is lacking. Addressing this question will require a
large prospective trial, which includes careful preoperative stratification
of PD patients, early DBS intervention compared with a large matched
control group, and sensitive biomarkers including structural/metabolic
imaging tools [9,126].
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