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A B  S T  R  A  C  T  

Purpose: Developmental dyslexia is proposed to involve selective procedural 
memory deficits with intact declarative memory. Recent research in the domain 
of category learning has demonstrated that adults with dyslexia have selective 
deficits in Information–Integration (II) category learning that is proposed to rely 
on procedural learning mechanisms and unaffected Rule-Based (RB) category 
learning that is proposed to rely on declarative, hypothesis testing mechanisms. 
Importantly, learning mechanisms also change across development, with dis-
tinct developmental trajectories in both procedural and declarative learning 
mechanisms. It is unclear how dyslexia in childhood should influence auditory 
category learning, a critical skill for speech perception and reading development. 
Method: We examined auditory category learning performance and strategies in 
7- to 12-year-old children with dyslexia (n = 25; nine females, 16 males) and 
typically developing controls (n = 25; 13 females, 12 males). Participants learned 
nonspeech auditory categories of spectrotemporal ripples that could be optimally 
learned with either RB selective attention to the temporal modulation dimension 
or procedural integration of information across spectral and temporal dimensions. 
We statistically compared performance using mixed-model analyses of variance 
and identified strategies using decision-bound computational models. 
Results: We found that children with dyslexia have an apparent selective RB 
category learning deficit, rather than a selective II learning deficit observed in 
prior work in adults with dyslexia. 
Conclusion: These results suggest that the important skill of auditory category 
learning is impacted in children with dyslexia and throughout development, indi-
viduals with dyslexia may develop compensatory strategies that preserve 
declarative learning while developing difficulties in procedural learning. 
Supplemental Material: https://doi.org/10.23641/asha.25148519 
Developmental dyslexia is a highly prevalent learn-
ing disorder in children, impacting between 3% and 20% 
of school-age children (Shaywitz, 1996; Snowling, 2013). 
Most saliently, dyslexia affects reading abilities, but dys-
lexia is also proposed to have more general effects on 
learning and perception, especially in the domain of proce-
dural learning. Here, we examine how children with and 
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without dyslexia, matched by age and nonverbal IQ, learn 
novel auditory categories, an important skill linked to first 
and second language acquisition (Holt & Lotto, 2006; Kuhl, 
2000; Liu & Holt, 2011; Myers & Swan, 2012; Wiener 
et al., 2019) that may be critical in the ability to map 
sounds to letters when learning to read. 

Developmental Dyslexia 

Developmental dyslexia is associated with impair-
ments in phonological processing (Boets et al., 2013), tem-
poral processing in speech and nonspeech (Vandermosten 
et al., 2010), motor-based procedural learning (Lum 
et al., 2013; Vicari et al., 2005), statistical learning of 
auditory sequences (Gabay, Thiessen, & Holt, 2015), and
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auditory category learning (Gabay & Holt, 2015; Gabay 
et al., 2023). 

One hypothesis of dysfunction in dyslexia suggests 
there are auditory and phonological processing deficits 
(Share, 2021; Stanovich, 1988; Tallal, 1980; Witton et al., 
2020; Zoccolotti, 2022). One reason for these deficits 
could be the inability to recognize common stimulus fea-
tures needed to create categorical representations. As a 
child learns language, the brain processes statistical regu-
larities in the speech environment to identify speech 
sounds that are common and therefore important (Kuhl 
et al., 1992). Individuals with dyslexia exhibit abnormali-
ties in statistical learning in a variety of contexts (for 
review, see Schmalz et al., 2017). For example, reduced 
statistical learning in dyslexia is present in visual tasks 
(e.g., novel symbols and faces; Sigurdardottir et al., 2017) 
and in auditory tasks (e.g., tones and syllables; Gabay, 
Thiessen, & Holt, 2015). This difficulty in recognizing 
repeated stimulus elements likely impacts reading acquisi-
tion, as a child learns to associate various versions of a 
letter form with its respective speech sound category. If 
the brain is unable to form categories either in the speech 
sound domain or in the recognition of the letter shape, 
children are unlikely to achieve fluency. 

Another hypothesis suggests that dyslexia is marked 
by procedural deficits (Nicolson & Fawcett, 2007; Nicolson 
et al., 2010). According to the Procedural Deficit Hypothe-
sis (Lum et al., 2013; Ullman, 2004; Ullman et al., 2020), 
dyslexia is associated with general procedural learning defi-
cits that impair the ability to learn via slower associative 
mechanisms such as reinforcement learning. In dyslexia, 
this learning deficit is proposed to specifically affect the 
ability to learn mappings between print and sound (Castles 
et al., 2018; Snowling et al., 2020). However, there are 
mixed results in the literature with some studies demon-
strating no procedural deficits in individuals with dyslexia 
(Staels & Van den Broeck, 2015) or questioning the proce-
dural nature of tasks used to assess so-called procedural 
learning (West et al., 2018; West, Vadillo, et al., 2019). 
Category Learning in Dyslexia 

In the current study, we leverage an artificial audi-
tory category learning approach to better understand the 
nature of learning deficits in children with dyslexia. Specif-
ically, we examine learning of categories that are argued 
to optimally rely on either declarative or procedural learn-
ing systems to clarify whether procedural learning deficits 
may be a primary source of challenges in children with 
dyslexia. Based on the Competition of Verbal and Implicit 
Systems theory (Ashby et al., 1998), researchers have 
argued that categories with different structures rely on 
distinct neural and computational mechanisms. Specifi-
cally, categories that require selective attention to individ-
ual dimensions to create rules defining the categories 
(Rule-Based [RB] categories) are argued to optimally 
involve explicit, declarative mechanisms, whereas catego-
ries that require integration across multiple dimensions 
(Information–Integration [II] categories) are argued to 
optimally involve implicit, procedural learning mecha-
nisms. This theory has been expanded to the auditory 
modality and specifically to speech category learning 
(Chandrasekaran et al., 2014). While often studied in arti-
ficial contexts, some real-world categories may be aligned 
with these RB and II definitions. For example, speech 
sound categories (e.g., /b/ vs. /p/) may be a type of II cat-
egory as they are multidimensional and cannot easily be 
described by rules, whereas ranges of opera singers (e.g., 
soprano vs. alto) may be a type of RB category as one 
can identify the category by selectively attending to the 
vocal range of the singer. 

It is important to note that evidence for these cate-
gories being learned with separate systems does not have 
unequivocal empirical support (Newell et al., 2011). Addi-
tionally, both RB and II categories can be learned to some 
extent with declarative strategies (Donkin et al., 2014) and 
steps should be taken to ensure that strategies are 
identifiable from participants’ response data (Edmunds 
et al., 2018). 

Some work has been done on category learning in 
adults with dyslexia or general reading difficulties. Adults 
with dyslexia are impaired at speech (Banai & Ahissar, 
2018) and nonspeech category learning (Gabay & Holt, 
2015; Gabay, Vakil, et al., 2015; Gertsovski & Ahissar, 
2022). For both nonspeech auditory categories and visual 
categories, adults with dyslexia have selective deficits in 
category learning linked with procedural or implicit pro-
cesses (II categories), but preserved learning linked with 
declarative or explicit processes (RB categories; Gabay 
et al., 2023; Sperling et al., 2004). Gabay et al. (2023) 
demonstrated that this selective learning deficit was due to 
the inability of adults with dyslexia to use optimal proce-
dural categorization strategies during II learning. In con-
trast, adults with dyslexia were able to use conjunctive 
RB strategies during RB learning just as well as con-
trols. Possibly related to their ability to learn complex 
auditory categories via feedback, adults with dyslexia 
are also impaired in reinforcement learning (Gabay, 
2021; Massarwe et al., 2022). In all, these findings are 
generally aligned with the Procedural Deficit Hypothesis. 
Importantly, RB and II auditory category learning have 
not been directly examined in children with dyslexia. It is 
unclear whether learning patterns in adults with dyslexia 
are also present in childhood—we address this question 
directly in the current research.
Roark et al.: Category Learning in Dyslexia 975



Developmental Trajectory of 
Category Learning 

Importantly, both RB and II learning undergo sub-
stantial changes across development. Children are generally 
worse at RB learning relative to adults, perseverating with 
suboptimal rules or using inappropriate guessing strategies 
(Rabi & Minda, 2014; Reetzke et al., 2016; Roark et al., 
2023). Evidence for the developmental trajectory of II 
learning is more mixed. Some prior work has demonstrated 
that children are generally worse at II learning relative to 
adults (Huang-Pollock et al., 2011; Roark & Holt, 2019; 
Roark et al., 2023), while other work has demonstrated that 
children can be just as successful as adults when learning 
categories that cannot clearly be described by rules (Minda 
et al., 2008). As a result, it is possible that children with 
dyslexia may demonstrate different learning patterns com-
pared to adults with dyslexia. RB and II category learning 
have not yet been examined in children with dyslexia, but 
learning is argued to be a core component of the dyslexia 
deficit (Castles et al., 2018; Snowling et al., 2020; Ullman 
et al., 2020). Below, we outline three possible patterns of 
results in children that highlight the intersection of the 
development of category learning and learning in dyslexia. 
Predictions 

First, it is possible that children with dyslexia will dem-
onstrate similar patterns as adults with dyslexia—children, 
like adults, will have impaired II learning but intact RB learn-
ing, consistent with the Procedural Deficit Hypothesis. This 
possibility would also be supported by a specific inability of 
children with dyslexia, like adults, to find and use II-optimal 
procedural strategies, with intact RB-optimal RB strategies. 
This pattern would suggest that despite general category 
learning mechanisms undergoing substantial changes across 
development, the fundamental aspects that are affected in 
dyslexia are present in both childhood and adulthood. Specif-
ically, this pattern would suggest that procedural learning 
deficits in dyslexia are persistent throughout development. 

An alternative pattern is that children with dyslexia, 
unlike adults, will demonstrate a general deficit in cate-
gory learning. This pattern would suggest that over the 
course of development, adults with dyslexia may find 
compensatory strategies to preserve RB learning. This pre-
diction is also consistent with the idea that sound repre-
sentations are variable and unstable in dyslexia and there-
fore are unable to be reinforced by feedback (Centanni 
et al., 2018; Hornickel & Kraus, 2013; Neef et al., 2017). 
If children are unable to find optimal rules, this would 
impede both RB and II learning. This is also consistent 
with views of other disorders such as attention-deficit/ 
hyperactivity disorder (ADHD) in building representations 
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through general associations between stimuli and responses 
(Huang-Pollock et al., 2011). This pattern would suggest 
that dyslexia interacts with development to impact category 
learning ability, with children and adults with dyslexia 
worse than their age-matched peers at II category learning, 
but only children being impaired at RB learning, as adults 
are able to find compensatory strategies with enhanced 
selective attention abilities relative to children. 

Finally, it is possible that the developmental pat-
terns of category learning will outweigh any potential dif-
ferences between typically developing children and chil-
dren with dyslexia. Because children are generally worse 
at RB and II learning than adults, it is possible that the 
circuits that differentiate adults with dyslexia from con-
trols are still developing in both typically developing chil-
dren and children with dyslexia. If this is the case, then 
both typically developing children and children with dys-
lexia may demonstrate difficulty in learning, accompanied 
by the use of suboptimal RB strategies and exploratory/ 
guessing strategies (Blanco & Sloutsky, 2021a; Jones & 
Dekker, 2018; Liquin & Gopnik, 2022; Rabi & Minda, 
2014; Rabi et al., 2015; Roark & Holt, 2019; Roark et al., 
2023). As a result, there may be no significant differences 
between children with dyslexia and typically developing 
children and, instead, differences between these groups 
may emerge later in development, once declarative and 
procedural category learning abilities have matured. 
Method 

Participants 

We examined auditory category learning in 7- to 12-
year-old children comparing children with dyslexia (n = 
25, Mage = 10.1, SD = 1.48) to age-matched typically 
developing children (n = 25, Mage = 10.0, SD = 1.38). We 
recruited native English-speaking children throughout the 
United States through online advertisements as part of a 
larger study on stimulus processing in dyslexia. All proce-
dures were approved by the Texas Christian University 
institutional review board. Parental consent was obtained 
during an online screening survey and verbal assent was 
obtained from each child. All aspects of the study were 
conducted virtually using Zoom. The category learning 
tasks were administered via the Gorilla Experiment 
Builder (Anwyl-Irvine et al., 2020). To be eligible for the 
study, children needed to have no history of neurological 
disorders (e.g., ADHD, epilepsy, traumatic brain injury). 

Eligible children completed a virtual assessment ses-
sion where a trained researcher administered a series of 
standardized assessments in the same order for all partici-
pants. Children completed measures of nonverbal IQ
•974–988 March 2024



 

Table 1. Demographics and reading scores for age-matched groups. 

Measure Control (n = 25) Dyslexia (n = 25) t value (p value) 

Age 10.0 (1.38) 10.1 (1.48) −0.27 (.79) 
KBIT-2 (Nonverbal IQ) 115.9 (11.3) 106.3 (11.4) 3.00 (.0042) 

Word Attack Standard Score 110.0 (10.7) 87.8 (10.0) 7.59 (< .0001) 

Word ID Standard Score 116.8 (10.8) 87.5 (11.3) 9.37 (< .0001) 

TOWRE-2 Phonemic Decoding Efficiency Standard Score 107.2 (13.1) 77.9 (8.21) 9.46 (< .0001) 

TOWRE-2 Sight Word Efficiency Standard Score 106.9 (15.7) 79.6 (6.79) 8.02 (< .0001) 

Note. KBIT-2 = Kaufman Brief Intelligence Test−Second Edition; TOWRE-2 = Test of Word Reading Efficiency−Second Edition. 
(Matrices subtest of the Kaufman Brief Intelligence Test– 
Second Edition; Kaufman & Kaufman, 2004) and reading 
skills (untimed and timed single-word reading and decoding 
tests, Torgesen et al., 2012; Woodcock, 2011; Word Identifi-
cation  and Word Attack  subtests of Woodcock Reading
Mastery Test, Woodcock, 2011; Sight Word Efficiency and 
Phonemic Decoding Efficiency subtests of the Test of Word 
Reading Efficiency, Torgesen et al., 2012; reading automatic-
ity, Rapid Digit Naming and Rapid Letter Naming, Wolf & 
Denckla, 2005). Children were determined to be eligible for 
further sessions if they achieved a standard score of 85 or 
higher on the measure of nonverbal IQ. Of the 97 children 
that were initially assessed for eligibility, nine were excluded 
for low nonverbal IQ, 11 were excluded for not meeting 
requirements for reading/phonemic ability (see below), two 
were excluded for being a typically developing sibling of a 
child with dyslexia, one was excluded for failing to complete 
the categorization tasks within a reasonable amount of time, 
and 11 were lost to attrition. We excluded any participants 
who did not complete both category learning tasks. Among 
this sample, 25 children with dyslexia (nine females, 16 
males) completed both category learning tasks. Twenty-five 
typically developing children (13 females, 12 males) were 
selected from the sample of 36 control children who com-
pleted both tasks based on age-matching to the children 
with dyslexia. Children with dyslexia were required to score 
below a standard score of 90 on at least two of the four 
measures of reading/phonemic ability (see Table 1). Chil-
dren with dyslexia had significantly lower scores on Word 
Attack (p < .0001), Word ID (p < .0001), Phonemic 
Decoding Efficiency (p < .0001), and Sight Word Efficiency 
(p < .0001) measures compared with controls. Children with 
Table 2. Demographics and reading scores for nonverbal IQ-matched gro

Measure Control

Age 9.70

KBIT (Nonverbal IQ) 108.9

Word Attack Standard Score 109.2

Word ID Standard Score 114.4

TOWRE-2 Phonemic Decoding Efficiency Standard Score 107.4

TOWRE-2 Sight Word Efficiency Standard Score 107.3

Note. KBIT-2 = Kaufman Brief Intelligence Test−Second Edition; TOWRE
dyslexia also had significantly lower nonverbal IQ scores 
compared with controls selected based on age-matching. 
Though all children were required to meet a nonverbal IQ 
criterion, potential differences between the groups could 
affect interpretations of any differences in category learn-
ing. As such, we separately sampled another subset of 
control subjects that were matched for IQ to understand 
whether any potential differences were due to differences 
in IQ across our initial age-matched groups (see Table 2). 
Stimuli 

Stimuli were nonspeech static ripples varying in temporal 
and spectral modulation previously validated in prior research 
on category learning in both children and adults (Gabay et al., 
2023; Reetzke et al., 2016; Roark & Chandrasekaran, 2023; 
Roark et al., 2021, 2023; Yi & Chandrasekaran, 2016). These 
pairs of dimensions are fundamental to natural sound pro-
cessing including speech (Woolley et al., 2005) and prior 
work has examined perception and learning within these 
ranges of temporal (2–15 Hz) and spectral modulation 
(−0.38–2.67 cycles/octave; Roark & Chandrasekaran, 2023; 
Roark et al., 2021, 2023; Schönwiesner & Zatorre, 2009; 
Woolley et al., 2005). Prior work has demonstrated that both 
children and adults can selectively attend to temporal modu-
lation (Roark et al., 2021, 2023) and map relative differences 
along temporal modulation onto clear verbal labels (e.g., 
“fast” and “slow”). As such, listeners can map changes on 
this dimension to unidimensional rules. 

Arbitrary categories were defined to match either 
RB categories (see Figure 1A) or II categories (see Figure
ups. 

 (n = 25) Dyslexia (n = 25) t value (p value) 

 (1.34) 10.1 (1.48) −0.93 (.36) 
 (10.9) 106.3 (11.4) 0.84 (.41) 

 (12.1) 87.8 (10.0) 6.83 (< .0001) 

 (11.1) 87.5 (11.3) 8.53 (< .0001) 

 (13.5) 77.9 (8.21) 9.29 (< .0001) 

 (16.0) 79.6 (6.79) 8.00 (< .0001) 

-2 = Test of Word Reading Efficiency−Second Edition. 

Roark et al.: Category Learning in Dyslexia 977



Figure 1. Category distributions. Category distributions for (A) Rule-Based and (B) Information–Integration categories. Category stimuli are shown 
in different colors. Generalization stimuli are shown as black ×s. Black lines reflect optimal decision boundaries. cyc/oct = cycles per octave. 
1B). A single category for the RB categories was first cre-
ated using bivariate Gaussian sampling, with 100 stimuli. 
Gaussian sampling was used to create some noise in the 
category distributions, as is observed with natural catego-
ries (Ashby & Gott, 1988; Liberman et al., 1967; 
Nosofsky et al., 2018; Swingley, 2005). The other category 
was created by mirroring that category across the stimulus 
space. The II categories were created by rotating the RB 
categories by 45 degrees. As a result, each of the individ-
ual categories have the same stimulus distributions. Addi-
tionally, due to the sampling, there was very slight overlap 
between the two categories within a distribution, which 
makes category membership somewhat probabilistic, which 
can positively affect II learning without affecting RB learn-
ing (Ell & Ashby, 2006). 

The RB categories require selective attention to the 
temporal modulation dimension and the II categories 
require integration across both temporal and spectral 
modulation dimensions. In contrast to prior work in 
adults with dyslexia (Gabay et al., 2023), we chose to 
train children on two categories instead of four categories 
to increase the likelihood that they would learn. 
Procedure 

After an initial assessment session, all participants 
learned both the RB and II categories in separate tasks, 
with the order counterbalanced across participants. The 
category learning tasks were very similar. The trial proce-
dure was identical with the only difference being the 
images present on the screen. Participants were given a 
cover task about traveling to different planets and 
• •978 Journal of Speech, Language, and Hearing Research Vol. 67
listening to different aliens talk as they decided who was 
talking. Across RB and II category tasks, there were dif-
ferent sets of aliens and different planets in the instruc-
tions to further prevent carryover effects. 

On each trial, participants heard a 1-s sound 
followed immediately by a prompt on the screen of “Who 
was talking?” with pictures of the two aliens and their 
associated keypress responses (i.e., “1,” “2”). Assignment 
of sound category-to-alien and motor response were coun-
terbalanced across participants. Participants made an 
untimed response about the category identity, which was 
followed immediately by corrective feedback (smiling face 
for correct, neutral face for incorrect) for 1 s and a 1-s inter-
trial interval. Participants were given explicit instructions at 
the beginning of the task about how to interpret the smiling 
and neutral faces. Participants were not given any instruc-
tions about the dimensions that defined the categories. 

In both category tasks, there were 50 trials in each 
of four blocks. Participants encountered each stimulus 
exactly once (100 stimuli × 2 categories = 200 stimuli). To 
maintain motivation, after each block, participants uncov-
ered another piece of a puzzle that was completely 
revealed at the end of the task. There was a separate puz-
zle for the two tasks. After the four training blocks, par-
ticipants completed 64 trials of a generalization task 
wherein they categorized novel stimuli drawn from an 8 × 8 
grid (Figure 1—×s). The generalization task procedure was 
similar to the training procedure except that participants 
did not receive any feedback. 

The primary outcome measure was accuracy in cate-
gory learning, and we were particularly interested in the
•974–988 March 2024



potential interaction between group (Dyslexia, Control) 
and category type (II, RB). A power analysis indicated 
that with samples of 25 children in each group, with an α 
of .05 and a power of .90, we would be able to detect a 
large interaction effect (f = 0.48). 

Decision Bound Models 

Decision bound models (Ashby & Gott, 1988; 
Ashby & Maddox, 1992) were fit to each block of each 
participant’s data to estimate their learning strategy. We 
fit several versions of models within three different classes 
—RB, integration, and exploration/guessing. 

The RB models assumed that participants used a 
single dimension (e.g., unidimensional rule) to separate the 
stimuli into categories. We fit separate versions of these 
models that assume participants use either the temporal 
modulation dimension or spectral modulation dimension 
and versions that assumed different assignments of 
responses to regions of the stimulus space (e.g., Category 
A on the left, Category B on the right, or vice versa). An 
RB strategy along the temporal modulation dimension is 
optimal for the RB categories. The RB models have two 
free parameters—one for placement of the decision bound-
ary along the relevant dimension and one for perceptual 
and criterial noise. 

The integration model assumed that participants 
used both dimensions (e.g., a linear, diagonal boundary) 
to separate the stimuli into categories. We fit separate ver-
sions of the integration model that assumed different 
assignments of responses to regions of the stimulus space. 
An integration strategy with a positive slope is optimal for 
the II categories. The integration models have three free 
parameters—one for the slope of the boundary, one for 
the intercept of the boundary, and one for perceptual and 
criterial noise. 

The exploration/guessing models assumed that par-
ticipants guessed the category identity. This type of model 
would also be the best-fit model if participants were not 
clearly using RB or integration strategies. As a result, we 
interpret usage of this “strategy” as consistent with either 
exploration of several kinds of strategies not captured by 
these models or random guessing. We fit three versions of 
exploration/guessing models: two versions assumed that 
participants had biased responses toward one category or 
the other; and one version assumed that participants bal-
anced their responses across categories. The exploration/ 
guessing models have one free parameter—the probability 
of responding one category (for which the probability of 
responding the other category is 1 minus that probability). 

Each version of each model class was fit to each 
block of responses for all participants. Models were fit 
using maximum likelihood procedures (Wickens, 1982) 
and the best-fitting model was selected based on the 
Bayesian Information Criterion (BIC; Schwarz, 1978), 
where BIC = rlnN – 2lnL, where r is the number of free 
parameters, N is the number of trials in a given block for 
a given subject, and L is the likelihood of the model given 
the data. The model with the lowest BIC value was 
selected as the model that best fit the participant’s 
responses for that given block. 

We conducted model recovery simulation analyses 
to ensure that the models could accurately detect the type 
of strategy they were designed to detect (Edmunds et al., 
2018). We simulated response data for each of the strate-
gies (unidimensional rule along temporal modulation, uni-
dimensional rule along spectral modulation, integration, 
and exploration/guessing) 10 times for each category (total 
of 80 simulated data sets, 40 for each category). We 
applied a deterministic response strategy for the simulated 
parameters, with the ranges of the parameters based on 
reasonable ranges of the category distributions. We com-
pared the best-fit model to the true simulated model. 
Overall, these simulations demonstrated that the models 
can accurately detect participant strategies—100% of RB 
category models and 98% of II category models identi-
fied the correct simulated strategy. As additional evi-
dence of good fit, the models accurately estimated the 
ground-truth simulated parameters of the estimated data 
(r = .996). We also examined the ability of the best-fit 
model to accurately capture the variability in partici-
pants’ responses. There was a model prediction accuracy 
of 70% for the II categories and 72% for the RB catego-
ries. This indicates that the models can capture variabil-
ity in responses better than chance (50%) and that the 
best-fit strategies can accurately account for participants’ 
patterns of responses. 
Results 

Category Learning Performance 

We compared learning performance in typically 
developing children and children with dyslexia using a 
mixed-model analysis of variance (ANOVA) with group 
(Dyslexia, Control), category (RB, II), and block (1–4) as 
factors. Children with dyslexia had significantly worse per-
formance than typically developing controls, collapsing 
across categories (see Figure 2A; F(1, 48) = 4.54, p = 
.038, ηG 

2 = .032; Control: M = 60%, Dyslexia: M = 
56%). No other main effects or interactions were statisti-
cally significant (Fs < 2.40, ps > .12) indicating that cate-
gory learning performance accuracy did not significantly 
differ across RB and II categories or across blocks.
Roark et al.: Category Learning in Dyslexia 979



Figure 2. Category learning accuracy. Error bars reflect standard error of the mean. (A) Average accuracy across groups, tasks, and blocks. 
(B) Average accuracy across groups to demonstrate the significant main effect of group. No other main effect (block, task) or interaction 
was significant. 

Figure 3. Strategies during category learning. Error bars reflect 
standard error of the mean. (A) Proportion of participants using dif-
ferent strategies across category learning blocks. (B) Average 
number of first block participants used the task-optimal strategy 
(Information–Integration [II]: Integration; Rule-Based [RB]: Temporal 
Rule). If participants never used the optimal strategy, they were 
given a value of 5. (C) Average number of total optimal blocks par-
ticipants used the task-optimal strategy. If participants never used 
the optimal strategy, they were given the value of 0. (D) Proportion 
correct for participants using the task-optimal strategy in the final 
block of each task. No children with dyslexia used the II-optimal 
Integration strategy in the final block of the II task.
Relevant to our contrasting predictions, we did not 
find a significant interaction between group and category 
type, F(1, 48) = 2.40, p = .13, ηG 

2 = .011. However, it is 
important to note that unless the interaction effect was 
large (f = 0.48), we would not have enough power to 
detect it given our sample size. To better contextualize 
these results, we conducted exploratory post hoc analyses 
to compare the groups separately for RB and II catego-
ries. For RB categories, children with dyslexia performed 
significantly worse than controls (Control: M = 61%, 
SD = 10.1; Dyslexia: M = 55%, SD = 7.00; t(42.8) = 
2.53, p = .015, d = 0.72), but for II categories, there were 
no significant differences in performance across groups 
(Control: M = 58%, SD = 8.51; Dyslexia: M = 56%, 
SD = 7.35; t(47.0) = 0.74, p = .46, d = 0.21). 

Despite the relatively flat performance across blocks, 
participants in both groups demonstrated evidence of 
learning as performance was significantly above chance 
levels (one-sample t tests compared to 50%) of perfor-
mance in both RB and II tasks (Dyslexia-RB: M = 55%; 
Dyslexia-II: M = 56%; Control-RB: M = 61%; Control-II: 
M = 58%; ps < .0001). The flat performance across blocks 
indicates that most learning occurred within the first 50 
trials. While many children struggled to learn, some chil-
dren learned quite well (maximum accuracy: Dyslexia-RB 
= 76%; Dyslexia-II = 86%; Control-RB = 88%; Control-II 
= 88%). There was limited evidence for carryover effects 
across tasks (see Supplemental Material S1). 

Learning Strategies 

Children with dyslexia and controls used similar 
strategies across the two tasks (see Figure 3A). Among all 
participants, there were no significant differences in learn-
ing strategies between children with dyslexia and controls 
in any block during RB (Fisher’s exact tests, ps > .20) or 
II learning (Fisher’s exact tests, ps > .14). Most partici-
pants in both groups used exploration/guessing strategies 
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(final block: II-Dyslexia: 60%, II-Control: 50%, RB-
Dyslexia: 68%, RB-Control: 58%). This type of strategy 
could reflect random guessing or indicate that participants 
are switching between different types of strategies very fre-
quently during learning such that their strategy could not
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be captured well by any of the other models. A smaller 
subset of participants used unidimensional RB strategies 
(the temporal rule strategy is optimal for RB categories), 
with very few using integration strategies (the integration 
strategy is optimal for II categories).

We also examined whether children with dyslexia 
differed from controls in how quickly participants used 
the optimal strategy (see Figure 3B), in the total number 
of blocks participants used the optimal strategy (see Fig-
ure 3C), and among those participants using the optimal 
strategy in the final training block, how accurately they 
applied this strategy (see Figure 3D). We compared the first 
two measures using mixed-model ANOVAs with category 
as a within-subjects factor and group as a between-subjects 
factor. We compared groups’ accuracy for those using the 
optimal strategies in the final block. Because no children 
with dyslexia used the optimal procedural strategy in the 
final block of II learning, we only compare performance 
across groups during RB learning using a t test. As a sup-
plementary analysis, we compared the precision of strate-
gies in the final training block by comparing placement of 
the decision boundaries in the two-dimensional space (see 
Supplemental Material S1). We found that, generally, when 
participants used the optimal strategy, their decision bound-
aries were very near to optimal in both RB and II tasks. 

First Optimal Block 
We determined the first block in which participants 

used the task-optimal strategy when learning the two types 
of categories. If participants never used the optimal strat-
egy for a category, we assigned the value of 5, indicating 
that they never applied the optimal strategy during the 
four training blocks. Participants in both groups were sig-
nificantly faster to use the optimal temporal rule strategy 
during RB learning compared to the integration strategy 
during II learning, F(1, 48) = 10.3, p = .002, ηG 

2 = .091. 
Participants used the optimal strategy in 3.38 (SD = 1.72) 
blocks on average when learning RB categories compared 
to 4.32 (SD = 1.32) blocks when learning II categories. 
Children with dyslexia (M = 4.16 blocks, SD = 1.45) took 
marginally more blocks to use the optimal strategy for 
either category type compared to controls (M = 3.54 
blocks, SD = 1.69) though this was not statistically signifi-
cant, F(1, 48) = 3.96, p = .052, ηG 

2 = .042. There was no 
significant interaction between category type and group, 
F(1, 48) = 0.56, p = .46, ηG 

2 = .005. 

Total Optimal Blocks 
We determined the total number of blocks in which 

participants used the optimal strategy in the two tasks. 
We found that participants used the optimal strategy sig-
nificantly more during RB learning (M = 1.16 blocks, 
SD = 0.20) than II learning (M = 0.30 blocks, SD = 
0.082), F(1, 48) = 18.4, p < .0001, ηG 
2 = .15. Children 

with dyslexia (M = 0.50 blocks, SD = 0.14) used the opti-
mal strategy in significantly fewer blocks than controls 
(M = 0.96 blocks,  SD = 0.18),  F(1, 48) = 4.31, p = .043, 
ηG 

2 = .047. There was no significant interaction between cat-
egory type and group, F(1, 48) = 0.81, p = .37,  ηG 

2 = .008. 

Efficiency of Optimal Strategies 
We determined the efficiency of participants’ opti-

mal strategy use by isolating those participants who used 
the optimal strategy in the final block of each category 
type and then compared accuracies across groups. No 
children with dyslexia and only three control participants 
used the optimal strategy in the final block of II learning. 
Because no children with dyslexia used the optimal strat-
egy during II learning, we only compared performance 
during RB learning (Dyslexia: n = 6; Control: n = 10). 
We found that during RB learning, participants using the 
optimal strategy in the two groups did not have signifi-
cantly different accuracies, t(10.3) = 0.31, p = .76,  d = 0.14.  

In post hoc analyses, considering only individuals 
who used the optimal strategy in the final block, we exam-
ined whether the groups differed in their use of strategies 
across the other blocks. There were no significant differ-
ences between children with dyslexia and controls in the 
first optimal block, t(11.1) = 0.60, p = .56, d = 0.31, or 
total optimal blocks, t(10.4) = 0.056, p = .96, d = 0.029. 
Only six children with dyslexia and 10 controls used the 
task-optimal strategy in the final block of RB learning. 
Thus, we encourage caution in interpreting these results. 
However, this could indicate that if children with dyslexia 
are able to find optimal rules, they may perform similarly 
to typically developing children. 

We also examined whether children with dyslexia 
who used the optimal RB strategy had differences in read-
ing scores compared to children with dyslexia who used 
suboptimal strategies during RB learning. There were no 
significant differences in reading scores—Word Attack: 
t(17.2) = −0.41, p = .68, d = −0.16; Word ID: t(13.1) = 
−0.50, p = .62, d = −0.21; Phonemic Decoding Efficiency: 
t(10.8) = 1.21, p = .25, d = 0.53; Sight Word Efficiency: 
t(8.07) = 0.17, p = .87, d = 0.082—among children with 
dyslexia who used the optimal strategy and those who 
used the suboptimal strategy. This indicates that while 
some children with dyslexia may be able to find optimal 
rules to perform well in this category learning task, it does 
not appear to reflect differences in reading abilities from 
children who are unable to find optimal rules. 

Generalization Test 

Finally, we examined participants’ ability to general-
ize their learned category knowledge to novel exemplars
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drawn from a grid of stimuli across the entire stimulus 
space. Participants did not receive feedback in the general-
ization test. We computed accuracy in the generalization 
test by first removing stimuli that fell directly along the cat-
egory boundary and thus did not have a correct response. 

On average, participants were able to successfully 
generalize their category knowledge in the generalization test 
with performance in all cases significantly above chance levels 
(one-sample t tests vs. 50% chance; ps < .019; II-Dyslexia: 
M = 56%, II-Control: 61%, RB-Dyslexia: 59%, RB-Control: 
62%). When comparing generalization test accuracy in the 
test block relative to the final block (see Figure 4A), par-
ticipants seamlessly transferred their knowledge, with over-
all no significant loss in performance in the generalization 
test (one-sample t tests vs. 0; ps > .23). There were no sig-
nificant differences in generalization transfer between cate-
gory types, F(1, 48) = 0.26, p = .61,  ηG 

2 = .002, groups, 
F(1, 48) = 0.42, p = .52,  ηG 

2 = .005, and no significant 
interaction between category type and group, F(1, 48) = 
0.20, p = .66,  ηG 

2 = .002.  

As during training, there were no significant differ-
ences in the types of strategies participants used in the test 
block (see Figure 4B) for either RB (p = .19) or II categories 
(p = .66). While many participants used exploration/guessing 
strategies during the test (Dyslexia-II: 52%, Control-II: 52%, 
Dyslexia-RB: 60%, Control-RB: 40%), participants also 
often used the temporal rule strategy (Dyslexia-II: 40%, 
Control-II: 32%, Dyslexia-RB: 28%, Control-RB: 52%). 
Whereas 7/25 (28%) children with dyslexia and 13/25 (52%) 
controls used the optimal temporal rule strategy in the RB 
test, only 2/25 (8%) children with dyslexia and 2/25 (8%) 
controls used the optimal integration strategy in the II test. 

As before, we compared the accuracies of partici-
pants in the two groups who used the optimal strategies 
• •

Figure 4. Performance and strategies in the generalization test. Error ba
performance from training to generalization test without feedback and 
removing any stimuli that fell directly between the categories (e.g., along 
pants using different strategies in generalization test. (C) Proportion corre
tion test. II = Information–Integration; RB = Rule-Based. 
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(see Figure 4C). Though overall, there were relatively few 
participants using the optimal strategy during II learning 
(two Dyslexia, two Control), among those using the opti-
mal strategy, there were no significant differences across 
groups, t(1.22) = 2.53, p = .20, d = 2.53. While more par-
ticipants used the optimal strategy during RB learning 
(seven Dyslexia, 13 Control), among those using the opti-
mal strategy, there were also no significant differences 
across groups, t(12.3) = 0.32, p = .76, d = 0.15. When 
learners with dyslexia can find and use the optimal RB 
strategy, they appear to do so just as effectively as con-
trols. Due to the relatively smaller number of subjects 
using the optimal strategies, especially during II learning, 
we encourage caution when interpreting these results. 

Potential Sources of Learning Difficulties 

It is important to note that many children in this 
study in both groups had difficulty learning these catego-
ries. As a supplementary analysis, we examined potential 
sources of this difficulty to better understand what enabled 
some children to learn, while others struggled. Our 
approach involved examining the correlations between 
final block accuracy for II and RB categories and age, 
reading ability, and nonverbal IQ measures (see Supple-
mental Material S1 for full analysis). Given the explor-
atory nature of these analyses and the difficulty in learn-
ing across children in both groups, we decided to examine 
all participants together for this analysis, rather than sepa-
rately across groups. 

Overall, no measures were significantly related to II 
learning outcomes (rs <  .23,  ps > .11) and no measures 
except for Phonemic Decoding Efficiency were significantly 
related to RB learning outcomes (rs < .28,  ps > .059). Pho-
nemic Decoding Efficiency was significantly positively
•

rs reflect standard error of the mean. (A) Transfer of categorization 
with new stimuli across a grid. Accuracy was calculated by first 
the optimal boundary between categories). (B) Proportion of partici-
ct for participants using the task-optimal strategy in the generaliza-
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related to RB learning outcomes (r = .32,  p = .023), indi-
cating that across all children, the better they were able to 
quickly decode pronounceable nonwords, the better they 
are able to learn categories that require sound-to-rule map-
ping. Together, these results indicate that whether children 
learned RB or II categories was not clearly related to their 
age, nonverbal IQ, or most reading scores and, instead, 
children may have struggled to learn for a variety of other 
reasons. The ability to learn RB, but not II categories, was 
moderately related to Phonemic Decoding Efficiency, sug-
gesting that poor phonological awareness may relate to the 
general ability to learn sound-to-rule mappings, which 
could possibly then underlie the difficulty in learning 
sound-to-letter mappings in dyslexia. 

Nonverbal IQ Matched Groups 

Because our age-matched sample of control partici-
pants had significantly higher nonverbal IQ scores than 
the participants with dyslexia, we conducted additional 
analyses with a separate selection of control participants 
that were matched for nonverbal IQ (11 males, nine 
females). In this sample, children with dyslexia had signifi-
cantly lower scores on Word Attack (p < .0001), Word ID 
(p < .0001), Phonemic Decoding Efficiency (p < .0001), 
and Sight Word Efficiency (p < .0001) measures compared 
with controls but did not differ on age (p = .36) or non-
verbal IQ scores (p = .41). 

For simplicity, we briefly summarize the results here 
and include full details in Supplemental Material S1. 
Results with the IQ-matched control group were very sim-
ilar to results with the age-matched control group. In this 
analysis, the main effect of group was no longer signifi-
cant, but the key result of the marginal interaction 
between group and task in category learning performance 
was replicated. Follow up analyses indicated that children 
with dyslexia performed marginally worse than controls in 
learning RB categories but did not significantly differ in 
learning II categories. As such, even when accounting for 
incidental differences in nonverbal IQ, children with dys-
lexia may demonstrate RB-specific learning challenges, 
with no clear differences in II learning performance. 
Discussion 

Research on developmental dyslexia suggests a selec-
tive deficit in procedural learning and memory, with intact 
declarative learning and memory (Lum et al., 2013; Nicolson 
& Fawcett, 2007; Nicolson et al., 2010; Ullman, 2004; 
Ullman et al., 2020; West, Clayton, et al., 2019; West, 
Vadillo, et al., 2019). We examined auditory category 
learning in children with dyslexia and typically developing 
controls, with categories argued to be dependent on proce-
dural or declarative learning mechanisms. In contrast to 
findings with adults which support a specific II category 
learning deficit (Gabay et al., 2023; Sperling et al., 2004), 
our results are generally consistent with an interaction of 
the effects of dyslexia on learning with the development of 
category learning. Children with dyslexia demonstrated an 
apparently selective deficit in RB, but not II category 
learning. We found preliminary evidence for an especially 
pronounced deficit in RB learning in children with dys-
lexia coupled with difficulty in finding optimal strategies 
relative to typically developing children. These results sug-
gest that developmental dyslexia impacts category learn-
ing differently across development. While 7- to 12-year-
old children have general learning difficulties and a 
potentially selective deficit in RB learning, adults may 
find compensatory mechanisms over the course of devel-
opment that preserve RB learning, while developing diffi-
culties in II learning. 
Developmental Trajectory of 
Learning in Dyslexia 

While adults with dyslexia demonstrate a selective 
impairment in II learning and procedural strategy use 
(Gabay et al., 2023; Sperling et al., 2004), children with 
dyslexia in the current study had the clearest impairments 
in RB learning. Additionally, while many children in both 
groups struggled to find optimal strategies in both tasks, 
children with dyslexia seemed to struggle even more than 
typically developing children—regardless of the task, it 
took the dyslexia group marginally more blocks to use 
optimal strategies and they used the optimal strategies in 
significantly fewer blocks in both tasks. This pattern 
diverges from what has been seen in adults where the defi-
cit is limited to procedural strategy use. Interestingly, mir-
roring the results in adults, when children with dyslexia 
used the optimal RB strategy in training or test, they did 
not perform significantly differently from controls. This 
may indicate that as long as individuals with dyslexia have 
access to a successful RB strategy, they can perform just 
as well as controls, with substantial individual differences 
in both groups. What may change over the course of 
development is that adults have more consistent access to 
compensatory strategies, potentially supported by the 
development of selective attention mechanisms. 

While we observed some RB learning deficits in 7-
to 12-year-old children with dyslexia, there were no RB 
learning differences in adults with dyslexia in Gabay et al. 
(2023). It would be useful for future work to examine the 
developmental trajectory of category learning in dyslexia 
across a longer continuum to identify at which point indi-
viduals with dyslexia consistently develop compensatory
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strategies that preserve RB learning but become impaired 
in II learning. 

Another element that may have affected perfor-
mance in children with dyslexia in the current study is 
auditory processing deficits and specifically challenges 
with auditory memory (Banai & Ahissar, 2006, 2018). A 
previous study demonstrated that children with dyslexia 
had auditory processing impairments only when the task 
required focus on individual elements of the sounds (e.g., 
direction of frequency change) and not when making 
same-different discriminations of the same stimuli (Banai 
& Ahissar, 2006). In the current study, the RB and II 
stimuli were very similar, and the categorization tasks 
were identical. This would suggest that both tasks should 
be similarly affected by challenges in auditory processing, 
as suggested by the phonological deficit hypothesis (Share, 
2021; Stanovich, 1988; Tallal, 1980; Witton et al., 2020; 
Zoccolotti, 2022) and the anchoring deficit hypothesis 
(Ahissar, 2007; Ahissar et al., 2006). However, the require-
ments of learning differed for RB and II categories—RB 
categories required processing of specific dimensional infor-
mation (e.g., temporal modulation rate), whereas II categories 
may have relied more on general similarity. With this inter-
pretation, our results are consistent with the prior work on 
auditory processing deficits that depend on task demands— 

when the task required specific dimension processing (RB), 
performance was impaired, but when the task required more 
general similarity (II), performance was spared. 

It is unclear how this view might account for the dif-
ferent patterns of results in children in the current study 
and adults in prior work (Gabay et al., 2023). Because 
prior work focused on auditory processing differences in 
children (Banai & Ahissar, 2006), it is unclear how audi-
tory processing in tasks with distinct demands may change 
across development. In future work, it will be necessary to 
examine the extent to which auditory memory differences 
in children and adults with dyslexia might contribute to 
their distinct learning patterns. 

Learning Strategies in Children 

Many children in the current study persisted with 
exploratory/guessing strategies. This is in line with prior 
work where children tend to perseverate with suboptimal 
RB strategies in II tasks or use exploratory/guessing strat-
egies during RB and II learning (Miles et al., 2014; Rabi 
& Minda, 2014; Reetzke et al., 2016; Roark & Holt, 2019; 
Roark et al., 2023). Children tend to solve problems dif-
ferently from adults (Blanco & Sloutsky, 2019, 2021b; 
Blanco et al., 2023; Cohen et al., 2002; Liquin & Gopnik, 
2022; Rabi & Minda, 2014; Roark & Holt, 2019; Roark 
et al., 2023). Specifically, due to development of selective 
attention mechanisms, whereas adults are likely to 
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selectively attend to task-relevant features to optimize per-
formance, children distribute their attention across multi-
ple features, even when they are not necessarily relevant 
for the task (Blanco & Sloutsky, 2021a; Deng & Sloutsky, 
2016; Plebanek & Sloutsky, 2017; Sloutsky & Fisher, 
2004, 2011). This pattern of attention has obvious nega-
tive consequences for RB learning, where performance is 
impaired if children do not selectively attend to the rele-
vant dimension (Reetzke et al., 2016; Roark et al., 2023), 
but can be helpful in other contexts, such as remembering 
information that was task-irrelevant (Sloutsky & Fisher, 
2004) or switching attention when previously irrelevant 
information becomes relevant (Blanco & Sloutsky, 2021a). 

Even though most adults can find optimal strategies 
in tasks like these (Roark & Chandrasekaran, 2023; 
Roark et al., 2021), not all learners find optimal strategies. 
Some learners (whether children or adults) may perform 
moderately well with a suboptimal or exploratory strategy. 
As such, while we focused on cases where participants 
used the optimal strategy, it is also meaningful that chil-
dren with and without dyslexia primarily used exploratory/ 
guessing strategies during these tasks. Future work should 
examine possible manipulations to help children find opti-
mal strategies and whether these manipulations may be 
more or less effective in typically developing children com-
pared to children with dyslexia. 

Limitations 

We conducted these auditory learning experiments 
with children online. While recent research has demon-
strated that in-person findings of auditory learning and 
perception generally replicate in online conditions (Mok 
et al., 2023; Roark et al., 2021, 2022; Zhao et al., 2022), 
this has not yet been tested in children. It is possible that 
children are much more susceptible than adults to distrac-
tions or other technological challenges posed by an online 
environment. Though overall learning performance ranges 
differed across individuals in the current study, many indi-
viduals struggled to learn. At least some of these learning 
difficulties may have been due to learning in an online 
environment in the child’s home. However, it is important 
to note that the learning performance observed here is 
comparable to prior studies of auditory learning where 
children and experimenters were physically in the room 
together (Huang-Pollock et al., 2011; Reetzke et al., 2016; 
Roark & Holt, 2019). Future work should focus on vali-
dating auditory perception and learning methods in online 
environments in children and directly test whether the cur-
rent results replicate in groups of children tested in in-
person contexts. 

We are somewhat limited here in explaining the 
source of learning difficulties in these groups of children.
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Learning outcomes were not significantly related to age, 
most reading scores, or nonverbal IQ scores. We did not 
measure children’s environments during learning (e.g., 
presence of others, presence of distractors, etc.). While we 
can only speculate about the role of the learning environ-
ment on learning outcomes, it is important to acknowl-
edge that presence of distractors and even visual complex-
ity impairs learning in classroom environments (Fisher 
et al., 2014; Godwin et al., 2022) and book reading con-
texts (Eng et al., 2020). Future research should directly 
measure the impact on room environmental complexity 
and distraction on category learning in children in online 
environments. 

Finally, we were limited in our statistical power to 
observe a small or moderate-size interaction between 
group (Dyslexia, Control) and category type (RB, II) on 
learning outcomes. Based on our sample size of 25 partici-
pants in each group, we had sufficient power to detect a 
large interaction between these variables. While we did 
not observe a statistically significant interaction and the 
observed interaction effect size was small, subsequent 
exploratory analyses revealed different effects of group 
depending on the task. Specifically, while children with 
dyslexia did not perform significantly differently from con-
trols when learning II categories, they performed signifi-
cantly worse when learning RB categories. We stress the 
importance of not overinterpreting these separate results 
given the lack of a significant interaction. However, future 
work can better tease apart the potential interaction with 
a higher powered sample. As this is the first study to 
examine RB and II category learning in children with dys-
lexia, it provides the groundwork for future studies to 
explore this question in greater depth. 

Theoretical Implications 

These results have important implications for our 
theoretical understanding of dyslexia and particularly 
demonstrate that dyslexia affects auditory category learn-
ing differently in children and adults. Auditory category 
learning involves mapping sounds to category labels either 
by mapping sound-to-rule (RB) via declarative RB pro-
cesses or sound-to-response (II) via associative or proce-
dural learning processes. As such, comparing RB and II 
category learning can adjudicate between conflicting the-
oretical hypotheses that suggest either general auditory 
processing deficits (e.g., Share, 2021; Stanovich, 1988; 
Tallal, 1980; Zoccolotti, 2022) or specific procedural 
learning deficits in dyslexia (e.g., Lum et al., 2013; Nicolson 
& Fawcett, 2007; Nicolson et al., 2010; Ullman, 2004; 
Ullman et al., 2020). 

Overall, we found that children have distinctly dif-
ferent patterns from adults who demonstrate specific 
procedural learning deficits (II learning is impaired and 
RB learning is unaffected; Gabay et al., 2023; Sperling 
et al., 2004). Though we failed to observe a significant 
interaction between group and category type, exploratory 
post hoc analyses suggested that if children with dyslexia 
have learning differences from typically developing chil-
dren, RB learning may be more impacted than II learning. 
This is the opposite pattern of what has previously been 
found in adults. 

As such, our results do not provide support for the 
Procedural Deficit Hypothesis in auditory category learn-
ing in children with dyslexia. Instead, our results suggest 
that development of cognitive abilities that impact general 
learning abilities interacts with the effects of dyslexia. 
Additional work is needed to identify the developmental 
trajectory of RB and II category learning abilities (prefer-
ably in the same individuals over time) and how this 
relates to reading abilities. 
Conclusions 

In all, we found that children with dyslexia do not 
demonstrate the same selective deficits in category learn-
ing as adults with dyslexia. While adults with dyslexia are 
selectively impaired at finding procedural strategies and 
learning II categories, children with dyslexia have espe-
cially pronounced difficulties finding RB strategies and 
learning RB categories. These results suggest that auditory 
category learning is impacted in dyslexia and across devel-
opment and that as they age, individuals with dyslexia 
may develop compensatory strategies that enable a preser-
vation of RB learning. 
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