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In vivo identification of angle dysgenesis and its relation to genetic markers 
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Purpose: To predict the presence of angle dysgenesis on anterior‑segment optical coherence 
tomography (ADoA) by using deep learning (DL) and to correlate ADoA with mutations in known glaucoma 
genes. Participants: In total, 800 high‑definition anterior‑segment optical coherence tomography (AS‑OCT) 
images were included, of which 340 images were used to build the machine learning (ML) model. Images 
used to build the ML model included 170 scans of primary congenital glaucoma (16 patients), juvenile‑onset 
open‑angle glaucoma (62 patients), and adult‑onset primary open‑angle glaucoma eyes (37 patients); the rest 
were controls (n = 85). The genetic validation dataset consisted of another 393 images of patients with known 
mutations that were compared with 320 images of healthy controls. Methods: ADoA was defined as the 
absence of Schlemm’s canal, the presence of hyperreflectivity over the region of the trabecular meshwork, 
or a hyperreflective membrane. DL was used to classify a given AS‑OCT image as either having angle 
dysgenesis or not. ADoA was then specifically looked for on AS‑OCT images of patients with mutations in 
the known genes for glaucoma. Results: The final prediction, which was a consensus‑based outcome from 
the three optimized DL models, had an accuracy of >95%, a specificity of >97%, and a sensitivity of >96% 
in detecting ADoA in the internal test dataset. Among the patients with known gene mutations, (MYOC, 
CYP1B1, FOXC1, and LTBP2) ADoA was observed among all the patients in the majority of the images, 
compared to only 5% of the healthy controls. Conclusion: ADoA can be objectively identified using models 
built with DL.
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Anterior‑segment spectral‑domain optical coherence 
tomography (SD‑OCT) is being increasingly used in glaucoma 
patients, primarily to investigate the anterior chamber angle 
and visualize the trabecular meshwork (TM) and Schlemm’s 
canal (SC) in vivo.[1‑4] This in vivo imaging of anterior chamber 
angle with AS‑OCT has been used to detect gross features 
of angle dysgenesis in primary congenital glaucoma (PCG), 
juvenile‑onset open‑angle glaucoma (JOAG), and adult‑onset 
primary open‑angle glaucoma  (POAG), which has been 
described either as an absence of SC and/or the presence of 
abnormal tissue or a hyperreflective membrane within angle 
recess.[5‑8] These studies have shown that angle dysgenesis 
on AS‑OCT  (ADoA) can be observed even in eyes with 
gonioscopically normal appearing angles. Primary congenital 
glaucoma, JOAG, and adult‑onset POAG form a spectrum in 
terms of severity of angle dysgenesis. Although most of the 

PCG eyes have features of ADoA, the same are present in 40% 
of JOAG eyes and in up to 35% of adult‑onset POAG.[5,8] As there 
exists a wide spectrum of anatomical variability of the drainage 
angle, (the TM and SC morphology) in normal eyes[5,7,8] which 
can make it difficult to distinguish normal from abnormal; 
therefore, interpretation of AS‑OCT images requires expertise 
and a deep understanding of the complexity involved in the 
developmental anomalies of the outflow pathways. Artificial 
intelligence (AI) has the potential to assist experts in disease 
diagnosis, progression, and management by performing rapid 
image classification, which otherwise is a difficult or ambiguous 
scenario for human experts. Deep learning (DL), a subtype of 
AI, uses the concept of biological neural networks and has 
demonstrated convincing results in ophthalmic diseases.[9‑11]

While angle dysgenesis is associated with developmental 
immaturity of the outflow pathways regulated by genes, this 
could only be ascertained till now with histopathological 
studies. Mutations in some of the commonly associated genes 
with glaucoma, namely CYP1B1[12] FOXC1[13] PITX2,[14] and 
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TEK,[15] have been shown to be associated with developmental 
abnormalities in the outflow pathways in experimental 
studies. The severity of angle dysgenesis has been correlated 
on histopathology with certain CYP1B1 gene mutations in 
PCG patients.[16] Although MYOC mutations are known to 
be associated with early‑onset glaucoma of PCG[17‑19] and 
JOAG,[20‑24] no studies have shown the involvement of MYOC 
mutations in causing angle dysgenesis. Histopathological 
studies for angle dysgenesis in human glaucomatous eyes are 
difficult to perform and are inherently associated with tissue 
handling artifacts. Although grossly identifiable features of 
ADoA have been described before,[5,8] many subtle changes 
may also be present on AS‑OCT scans that are challenging to 
detect or precisely quantify by human observers. Detecting 
ADoA could be especially important for non‑invasively 
screening relatives of glaucoma patients to identify those at 
risk of developing glaucoma. Thus, in this study, we aimed to 
develop DL models that can identify ADoA among glaucoma 
patients in comparison to healthy controls and validate their 
performance in detecting angle dysgenesis in patients with 
known glaucoma‑associated gene mutations.

Methods
Dataset details and study design
This observational case‑control study was approved by the 
institutional ethics committee. It adhered to the tenets of the 
Declaration of Helsinki. Informed consent to participate was 
taken from all cases: parents of children less than 18 years of age 
and assent to participate from subjects <18 years of age. Patients 
coming to the institute from January 2020 to January 2021 
were recruited. A  detailed history was recorded, and all 
subjects underwent a thorough clinical examination.

Inclusion criteria
PCG: These were unrelated cases of PCG detected before 
3 years of age with enlarged corneal diameters (>12 mm before 
1 year of age) who had baseline IOP records of >22 mmHg 
and were now old enough (>10 years of age) to cooperate for 
anterior segment OCT scanning.

JOAG: These were unrelated primary open‑angle glaucoma 
patients diagnosed between 10 and 40  years of age. These 
were patients without any acquired or non‑acquired ocular 
conditions or syndromes, without signs of ocular enlargement 
(e.g., buphthalmos), and with a normal‑appearing angle.

Adult‑onset POAG: These were unrelated cases of POAG 
diagnosed after the age of 40  years with untreated IOP 
of >22 mmHg in one or both eyes on more than two occasions, 
open angle on gonioscopy in both eyes, and glaucomatous optic 
neuropathy in one or both eyes with visual field loss consistent 
with optic nerve damage.

Only those patients who had been treated and had an IOP 
of <22 mmHg at the time of imaging were included.

Normal eyes: Age‑matched healthy subjects of Indian 
ethnicity  (age  >10  years), who had IOP  <21  mmHg, 
gonioscopically normal open angle, and no other ocular 
pathology on detailed ophthalmic evaluation.

Gonioscopy was performed by an experienced glaucoma 
specialist by using the Goldman two‑mirror lens; the Schaffer 
system of gonioscopic grading was used.

Exclusion criteria
Patients excluded from the study: those with a history of steroid 
use; presence of any other retinal or neurologic pathology; 
evidence of secondary causes of raised IOP such as pigment 
dispersion, pseudoexfoliation, or trauma; those with any 
pathology detected on gonioscopy such as angle recession, 
pigmentation of the angle greater than grade 3 in any one or 
more quadrants, iridotrabecular contact, or peripheral anterior 
synechiae; those who had undergone angle surgery; and 
patients with nystagmus/and or poor fixation were excluded.

In patients who had undergone surgery and had either 
a superior trabeculectomy or a combined ab externo 
trabeculotomy with trabeculectomy, scans of AS‑OCT from 
the nasal/temporal quadrant were selected per eye to exclude 
the superior quadrant.

SD‑OCT examination
The AS‑OCT examination was performed using the Spectralis 
OCT  (software version 6.5; Heidelberg Engineering GmbH, 
Heidelberg, Germany). This machine uses an 880‑nm 
wavelength and provides a resolution of 3.5 µm (digital) to 
7 µm (optical) at 40 kHz. An anterior segment lens was used. 
Only those images that were considered good quality were 
included. AS‑OCT B‑scans from the nasal/temporal quadrant 
were selected per eye, and these images were analyzed by 
two blinded  (blinded to the diagnosis) glaucoma experts 
for the presence or absence of ADoA, which were then 
subsequently used for machine learning (ML). A total of 800 
AS‑OCT B‑scans were included, out of which 340 images 
(1 B‑scan per eye) were used to build the ML model, and the 
rest were used for validation. Out of 340 images, 170 scans 
included PCG (n = 27), JOAG (n = 86), and POAG (n = 57) eyes, 
and the rest were healthy controls. ADoA was defined as the 
absence of Schlemm’s canal  (SC), the presence of extensive 
hyperreflectivity over the region of the trabecular meshwork, 
or a hyperreflective membrane  (HM) over the region of the 
trabecular meshwork.[7] As there are many channels seen on 
cross‑sectional images of the angle,[25] it is essential to properly 
define the SC. We defined the SC as the first (nearest to the edge 
of the trabecular meshwork/angle recess) well‑demarcated 
hypolucent space within a 350‑µm perpendicular distance 
from the edge of the TM. It was considered present when 
observed on at least two consecutive B‑scans (to differentiate it 
from artifacts). If SC/HM was identified as present in any one 
quadrant but absent in the other, it was considered as present 
for analysis.[8] Two glaucoma specialists masked to details of 
the patients evaluated the scans regarding the absence of SC 
and the presence of HM as indicative of ADoA. If there was 
discord between the two, a third adjudicated the case. Fig. 1 
shows representative images of angles that are normal (a and b) 
and those with dysgenesis (c and d).

Data preprocessing
The images were encoded by removing patient details and 
giving unique reference numbers. Supplemental Fig.  1 
summarizes the workflow used in the study. Each image was 
cropped manually in two ways to extract the iridocorneal 
angle  (ICA) area and a trabecular meshwork  (TM) area by 
a single observer. For this study, the ICA area was defined 
as 1100 × 900 pixels ± 10% (1210 × 990 µm) rectangular area 
including the region covering TM, SC, a part of cornea in 
continuation with a part of sclera, and iris. The images 
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were further cropped to get a TM area defined as 600 × 400 
pixels ± 10% (660 × 440 µm), including SC, scleral spur, and 
TM region [Fig. 2].

Model training and evaluation
The two datasets (ICA area and TM area images), each having 
8160 images, were randomly split into training (n = 7996) and 
testing (n = 164) subsets with a ratio of 98:2 [Supplemental Fig. 1]. 
The applied split ratio was considered so that the maximum 
number of images could be used for model training. The test set 
was used only for the final evaluation of the model performance, 
and none of the images in the test set were used for training.

We applied the transfer learning  (TL) method to classify 
a given SD‑OCT image as either having a normal angle or 
angle dysgenesis. In MATLAB, all the available 19 pretrained 
convolutional neural network  (CNN) models, including 
SqueezeNet, ResNet‑18, GoogleNet, ResNet‑50, DarkNet‑53, 
DarkNet‑19, ShuffleNet, NasnetMobile, Nasnet Large, 
Xception, Place‑365‑Google, MobileNet V2, DenseNet‑201, 
Inception‑ResNet V2, Inception‑V3, ResNet‑101, VGG‑19, 
VGG‑16, and AlexNet, were trained using our datasets. All 
the images were resized to the required pixels depending 
on the CNN model being trained. First, all the models were 
trained using the default parameters, and the most efficient 
ones were prioritized. The hyperparameters of the prioritized 
models were further tuned in a stochastic gradient descent 
manner (SGDM) based on the minimization of mean squared 
error with the combinations of different batch sizes, epochs, 
learning rates, momentum, and drop factor.

To obtain robust models, different groupings of 
23 augmented images were also evaluated along with models 
with single augmented images and models with all combined 
augmented images. Finally, 74 models were developed using 
varied hyperparameters and augmented image combinations. 
Prediction quality was assessed by overall accuracy, specificity, 
sensitivity, area under the ROC curve, and comparison with 
the image annotations of two glaucoma experts  (glaucoma 
specialists with 10  years of specialization). Whenever there 
was a lack of consensus between the two glaucoma experts, a 
third glaucoma specialist adjudicated the case.

Genetic correlation with ADoA
In total, 393 AS‑OCT angle images of 27 unrelated JOAG 
patients with known mutations were compared with 320 
images of healthy controls. These JOAG patients had 
undergone whole exome sequencing  (WES) followed by 
bioinformatics analysis and had been found to harbor a 
mutation  (that was either of uncertain significance, likely 
pathogenic or pathogenic as per the ACMG criteria or known 
to be associated with glaucoma) in a known glaucoma 
gene. WES capture was performed using the Sure Select 
Clinical Research Exome V2 kit  (Agilent Technologies, 
Santa Clara, CA). Variant analysis was performed using the 
GenomeAnalysisTK‑3.6 toolkit. The variant call files (VCFs) 
generated were analyzed using Golden Helix VarSeq Software 
v. 1.2.1 (Bozeman, MT). VarSeq variants with read depth <15 
and genotype quality score <20 were excluded. To identify 
rare mutations, variant frequency databases were used 
to remove variants that were present at high frequencies 
among large population groups. The remaining variants 
were filtered according to minor allele frequency  (MAF) 
<0.001 in multiple databases, including Exome Aggregation 
Consortium  (ExAC) (http://exac.broadinstitute.org/), 1000 
Genomes Project (http://browser.1000genomes.org), and 
gnomAD (http://gnomad.broadinstitute.org/). Variants among 
the known glaucoma genes were filtered based on only 
those exonic variants that were non‑synonymous missense 
variants, frameshift and indels, splice region variants, and 
were absent among ethnically and geographically matched 
healthy controls.

The DL models were tested with these patients’ scans to 
detect ADoA.

Validation of DL predictions
Validations of the final DL models were performed using the 
following types of independent datasets: a) An independent 
external validation dataset of 67 images; b) A comparative 
validation between the model prediction and human experts 
where the two glaucoma experts masked to the details of the 
patients evaluated the SD‑OCT scans (n = 73), and their results 
were compared with the final model prediction; and c) A 
genetics validation dataset consisted of 393 images of patients 
with known mutations and 320 images of healthy controls 

Figure 2: Anterior‑segment SD‑OCT image showing the iridocorneal 
angle area (green rectangle) and the trabecular meshwork area (yellow 
rectangle)

Figure 1: Representative high‑definition AS‑OCT images of normal 
healthy eyes (a and b) versus those with angle dysgenesis (c and d). 
Black arrows show the location of Schlemm’s canal, and the white 
arrows show the presence of a hyperreflective membrane at the angle
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without any glaucoma gene mutation. This was a blind check 
validation where the results of the molecular analysis were 
blinded from the AI experts.

Statistical analysis
To compare the outcomes from the validation studies, 
statistical analyses were performed using a statistical 
software package (SPSS v. 26.0; SPSS, Inc., Chicago, IL, USA). 
To determine the agreement between the experts and DL 
prediction, Cohen’s κ test was applied. The receiver operating 
characteristic (ROC) analysis was performed for the external 
validation dataset, and the area under the ROC (AUROC) curve 
was determined for comparisons.

Results
Table 1 shows the clinical and demographic characteristics of 
the study subjects. Using TL on two approaches as mentioned 
below, we built a consensus‑based algorithm consisting of the 
three best models for differentiating angle dysgenesis from 
the normal angle [Fig. 1]. The performance measures of these 
models are given in Supplemental Table 1.

In the first approach, the iridocorneal angle area dataset was 
used to train all the 19 CNN models [Fig. 2]. The most efficient 
model was built using Inception‑ResNetV2, a 164‑layer‑deep 
convolutional neural network previously trained on more than 
a million images.[26] All the images were rescaled to 299 × 299 

Table 1: Demographic and clinical details of subjects whose AS‑OCT B‑scans (1 B‑scan image per eye, n=340) were used 
for machine learning model preparation

Characteristics PCG JOAG POAG Normal (Control)

Number of subjects 16 62 37 85

Number of eyes 27 86 57 170

Laterality
•  Bilateral
•  Unilateral

11
5

24
38

20
17

85
0

Age (years) at the time of study (Mean±SD) 14.9±3.7 27±7.1 62.9±9.24 38.4±8.6

Gender
•  Male
•  Female

5 (31.25%)
11 (68.75%)

44 (71%)
18 (29%)

25 (67.5%)
12 (32.5%)

45 (53%)
40 (47%)

IOP (mmHg) at the time of the study (Mean±SD) 14.2±1.4 13.8±1.2 15.1±1.3 16.2±0.8

PCG=Primary congenital glaucoma, JOAG=Juvenile open‑angle glaucoma, POAG=Primary open‑angle glaucoma. AS‑OCT=Anterior Segment Optical 
Coherence tomography, IOP=Intraocular pressure, SD=Standard deviation

Figure 3: Receiver operating characteristic (ROC) curves for the three deep learning models using an external validation dataset. *AUROC = Area 
under the ROC curve, TM = Trabecular meshwork, ICA = Iridocorneal angle
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pixels as the input image prerequisite of Inception‑ResNetV2 
and finally utilized SGDM optimizer with a learning rate of 
0.005, 45 epochs, and mini‑batch size of 64 after hyperparameter 
optimization [Supplemental Table 1]. The model achieved the 
accuracy, sensitivity, and specificity of 97.56%, 96.4%, and 
98.7%, respectively, on the internal test dataset.

In the second approach, the TM area was used, and the 
two best models were trained using Inception‑ResNetV2[26] 
and MobileNetV2[27] neural networks. MobileNetV2 is a 
convolutional neural network that requires an input image 
of 229  ×  229 pixels. Using the TM area test images, the 
models achieved an accuracy of 98.17% and 98.78%, with a 
sensitivity of 97% and 98.7%, and a specificity of 98.7% in 
each of the cases, respectively  [Supplemental Table  1]. The 
consensus‑based outcome from the three CNN TL models is 
the final predicted classification, which could recognize pixel 
patterns corresponding to the abnormalities at the angle, 
helping in better classification among the glaucoma group 
and controls.

External validation dataset
To further evaluate the accuracy and reproducibility of our 
models, we tested them on an independent external validation 
dataset consisting of 67 images. The models trained with the 
combined augmented and the original images exhibited lower 
accuracy than those trained on original images alone. Thus, we 
did not proceed with the augmented images, and all the validation 
studies were carried out using original images only. Model 1 had 
the best accuracy and specificity but the lowest sensitivity, whereas 
the other two models showed good sensitivity and comparable 
accuracies [Supplemental Table 1]. The consensus‑based outcome 
ensures inclusiveness of the mandatory training features after 

the tradeoff and reaching one outcome. The area under the 
ROC curves was >0.80 for all three models, indicating good 
performances of the models in detecting ADoA [Fig. 3].

Comparison of the model’s performance with human experts
The comparative prediction analysis is summarized in Table 2. 
The consensus‑based result achieved a maximum accuracy 
of 83%, reiterating the importance of consensus‑based 
decision‑making in clinical settings. To determine the 
agreement between the expert’s decision and consensus‑based 
prediction, Cohen’s Kappa test was carried out between 
expert1‑model prediction and expert2‑model prediction. There 
was a good agreement between the expert1‑model prediction 
(κ = 0.619, P < 0.05) and expert2‑model prediction (κ = 0.60, 
P < 0.05) suggesting a high degree of similarity between the 
expert’s decision and the model prediction.

Genetic validation dataset
Out of 27 (unrelated) patients who had known gene mutations, 
15 had MYOC mutations, eight had CYP1B1, two had FOXC1, 
and two had LTBP2 mutation. The detailed genotype of 
these patients is provided in Table 3. These patients had 12 
different mutations, and all except three (that were frameshift) 
were missense. All mutations except one in the CYP1B1 gene 
(p.Arg368His) were heterozygous.

Among these patients, ADoA was observed as predicted 
by AI among all patients with known gene mutations. The 
maximum number of scans showing ADoA were observed 
with MYOC p.Pro370Leuc, CYP1B1 p.Arg368His, and 
with LTBP2 frameshift  (p.Val801Hisfs*18) and p.Pro229Thr 
mutation. Gonioscopically angle dysgenesis was not seen 
among any of the MYOC patients [Fig. 4]. However, features 
of angle dysgenesis were seen both on gonioscopy and on 
AS‑OCT among those with CYP1B1, FOXC1, and LTBP2 
mutation.

Overall, AI was predictive of angle dysgenesis in 81% of 
scans among MYOC‑positive patients, 89% of CYP1B1 patients, 
85% of FOXC1, and 96% among those with LTBP2 mutation on 
average compared to only 5% of the healthy controls. Although 
CYP1B1 and LTBP2 mutations were seen to primarily affect SC 
morphology, the MYOC and FOXC1 mutations were found to 

Table 2: Comparison between the models ( M1, M2, and 
M3) prediction and expert’s decision

M1 M2 M3 Final consensus‑based 
prediction

Expert1 80.82% 79.45% 80.82% 83.56%
Expert2 67.12% 79.45% 78% 72.6%

MI: Model1. M2: Model2. M3: Model3

Table 3: Genetic mutations among 27 patients and angle dysgenesis on AS‑OCT as determined by AI consensus

Gene (number 
of patients)

Mutation South 
Asian MAF

Age of 
onset (y)

Percentage scans with angle 
dysgenesis predicted by AI

MYOC(1) p.Pro481Thr NA 12 88

MYOC(2) p.Lys423Gln NA 15±2.8 90

MYOC(2) p.Thr377Lys NA 22±1.4 68

MYOC(3) p.Pro370Leuc 0 14.3±3 95

MYOC(4) p.Gly367Arg 0 28.3±6.5 60

MYOC(3) p.Gln337Arg 0 31±6.2 70

CYP1B1(3) p.Arg368His 0.01 30.7±5.3 95

CYP1B1(1) Frameshift (p.Pro321Serf*104) NA 31 90

CYP1B1(4) p.Pro193Leu 0.01 19.2±6.2 75

FOXC1(2) Frameshift( p.Gly418Alafs*27) NA 20±1.4 80

LTBP2(1) Frameshift (p.Val801Hisfs*18) NA 36 100
LTBP2(1) p.Pro229Thr 0 30 100

MAF=Minor allele frequency, AS‑OCT=Anterior segment optical coherence tomography, AI=Artificial intelligence
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be associated with morphological variations in the TM because 
the SC was visualized on most scans. The age of onset of 
glaucoma did not correlate with the extent of angle dysgenesis.

Discussion
This study used DL to build models that identify ADoA among 
open‑angle glaucoma patients. We hypothesized that the angle 
dysgenesis exhibited as disturbances in the extracellular matrix 
of TM, SC, and adjoining regions in open‑angle glaucoma 
patients could be reflected as changes  (as they occur on 
histopathological sections), and the DL‑based models can 
identify these variations by classifying the iridocorneal angle 
as having dysgenesis or not based on SD‑OCT scans.

High‑definition AS‑OCT can pick up anatomical variations 
in SC and TM morphology, which are not visible on enface 
gonioscopy.[7] Gonioscopy and goniophotography, in contrast, 
require much expertise and remain observer‑dependent. 
Moreover, sometimes what appears to be a normal open angle 
on gonioscopy, may be harboring dysgenesis in the form of an 
impermeable hyperreflective membrane that may be visible 
only on an AS‑OCT.[7] Hence, AS‑OCT,[1] which has been used 
primarily for identifying angle closure, would be of use even 
in patients with POAG and their relatives in identifying ADoA, 
which could be important in deciding the role of angle‑based 
surgeries.[8]

In the present study, three DL‑based models were developed 
for a consensus‑based outcome to predict the presence of ADoA 
among open‑angle glaucoma patients. Out of all the 19 TL 
algorithms used in model building, Inception ResNetV2 and 
MobileNetV2 achieved superior performances on the ICA and 
TM areas. Whether an eye has angle dysgenesis was predicted 
with >95% accuracy in the internal dataset and >80% accuracy 
in the two different external validation datasets used in the 
present study.

Considering the phenotypic, genotypic, and histopathological 
complexity in open‑angle glaucoma, DL has been implemented 
using different approaches.[28‑32] Studies have evaluated the 
potential of implementing DL in primary angle closure disease 
and have shown promising results.[33,34] We have shown that 
SD‑OCT scans can successfully capture the anterior angle at 
high resolution and may help in identifying angle dysgenesis in 
cases where angle anomalies are subtle enough to go unnoticed. 
Although identifying gross dysgenesis of the angle, as in PCG 
may be easier,[35] subtle angle anomalies as in JOAG or POAG 
are more challenging to identify. The biological changes in 
the extracellular matrix  (ECM) comprising the trabecular 
drainage pathways that lead to IOP elevation have been 
identified in histopathological studies[36,37] in POAG. With the 
DL models used in the present study, we could identify these 
ECM changes in the TM along with abnormalities in the SC 
morphology in vivo.

DL requires an enormous amount of annotated training data, 
which is challenging to obtain in rare disorders.[38] However, 
TL and augmentation techniques are effective strategies to be 
used in cases with a limited dataset size.[39] TL demonstrates 
compelling results, particularly in cases where the data available 
for building the models is limited.[11,39] In the present study, 19 
types of CNN algorithms were trained, with each image in the 
training dataset augmented in 23 different ways. This increased 
the number of images in the training dataset and ensured that 
the model was trained on various images, making it more 
robust and reliable to be used in clinical settings. The robustness 
was also evident because the prediction for external dataset 
images displayed better results in their original form than with 
augmentations. This indicates that in natural settings, apart 
from pixel changes, no query image augmentation is required.

In addition, we looked for any pattern between the DL 
predictions of ADoA and specific gene mutations. Interestingly 

Figure 4: Anterior‑segment SD‑OCT images of patients with (a) MYOC p.Gly367Arg showing intense hyperreflectivity at the TM, (b) MYOC 
p.Pro370Leuc showing intense hyperreflectivity at the TM, (c) CYP1B1 p.Arg368His showing intense hyperreflectivity at the TM with non‑discernible 
SC, (d) CYP1B1 p.Pro193leu with non‑discernible SC, (e) FOXC1 p.Gly418Alafs*27 showing intense hyperreflectivity at the TM (white arrow) 
with the presence of SC (black arrows), (f) LTBP2 p.Pro229Thr showing intense hyperreflectivity at the TM with absent SC
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in all the mutation‑positive patients, ADoA was predicted in 
over 80% of images. This highlights the fact that the model 
efficiently captures the differentiating extracellular matrix 
features in normal and mutation‑positive AS‑OCT scans. 
Most gene mutation studies on animal models of glaucoma 
have provided insights into the pathogenesis of outflow 
channels in controlled experiments. In contrast, in‑vivo 
analyses of human eyes with rare disease‑causing mutations 
provide a better understanding of the anatomical effects of 
these mutations. Although the mutations in the MYOC gene 
are known to cause aggregation of the misfolded myocilin 
protein, leading to TM cell toxicity and eventually death, 
there is no evidence in the literature to suggest the role of the 
MYOC gene mutations in alterations in angle morphology. 
There is only one histopathological report of a JOAG patient 
with MYOC Tyr453His mutation, where no apparent changes 
of the TM or SC were noted, though intense MYOC immune 
reactivity was observed at the TM.[40] Nevertheless, there is 
evidence to suggest that MYOC mutations are associated with 
goniodysgenesis. Chen X et al.[41] reported a 3‑generation JOAG 
family with Pro370Leu mutation in the MYOC gene in all 
affected members who also had goniodysgenesis. This evidence 
is further strengthened by the reports of the association of 
MYOC gene mutations with congenital glaucoma.[17,41] In 
contrast, CYP1B1‑related cases of PCG have been shown to have 
histopathological evidence of goniodysgenesis, involving not 
only the TM and SC but also the collector channels.[42]

In our study too, the subset of JOAG patients with CYP1B1 
gene mutations showed ADoA, as predicted by DL models. 
We also found FOXC1 and LTBP2 mutations among our 
patients with no other features of either Axenfeld–Reiger 
Syndrome (ARS) or zonular abnormalities classically associated 
with these gene mutations. Two cases of JOAG with LTBP2 
mutations have been described,[43,44] one by Saeedi et al.[43] and 
the other by our group.[44] LTBP2 gene mutations are known 
to express a wide variety of ocular phenotypes (as with other 
monogenic disorders), ranging from primary trabecular 
meshwork dysgenesis to a Marfans‑like zonular disease. 
Although FOXC1 mutations have been commonly associated 
with ARS, they are also known to occur in adult‑onset POAG 
and JOAG.[45] In our study, two unrelated patients harbored 
the same FOXC1 frameshift mutation, which is novel. Our 
findings demonstrate that probably different gene mutations 
affect different parts of the proximal outflow pathways. CYP1B1 
and LTBP2 were found to affect primarily the SC morphology; 
in contrast, MYOC and FOXC1 were found to be associated 
with morphological variations in the TM because the SC in the 
latter was normally developed.

The strength of the study is that the final prediction was 
based on three distinct models, each utilizing unique regions 
of ICA or TM, to ensure there was no repeat sampling bias. 
The study’s limitation was the small and heterogeneous 
sample size in the training dataset (n = 340) used for model 
building. However, we enhanced the input data by using 
augmentation techniques. Another drawback of the limited 
data set was our inability to correlate the gene mutations with 
the clinical severity of the disease, which was not within the 
ambit of our research, as our study was focused on evaluating 
the association of gene mutations with DL‑predicted 
angle dysgenesis. There is also the possibility that surgical 
intervention would influence the changes occurring at the 

angle, though we took only images of the nasal and temporal 
quadrants, away from the superior site of surgery, and 
excluded eyes that had had angle surgery. Many images 
on AS‑OCT have to be discarded due to poor quality and 
image artifacts at the ICA area due to the reflectance from the 
superficial vessels. This would be taken care of, hopefully, 
in the newer generation machines, which would have better 
resolution too. Moreover, the results of this study need to be 
replicated in other populations.

Conclusion
Notwithstanding these limitations, the importance of the study 
lies in having addressed a crucial as well as unique issue of 
in vivo identification of angle dysgenesis. In conclusion, the 
DL models in this study were effective in identifying angle 
dysgenesis on AS‑OCT images and could be correlated with 
gene mutations in a subset of patients.
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Supplemental Figure 1: Workflow used in deep learning of anterior-segment SD-OCT images

Supplemental Table 1: Architecture, optimized hyperparameters and performance of the three final classification models

Model‑1 (inceptionresnet‑v2) Model‑2 (inceptionresnet‑v2) Model‑3 (mobilenet‑v2)

Internal testing dataset

Total images 8160 8160 8160

Training dataset (98%) 7996 7996 7996

Testing dataset (2%) 164 164 164

Accuracy % 97.56 98.17 98.78

Sensitivity 0.964 0.97 0.987

Specificity 0.987 0.987 0.987

Precision 0.987 0.98 0.987
Recall 0.964 0.97 0.987

External independent validation dataset

External dataset (n) 67 67 67

Accuracy % 83.58 74.6 80.6

Sensitivity 0.68 0.64 0.80
Specificity 0.92 0.78 0.80


