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Integrative analysis reveals associations
between oral microbiota dysbiosis and
host genetic and epigenetic aberrations in
oral cavity squamous cell carcinoma
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Dysbiosis of the human oral microbiota has been reported to be associatedwith oral cavity squamous
cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of
pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this
study, themucosal bacterial community, host genome-wide transcriptome andDNACpGmethylation
were simultaneously profiled in tumors and their adjacent normal tissuesofOSCCpatients. Significant
enrichment in the relative abundance of seven bacteria species (Fusobacterium nucleatum,
Treponema medium, Peptostreptococcus stomatis, Gemella morbillorum, Catonella morbi,
Peptoanaerobacter yurli and Peptococcus simiae) were observed in OSCC tumor microenvironment.
These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes,
mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative
analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20
dysregulated host genes with inverted CpG methylation in their promoter regions associated with
enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene
expression, in part, through epigenetic alterations. An in vitro model further confirmed that
Fusobacteriumnucleatummight contribute to cellular invasion via crosstalkwith E-cadherin/β-catenin
signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating SNAI2 gene, a
key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics
approaches explored complex host-microbiota interactions and provided important insights into
genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-
driven study to better understand the causational relationship of pathogenic bacteria in this deadly
cancer.

Oral cavity squamous cell carcinoma (OSCC) is the most prevalent oral
malignancy worldwide and is associated with significant mortality and
morbidity rates1. About 60% of oral cancers are diagnosed at an advanced
stage, resulting in a 5-year survival rates of less than 50%. Known etiological
factors ofOSCC tumorigenesis include tobacco consumption, alcohol abuse

andbetel nut chewing; however, theprevalence ofOSCCwithout traditional
risk factors has been increasing in recent years2. There is therefore an urgent
need to identify other underlying etiologies with prognostic relevance for
early diagnosis and improved treatment in OSCC patients. Given the
increasing evidence indicating the carcinogenic potential of the human
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microbiome in cancers3, elucidating the human microbiome in OSCCmay
explain, in part, the fact that a subset of patients who are not exposed to
traditional risk factors eventually develop cancer. In fact, a significant loss in
microbial diversity has been reported inOSCCpatients4; several periodontal
pathogens, for example,Fusobacterium,Peptostreptococcus andTreponema,
were significantly enriched in OSCC tumor microenvironment5,6. These
pathogenic bacteria were reported to promote oral cancer aggressivity via
TLR/MyD88 triggered activation of integrin/FAK signaling pathway7,
making the understanding of pathogenic bacteria in cancer of great
importance.

There is a growing awareness that global patterns of genetic and epi-
genetic changes play a critical role in the molecular characteristics of oral
cancer. For example, EGFR, PIK3CA,NOTCH pathways andTP53 gene are
among the most frequently altered in head and neck squamous cell carci-
noma (HNSCC)8,9. Several studies of head and neck cancer have identified
promoter methylation of CDKN2A (p16), DAP kinase (DAPK), and DNA
repair genesMGMT andMLH110,11. Bacteria could trigger humanepigenetic
modification, thereby silencing tumor suppressor gene expression12. Thus,
profiling DNA genetic and epigenetic events that might be affected by
dysbiosis of the oralmicrobiotamay provide uswith a key understanding of
its role in gene regulation and enable us in establishing specific marker for
early diagnosis and therapeutic strategies.

In this study, OSCC tumors and their adjacent normal (AN) tissues
from a cohort of HPV-negative patients were simultaneously profiled for
oral mucosal microbiota, host genome-wide transcriptome and DNACpG
methylation to explore the genetic basis of host-microbiota interactions.
Integrative analysis using multi-omics approaches revealed complex net-
works between oral microbiota dysbiosis and host genetic and epigenetic
abnormalities. Our findings provide important insights into genetic and
functional basis for better understanding the role of oral bacteria in the
pathogenesis of OSCC.

Results
Study subjects
A total of 98 OSCC patients who provided paired tumor and AN tissues
were recruited in this study. Among them, eight patients infectedwith high-
risk HPV types (7 with HPV16 and one with HPV18) were excluded. This
retained cohort consisted of 57males and 33 females, with amean age of 65
years (sd: 12 years). Detailed demographic and clinical information are
available in Supplementary Tables 1 and 2.

Oral microbiota dysbiosis in OSCC
High quality bacterial 16S reads from paired tumor and AN tissues were
available from 81 OSCC patients (mean reads of 32,698 ± 20,799) (Sup-
plementary Table 3 and Supplementary Data 1–3), with Firmicutes (mean
relative abundance of 31.2 ± standard deviation of 1.3%) as the most pre-
dominant bacterial phylum, followed by Fusobacteria (21.2 ± 1.3%), Pro-
teobacteria (20.5 ± 1.5%), Bacteroidetes (16.8 ± 0.7%) and seven otherphyla
(Supplementary Fig. 1a). At the amplicon sequence variant (ASV) level,
significantly reduced alpha diversity of the oral mucosal microbial com-
munity was observed in tumor tissues as measured by Richness, Shannon
and Simpson indices compared to AN controls (Mann–Whitney U test,
p < 0.019) (Fig. 1a); similarly, a principal coordinate analysis (PCoA) based
on the weighted GUniFrac matrix showed distinct separation between
tumor and AN groups (p = 0.012) (Fig. 1b). The finding underscores the
distinct microbial community associated withOSCC tumor sites compared
to adjacent normal tissues.

We used permutational multivariate analysis of variance (PERMA-
NOVA) toquantify the contributionof factors (disease status, gender, aging,
smoking, alcohol consumption, and T and N cancer stages) to the differ-
ences of microbial composition in patients with OSCC. This analysis
identified disease status as the independent factor that had the largest effect
on the overall structure of the oral microbiota (weighted GUniFrac
R2 = 0.0411, p < 0.001; unweighted GUniFrac R2 = 0.0234, p < 0.001;
Bray–Curtis R2 = 0.0221, p < 0.001) (Supplementary Fig. 1b). In addition,

other factors, including T stage (T1&T2 vs. T3&T4) (weighted GUniFrac
R2 = 0.0172, p < 0.001; unweighted GUniFrac R2 = 0.0169, p < 0.001;
Bray–Curtis R2 = 0.0132, p < 0.001) and smoking (Yes vs. No) (weighted
GUniFrac R2 = 0.0104, p = 0.013; Bray–Curtis R2 = 0.0097, p = 0.002) were
also significant, albeitwith a smaller effect. The influence of disease status on
oral microbiota composition highlights its potential role in OSCC
pathogenesis.

Using a linear discriminant analysis effect size (LEfSe) test (LDA > 3,
q < 0.05), which was further verified by at least two of the three composi-
tional aware tools, ANCOM-BC2, ALDEx2 and ZicoSeq tests adjusted for
the covariates of T stage and smoking (q < 0.05), we applied a phylogenetic
placement algorithm, pplacer, tomapASV reads against a NCBI 16S rRNA
reference database with maximum likelihood and observed 6 and 13 bac-
terial genera significantly enriched and depressed in the relative abundance
in OSCC tumor microenvironment, respectively (Supplementary Fig. 1c,
Table 1 and Supplementary Table 4a). Moreover, seven mucosal bacterial
species (Fusobacteriumnucleatum,Treponemamedium, Peptostreptococcus
stomatis, Gemella morbillorum, Catonella morbi, Peptoanaerobacter yurli
and Peptococcus simiae) were found to be predominantly colonized in the
oral cavity of cancer patients (Fig. 1c, Table 1 and Supplementary Table 4b),
suggesting a potential of tumor-enriched bacteria in the pathogenesis
of OSCC.

A hierarchical clustering inferred from 6 discriminative bacterial spe-
cies (LDA > 3, AUC > 0.65) was able to differentiate the surveyed samples
into two clades, composed of the majority of tumors (62/92) and controls
(51/70), with an odds ratio of 5.48 (95% CI 2.66–11.68, p < 0.001) (Fig. 1d).
These bacterial species achieved a combined area under the receiver oper-
ating characteristic (ROC) curve (AUC)of 0.858 (95%CI0.803–0.914).This
discrimination may serve as a basis for developing diagnostic markers
for OSCC.

Fusobacterium nucleatum associated with OSCC patients
without traditional risk factors
Since F. nucleatum was the most predominant bacterial species in OSCC
tumor microenvironment (15.29% vs. 5.54%) (Supplementary Fig. 2a and
Table 1), we further analyzed its colonization associated with patient fea-
tures. The enrichment of F. nucleatum was significantly associated with
non-smokers (mean log2-fold change of 1.48 vs. 0.13, p = 0.004) (Supple-
mentary Fig. 2b) andnon-drinkers (1.35 vs. 0.27,p = 0.034) (Supplementary
Fig. 2c). Since all recruited patients were high-risk HPV-negative, the
finding implies the potential of pathogenetic role of F. nucleatum in OSCC
patients negative for HPV infection, smoking and alcohol consumption
(triplenegative).F. nucleatumwas also associatedwithbetter cancer-specific
survival (1.42 vs. 0.27, p = 0.042) (Supplementary Fig. 2d), which was likely
supported by a better 3-year disease-specific survival (81.0% vs. 58.0% at
36months, p = 0.079) (Supplementary Fig. 2e). These results suggest that F.
nucleatum could be a distinctive marker in HPV-negative OSCC cases,
particularly among non-smokers and non-drinkers, and may also be indi-
cative of a more favorable prognosis in these patients.

Differentially expressed host gene transcriptome in OSCC
Asubset of 40 tumors and22ANtissueswereprofiled for host genome-wide
transcriptome (Supplementary Tables 2 and 5), which revealed a globally
reconfigured host gene dysregulation in OSCC tumor microenvironment
(Supplementary Fig. 3a and Supplementary Table 6). Among 17,225 tran-
scripts withmean transcripts per kilobasemillion greater than 1 (TPM> 1),
we identified 1407 up-regulated (tumor-associated) and 1525 down-
regulated (AN-associated) genes in the surveyed OSCC cohort (log2FC > 1
or <−1, q < 0.01) (Supplementary Figs. 3a and 3b and Supplementary Table
6), highly consistent with the transcriptome profile of The Cancer Genome
Atlas (TCGA)OSCCdata (Spearmancor = 0.70, p < 0.001) (Supplementary
Fig. 3c). For example, the expression of LAMC2 (involved in epithelial cell
migration) was dramatically elevated in both HK-OSCC (log2FC = 4.42,
q = 1.31E−23) (Fig. 2b) and TCGA-OSCC datasets (Supplementary Fig.
3d). Likewise,MMP1 (involved in tumor cell invasion)was ranked as one of
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the most up-regulated genes (log2FC = 8.16, q = 9.05E−19). Examples of
down-regulated genes included tumor suppressors CRISP3 (log2FC =
−7.15, q = 3.36E−17) and EMP1 (log2FC =−4.34, q = 4.21E−29).

An enrichment analysis categorizing 1292 annotated tumor-associated
differentially expressed genes (DEGs) (log2FC > 1, q < 0.01) into the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database found that most
altered canonical pathways were related to carcinogenic signaling and
immune regulation (q < 0.05) (Fig. 2c and Supplementary Table 7). For
example, extracellular matrix–receptor (ECM-receptor) interaction
(p = 2.35E−14) involving the regulation of cellularmovement, proliferation
and differentiation was the most enriched pathway, in which a variety of
DEGs that encode collagen, integrin and laminin were highly expressed
(log2FC > 2, q < 0.01) (Fig. 2d). Disorders of a variety of metabolism
pathways were observed when the annotated down-regulated DEGs

(n = 1417) were summarized for functional analysis (Supplementary Fig. 3e
and Supplementary Table 7). For instance, the downregulation of tyrosine
metabolism has been implicated in tumor progression of several types of
cancers such as esophageal cancer13, oral cancer14, and hepatocellular
carcinoma15.

Survival analysis further identified 62 tumor- and 48 AN-
associated DEGs with prognostic values for OSCC (p < 0.01) (Sup-
plementary Table 8). These included MMP1 (involved in prolifera-
tion and differentiation) (p = 0.006), SERPINE1 (involved in tumor
migration and tissue remodeling) (p = 0.005), COL5A2 (involved in
cellular proliferation and invasion) (p = 0.007), and FAP (involved in
familial adenomatous polyposis) (p = 0.007) that were significantly
associated with poor disease-specific survival (Fig. 2e). The identifi-
cation of these DEGs provides a prognostic landscape that could be

Fig. 1 | Oral microbiota dysbiosis associated with oral cavity squamous cell
carcinoma (OSCC). a Comparison of the oral microbiota alpha diversity between
OSCC tumor (tumor) and adjacent normal (AN) tissues at the amplicon sequence
variant (ASV) level. The boxplot’s center line indicates the median value, the box
bounds represent thefirst and third quartiles, and thewhiskers extend to the smallest
and largest values in the data, respectively. b Principal coordinate analysis plot based
on weighted GUniFrac distance matrix inferred from ASVs. c Discriminative bac-
terial species as detected by linear discriminant analysis (LDA) effect size (LEfSe)

analysis (score > 3, q < 0.05), which was further validated by at least two of the three
compositional aware tools, ANCOM-BC2, ALDEx2 and ZicoSeq tests adjusted for
the covariates of T stage and smoking (q < 0.05). The bar length represents log10
LDA score. Differences in the relative abundance were further tested by pairwise
Mann–Whitney U test and Tukey HSD post hoc as shown on the right panels.
*p < 0.05; **p < 0.01; ***p < 0.001. d Hierarchical cluster analysis using distance
matrix of six discriminative bacterial species (LDA > 3, AUC > 0.65) classified the
surveyed tissue samples into two clades.
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Fig. 2 | Host transcriptome profiling in OSCC by lncRNA-seq. a Volcano plot
showing differentially expressed genes (DEGs; abs(log2FC) > 1, q < 0.01) between
OSCC tumor (N = 40) andAN (N = 22) tissues. Dots in red and blue indicate up- and
down-regulated DEGs in tumors when compared to AN tissues, respectively.
b Expression of four representative genes (LAMC2,MMP1, EMP1, and CRISP2)
involved in OSCC tumorigenesis. c Top 10 Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways significantly enriched by up-regulated DEGs in OSCC
(q < 0.05). Sizes of the circles indicate the number of DEGs in the pathway. d KEGG
gene network visualizing up-regulated DEGs in OSCC (log2FC > 2, q < 0.01).
eKaplan–Meier estimate for 3-year disease-specific survival based on the abundance
levels of four DEGs (MMP1, SERPINE1, COL5A2, and FAP). The log-rank test was
used to determine significance.
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instrumental for risk stratification and personalized treatment plan-
ning in OSCC.

Interactions between oral microbiota and host transcriptome
in OSCC
In our study, we aim to explore the potential associations between patho-
genic bacteria and the transcriptome in OSCC by investigating the corre-
lations between differentially expressed genes (DEGs) and the relative
abundance of tumor-enriched bacterial species in OSCC tumor micro-
environment. Using Spearman correlations analysis, we noted associations
between 814 host DEGs (370 tumor- and 444AN-associated) and 7 tumor-
enriched bacterial species that were frequently found in 34 tumor tissues
with available bacterial 16S and host lncRNA-seq data, resulting in
990 statistically significant bacteria-transcriptome associations (p < 0.05)
(Fig. 3a and Supplementary Table 9a). Notably, among the most significant
of these associations (q < 0.10), 70.9% (112/158) displayed coherent pat-
terns; that is, a positive correlation of tumor-enriched bacteria with upre-
gulated genes (Up& Positive) or a negative correlation with downregulated
genes (Down&Negative) (Fig. 3b, c). For example,weobserveda significant
positive correlation between the abundance of C. morbi and the expression
of HSPH1 (involved in upregulation of Wnt signaling pathway related to
cellular proliferation and migration) (rho = 0.660, p < 0.001) (Fig. 3d).
Similarly, a positive correlation was found between P. stomatis abundance
and GALNT6 expression (involved in tumor progression and metastasis)
(rho = 0.511, p = 0.001). Conversely, tumor suppressor genes such as PRKN
(rho =−0.571, p < 0.001) and CBX7 (rho =−0.525, p = 0.001) exhibited
negative correlation with C. morbi abundance. Additionally, COLGALT2, a
gene downregulated in breast cancer, showed a negative correlation with
multiple bacterial species including C. morbi (rho =−0.528, p = 0.001) and
T.medium (rho =−0.447, p = 0.008). It was also noteworthy tomention the
positive correlation observed between C. morbi and T. medium in the sur-
veyed OSCC tumors (SparCC correlation = 0.429, p = 0.001) (Fig. 3c and
Supplementary Table 9b).We would like to clarify that the identification of
these correlations may contribute to a better understanding of the complex
interactions between themicrobiota and the host response, but they require
subsequent functional studies to elucidate anypotential causal relationships.
Due to the inherent limitations in taxonomic resolution at the species level
with the V3–V4 region of the 16 S rRNA gene, we also conducted corre-
lation analyses at the genus level (Supplementary Table 10a, b). These
analyses serve as a basis for more targeted hypotheses that could inform
future experimental work designed to explore the intricacies of host-
microbiota interactions in OSCC.

Up-regulated host DEGs positively associated with tumor-enriched
bacterial species (Up & Pos, N = 206, p < 0.05) were summarized for Gene
Ontology (GO) biological processes to characterize the potential of patho-
genic bacteria inOSCCpathogenesis (Supplementary Table 11a). As shown
in Fig. 3e, the top enrichedGO terms included cell cycle, motility, adhesion,
proliferation and migration. This was consistent with the Gene Ontology
(GO) enrichment results obtained at the genus level (Supplementary Table
11b). For example, CDK6 was positively associated with T. medium; this
gene was able to phosphorylate retinoblastoma (Rb) in the G1 phase of the
cell cycle by derepressing E2F to promote cellular proliferation. Similarly,
several genes encoding proteins involved in tumor shedding, adhesion and
migration, such as collagens (COL4A5, COL4A6), integrins (ITGB4) and
laminins (LAMA3), were overexpressed and positively associated with
pathogenic bacteria in OSCC tumor microenvironment.

Transcriptome deregulation by DNA methylation
Paired tumor and AN tissues from 38 randomly selected OSCC patients
were profiled for DNACpGmethylation (Supplementary Tables 2 and 12).
A total of 4,584,317CpG siteswith≥10 reads per samplewere characterized,
57.27% of which were located within the promoter regions (Supplementary
Fig. 4a). We quantified methylation signals on each chromosome using a
1 kb sliding window to smooth the distribution, which clearly differentiated
the surveyed tumors from AN tissues by principal component analysis

(PCA, p < 0.01) (Supplementary Fig. 4b). We focused on differentially
methylated regions (DMRs) mapped to gene promoter regions (up to 3 kb)
because of their association with gene expression. Overall, 17,056 hyper-
(increased CpG methylation, meth.diff > 1.0) and 26,474 hypo-methylated
(decreased CpG methylation, meth.diff <−1.0) promoter regions that
regulate 9052 and 13,087 genes, respectively, were identified when com-
paringOSCC tumorswithAN tissues (q < 0.01) (Supplementary Fig. 4c and
Supplementary Table 13). Hyper-methylated genes included previously
reported targets of recurrent hyper-methylation in OSCC, such asDDAH2,
CCNA1, DCC, as well as some cancer-associated genes including HRAS
(Supplementary Fig. 4d). Similarly, examples of hypo-methylated genes
included PI3, AIM2, PTHLH, IFNG and CEACAM1. We designated 477
suppressed and 636 overexpressed DEGs with CpG hyper- (Hyper-Down)
and hypo-methylation (Hypo-Up) in their promoter regions, respectively,
given the potential of host transcriptome dysregulation by epigenetic
modifications (Supplementary Fig. 4e, f and Supplementary Table 14).

Bacteria-associated epigenetic aberrance on host gene dysre-
gulation in OSCC
Enrichment of pathogenic bacteria inOSCC tumormicroenvironmentmay
lead to dysregulation of epigeneticmodifications. To test this hypothesis, we
established the association between DMRs and tumor-enriched bacterial
species using Spearman correlation (Supplementary Table 15a). Overall,
13,172 DMRs (responsible for 8690 genes) and 7 tumor-enriched bacterial
species formed 16,630 bacteria-methylation associated pairs (p < 0.05), with
P. simiae and F. nucleatum contributing to 41.7% (3020/7234) of positive
associations with hypermethylation (Hyper & Pos) and 50.4% (1071/2125)
of negative associations with hypomethylation (Hypo & Neg), respectively
(Fig. 4a, b). An integrative analysis of bacteria-methylation and bacteria-
transcriptome correlations further identified 15 suppressed DEGs that
might be silenced by bacteria-associated CpG hypermethylation in their
promoter regions (Fig. 4c and Supplementary Table 15b). For example, the
enrichment of C. morbi was simultaneously correlated with the hyper-
methylation (Hyper&Pos) and inhibited gene expression (Down&Neg) of
AOX1 and PITX1 (Fig. 4d). Other examples of tumor suppressors include
DHRS3 and CES1. Meanwhile, inverse correlations of NRG1 and ITGB4
between DNACpG hypomethylation and gene overexpression were found
to be linked to T. medium and C. morbi abundance, respectively (Fig. 4e),
implying thepotential of tumor-enrichedbacteria to alterDNAmethylation
that might translate into activated gene expression. NRG1 as an oncogene
binds to and activates members of the ErbB family of receptor tyrosine
kinases, triggering downstream signaling pathways, such as the PI3K/AKT
andMAPK/ERK pathways, which are involved in cell growth, survival, and
proliferation. ITGB4 is aberrantly expressed in several cancers including
breast, colorectal, and lung cancers. The bacteria-methylation correlations
at the genus level were established and shown in Supplementary Table
16a, b.

OSCC-related carcinogenic potential of Fusobacterium nucle-
atum in situ
Tobetter understand thepotential ofF.nucleatum inOSCCpathogenesis by
altering host gene regulation, we first applied 384 up-regulated DEGs
positively associated with 7 tumor-enriched bacterial species (Up & Pos,
p < 0.1) for a Gene Set Enrichment Analysis (GSEA) (Supplementary Table
17a). Altogether 368 connections were observed (Supplementary Fig. 5 and
Supplementary Table 17b), with F. nucleatum interacting with 20 up-
regulatedDEGs that involved 18hallmarkpathways (Fig. 5a). Among them,
for example, SNAI2 (log2FC = 1.90, q = 2.19E−11), potentially triggered by
F. nucleatum and C. morbi, is one of the key transcription factors that
regulates the Epithelial–Mesenchymal Transition (EMT) process. Cells
undergoing EMT exhibit a loss of epithelialmarkers such as E-cadherin and
claudins, thereby detach from the primary tumor, invade surrounding tis-
sues, and eventually metastasize to distant sites. As F. nucleatum and F.
periodonticum, the two species with close phylogenetic relationship and
similar biological functions, accounted for 74.02% and 25.97% of
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Fusobacterium 16S rRNA reads, we also performed a GSEA inferred from
the genus-level bacterial-transcriptome connections and observed 40 up-
regulatedDEGs involving 22 enriched hallmark carcinogenic pathways that
were positively associated with Fusobacterium (Supplementary Table 17c,
d), including six hallmark genes (LAMA3, INHBA, SNAI2, NT5E, MYLK
and TPM1) within the EMT process (Supplementary Fig. 6).

OSCC-related carcinogenic potential of Fusobacterium nucle-
atum in vitro
We then applied an in vitro cell-based model by co-culturing F. nucleatum
with cancer (SAS) and non-cancer (HGK12) human oral epithelial cells,
respectively, to profile cellular gene transcriptomes using lncRNA-seq (Fig.
5b and Supplementary Table 18). These two cell lines showed differentially
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expressed transcriptomes, with 820 up- and 478 down-regulated DEGs
commonly detected (abs(log2FC) > 0.1, q < 0.01) (Supplementary Fig. 7a
and Supplementary Table 19). While activated genes in HGK12 were
involved in neutrophil mediated immune response, cytokine-mediated
signaling pathway and regulation of autophagy, the gene expression in SAS
infected with F. nucleatum was mainly enriched in the regulation of signal
transduction, programmed cell death and apoptotic process (Supplemen-
tary Fig. 7b and SupplementaryTables 20 and 21), whichmay be in part due
to that fact that these two cells have completely different properties. Inter-
estingly, among 148 DEGs coherently associated with F. nucleatum 16S
reads in the surveyed OSCC tumor tissues (Up & Pos and Down & Neg,
p < 0.1), at least 15 and 10 genes were confirmed to be overexpressed or
suppressed in the two co-cultured cell lines, respectively (abs(log2FC) > 0.1,
p < 0.05) (Fig. 5b, c and Supplementary Table 19). These include the over-
expression of the hallmark genes SNAI2, LIMA1, PLEK2 and RAB31
involved in multiple GSEA pathways (Fig. 5c, d). In contrast, SLC16A7, a
gene encoding a membrane transport solute carrier (family 16 member 7)
and commonly reduced in various types of cancer, was negatively associated
with F. nucleatum (rho =−0.32, p = 0.066) and significantly suppressed
in situ (log2FC =−1.71, q = 3.06E−05) and in vitro (HGK12: log2FC =
−1.06, q = 1.99E−16; SAS: log2FC =−0.40, p = 0.008). Using a real-time
PCR, we verified the overexpression of 5 representative hallmark genes
involved in the EMT pathway in vitro, including SNAI2 (F. nucleatum-
associated), INHBA and LAMA3 (Fusobacterium-associated), and LAMC2
(Fig. 5e and Supplementary Table 23), although their protein levels, as
measured by western blot, were controversial (Supplementary Fig. 7c and
Supplementary Table 24). Our findings in vitro indicate a significant
increase in the mRNA expression levels of three EMT hallmark genes
(LAMA3, INHBA, SNAI2) upon F. nucleatum infection. Additionally, we
included LAMC2, the protein-coding gene for the gamma subunit of
Laminin332, which is part of the same protein complex as LAMA3, as
supplementary evidence. We also investigated the protein laminin332 and
found that the protein expressions of two subunits were potentially
increased by F. nucleatum infection in bothHGK12 and SAS cell lines. This
observation aligns with the results obtained from RNAseq analysis of co-
cultured cell lines but the underlying mechanisms of the carcinogenetic
pathways in which these genes are involved in OSCC warrants further
investigation.

Discussion
Host-microbiota maladaptation has been reported in various types of
cancer3,16–19. Our study through integrative analysis of bacteria-
transcriptome and bacteria-methylation correlations in HPV-negative
OSCC patients revealed complex networks between oral microbiota dys-
biosis andhost genetic and epigenetic abnormalities, functionally implicated
in various cancer-related pathways. Our data also suggests that dysregula-
tion of host gene transcriptome might be influenced by tumor-enriched
bacteria or by bacteria-associated epigenetic modifications. An in vitro
model further confirmed that F. nucleatum, an oral bacterial species closely
associated with OSCC tumorigenesis, could activate hallmark genes
involved in multiple cancer-associated pathways. These findings may serve

as a precursor for hypothesis-driven study to better understand the mole-
cular mechanisms of pathogenic bacteria underlying OSCC pathogenesis.

Carcinogenesis might arise from changes in chronic host-microbe
interactions upon colonization by key pathogens. Our multi-omics data
analysis highlighted several cancer-associated pathways that might be
directly or indirectly triggered by tumor-enriched oral bacteria in theOSCC
tumor microenvironment. For example, our integrative analysis in situ and
in vitro both implied the regulatory role of F. nucleatumon SNAI2 inOSCC,
in linewith the role ofF. nucleatum virulence factorFadA tomodulate theE-
cadherin/β-catenin signaling via activating TNFα/NF-κB proinflammatory
pathway, ECM remodeling, and Wnt signaling (Fig. 6)20. Laminin is the
main component of the extracellularmatrix (ECM) and plays key functions
in cell adhesion, cell migration and signal transduction21, among which
Laminin-332 is a primarymember of the laminin family and contains three
chains encoded by theLAMA3,LAMB3andLAMC2.Meanwhile,β-catenin
could be translocated to the nucleus to form a complex with T-cell factor
protein (TCF) and activate EMT-related genes, such as INHBA, LAMA3,
LAMC2, NT5E andMMP1, thereby contributing to the inflammatory and
oncogenic responses. Cells undergoing EMT exhibit loss of epithelial
markers such as occludins, claudins, and E-cadherin, and acquire con-
comitant expression of Vimentin, N-cadherin, and Fibronectin22, in which
SLUG protein (SNAI2) has a fundamental role by suppressing several cell-
cell adhesion genes including E-cadherin expression23. Additionally, the
pro-inflammatory cytokine TNFα acts as an inflammatory mediator to
trigger EMT of tumor cells and promote metastasis24. It could also induce
SNAI family stabilization through activation of the NF-κB pathway25,26.

In addition to F. nucleatum, several other oral bacteria, such as
Treponema denticola, could promote cancer aggressivity via crosstalk
between the integrin/FAK and TLR/MyD88 signaling pathways7,27,28.
Integrin-associated PI3K/Akt signaling has been reported to be
activated by Peptostreptococcus anaerobius, which regulates cell cycle
progression29. Both bacterial species were found to be enriched in the
surveyed OSCC tumor tissues with limited statistical significance.
Interestingly, T. medium and P. stomatis, two bacterial species phy-
logenetically related to T. denticola and P. anaerobius, respectively,
significantly increased in relative abundance in the OSCC tumor
microenvironment. P. stomatis has been associated with various oral
diseases even cancer30. For example, Wnt7A associated with P. sto-
matis could activate the canonical Wnt pathway through β-catenin/
MMP9-mediated signaling that regulates cell proliferation, differ-
entiation and EMT31,32. Three hallmark genes related to EMT,
including GJA1, MMP1, and SNAI2, which are capable to promote
cancer cell migration and invasion, were also positively associated
with P. stomatis in the surveyed OSCC tumor tissues33. It is impor-
tant to note that the dysregulation of host gene expression might be
influenced by the contributions from several pathogenic bacteria.
LIMA1 (belonging to apical junctions) initially identified as a dif-
ferentially expressed gene in oral epithelial cell carcinogenesis34, for
example, were positively associated with C. morbi, F. nucleatum and
P. stomatis, highlighting the complexity of the host-microbiota
interactions in the OSCC tumor microenvironment. The effects of

Fig. 3 | Interactions between tumor-enriched bacterial species and host DEGs
associated with OSCC. a Bar plot of bacteria-transcriptome Spearman correlation
showing the abundance of hostDEGs inOSCC tumor tissues associated with tumor-
enriched bacterial species (p < 0.05). Up andDown indicate up-regulated and down-
regulated DEGs, respectively; Pos and Neg indicate positive and negative associa-
tions, respectively. C. morbi Catonella morbi,G. morbillorum Gemella morbillorum,
P. yurli Peptoanaerobacter yurli, P. simiae Peptococcus simiae, P. stomatis Peptos-
treptococcus stomatis, F. nucleatum Fusobacterium nucleatum, T. medium Trepo-
nema medium. b Heat map depicting highly significant bacteria-transcriptome
correlations (q < 0.05). Color panel indicates the Spearman correlation coefficients.
Asterisks indicate significance level (**q < 0.05; *q < 0.1). Columns are ranked by
the average correlation coefficients of DEGs with tumor-enriched bacteria.

cNetwork visualizing significant correlations between bacteria-transcriptome (solid
line, Spearman q < 0.1) and bacteria-bacteria (dashed line, SparCC correlation
q < 0.05). d Scatter plots showing four representative correlations between bacteria
and DEG in OSCC tumor tissues, where the strength of correlation (Spearman rho)
and significance (p value) are shown in each plot. Marginal boxplots depict overall
gene expression (right) and bacterial 16S rRNA gene abundance (top), with
Mann–Whitney U test between tumor and AN tissues. e Gene Ontology (GO)
pathways significantly enriched by up-regulated host DEGs associated with tumor-
enriched bacteria. GO terms with functional similarity are clustered in the semantic
space by REVIGO. B &H corrected p values are indicated by color panel. The size of
the circles indicates the number of DEGs associated with the pathways.
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Fig. 4 | Bacteria-associated host gene epigenetic aberrance dysregulating tran-
scriptome expression in OSCC. a Bar plot of the bacteria-methylation Spearman
correlation showing the abundance of host DMRs in OSCC tumor tissues associated
with tumor-enriched bacterial species (p < 0.05). Hyper and Hypo indicate hyper-
methylated and hypo-methylated promoter regions, respectively; Pos and Neg
indicate positive and negative association, respectively. bHeat map depicting highly
significant bacteria-methylation correlations (p < 0.01). Asterisks indicate sig-
nificance level (**p < 0.01; *p < 0.05). Columns are ranked by the average correla-
tion coefficients of DMRs with tumor-enriched bacteria. cHost genes with opposite
methylation and expression patterns that are both associated with the enrichment of
tumor-enriched bacterial species in OSCC. Status of CpG methylation (DMR) and

transcriptome expression (DEG) are represented by filled circles, with sizes corre-
sponding to the q values. The bar plot shows Spearman correlation coefficients of
CpG methylation and transcriptome expression with the abundance of tumor-
enriched bacteria. d Scatter plots depictingAOX1 and PITX1 hypermethylation (top
panel) and down-regulated expression (bottom panel) in relation toC. morbi, where
the strength of correlation (Spearman rho) and significance (p value) are shown in
each plot. Marginal boxplots depict overall gene expression/methylation (right) and
bacterial 16S rRNA gene abundance (top), with Mann–Whitney U test between
tumor and AN tissues. e Scatter plots depicting NRG1 and ITGB4 hypomethylation
(top panel) and up-regulated expression (bottom panel) in relation to T. medium
and C. morbi, respectively.
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Fig. 5 | OSCC-related carcinogenic potential of Fusobacterium nucleatum in situ
and in vitro. a A Gene Set Enrichment Analysis (GSEA) inferred from 384 up-
regulated DEGs positively associated with 7 tumor-enriched bacterial species (Up &
Pos, p < 0.1). The network displays 20 DEGs involving 18 hallmark pathways
associated withs F. nucleatum. b Schematic illustration of an in vitro cell model by
co-culturing F. nucleatum in human oral epithelial cells HGK12 and SAS to profile
the cellular gene transcriptome using lncRNA-seq. $The number of DEGs in situ
(abs(log2FC > 1, q < 0.01) with coherent association with F. nucleatum 16S reads
(Up & Pos and Down & Neg, p < 0.1); #the number of DEGs in situ with coherent
dysregulation in at least one cell line (abs(log2FC > 0.1, q < 0.01) and confirmed by
another cell line (abs(log2FC > 0.1, p < 0.05). c F. nucleatum-associated DEGs
observed simultaneously in situ and in vitro. Filled circle indicates status of tran-
scriptome expression (DEG) in vitro and in situ, respectively, with sizes

corresponding to the q values. The bar plot shows Spearman correlation coefficients
between DEG transcriptome expression and F. nucleatum abundance in OSCC
tumor tissues. Five F. nucleatum-associated GSEA hallmark genes are highlighted in
bold. d Scatter plots depicting up-regulation of SNAI2 and LIMA1 in relation to F.
nucleatum in OSCC tumor tissues, where the strength of correlation (Spearman rho)
and significance (p value) are shown in each plot. Marginal boxplots depict overall
gene expression (right) and bacterial 16S rRNA gene abundance (top), with
Mann–Whitney U test between tumor and AN tissues. e RT-PCR analysis for the
indicated overexpression of four GSEA hallmark genes (SNAI2, INHBA, LAMA3
and LAMC2) in HGK12 and SAS cells co-cultured with F. nucleatum or F. morti-
ferum. Data are presented as mean ± SD and significance (***p < 0.001; **p < 0.01)
are determined by two-tailed unpaired Student’s t test based on 2−ΔΔCt.
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LIMA1 can extend from cell migration and cytoskeleton dynamics to
cell cycle, gene regulation, angiogenesis, and lipid metabolism, pro-
viding new ideas for future exploration of cancer treatment strategies
targeting this gene35.

Recent studies suggest that epigenetic alterations may play important
roles in the initiation and propagation of cancer36. Epigenetic mechanisms
have also been recognized as a critical player at the interface between the
human microbiome and the intestinal epithelial cell37,38. For example,
exposure to commensal microbiota induced localized DNA methylation
changes, which is necessary for proper intestinal homeostasis39. In contrast,
F. nucleatum and H. hathewayi, two bacterial pathogens associated with
colorectal cancer, are able to drive host colonic epithelial cell promoter
hypermethylation of tumor suppressor genes12. Our data suggest that dys-
regulation of host gene transcriptome could be influenced by bacteria-
associated epigenetic abnormality. For example, hypermethylation and
downregulation of PITX1 and AOX1 were both associated with C. morbi.
PITX1 has been identified as a potential tumor-suppressor gene related to
cell apoptosis andwas down-regulated byDNAhypermethylation in gastric
cancer40 and esophageal squamous cell carcinoma (ESCC)41. PITX1 sup-
presses tumorigenicity by downregulating the RAS pathway through
RASAL1, a RAS-GTPase-activating protein42. Similarly, loss of AOX1,
probably linked to its hypermethylated promoter, contributes to the tran-
sition from low-grade to high-grade during bladder carcinoma progression,
thereby promoting invasion andmetastasis43.Meanwhile, hypomethylation
of several oncogenes such as NRG1, ITGB4 and GALNT6 associated with
tumor-enriched bacteria suggests the potential of microbiota to promote
host gene expression through epigenetic activation. For example,GALNT6
has been shown to promote tumorigenesis and metastasis by catalyzing
mucin-type O-glycosylation-mediated stabilization of MUCl and fibro-
nectin (FN) in breast cancer cells44. Besides, recent study has reported that F.
nucleatum could induce the significant decline of m6A modifications in
CRC resulting in the improvement onCRC aggressiveness45. Themetastasis
of colorectal cancer has also been demonstrated to be promoted by F.
nucleatum through miR-1322/CCL20 axis and M2 polarization, which

indicating the importance of host-microbiome interactions46. However, the
mechanisms by which oral microbiota programmed gene promoter
methylation leads to dysregulated expression in OSCC remains to be
elucidated.

Our study has several limitations. First, oral cavity biopsy fromhealthy
participants were not included. Although AN tissues from OSCC patients
well serve as controls, the joint effects of environmental exposures and
clinical variables between cancer patients and healthy individuals are
challenging to account for long-term confounding. Also, some examination
results related to oral condition were not available, whichmay overlook the
synergistic effect of some confounders on oral microbial dysbiosis and need
to be remedied in subsequent studies. Second, prognostic evaluation for
OSCC is based on clinical TNM classification, but this staging system is not
sufficient for optimal prognostication and may be supplemented by other
methods such as histological grading. Third, this study lacks a direct link
between host gene transcriptome andDNACpGmethylation since only ten
overlapping tumors were available, which warrants a more comprehensive
insight into the epigenetic programming inferred from a larger cohort.
However, it is interesting to observe coherent correlations through inte-
grative analysis of bacteria-transcriptome and bacteria-methylation corre-
lations. Especially, the dysregulation of several F. nucleatum-associated
hallmarkgenes involvingEMTpathways couldbewell verified invitrousing
lncRNAseq,RT-PCRandwesternblot. Fourth, our study reveals association
but not causality of the oral microbiota in the pathogenies of OSCC; further
studies using in vivo and in vitro models will be helpful to identify specific
microbiota-host connections underlying the mechanism. Last but not least,
the resolution in defining bacterial species inferred from 16S rRNAV3–V4
region reads may be limited and bacterial strains cannot be taken into
account in the current study. However, we provide the most representative
ASV sequences and encourage further analysis based on different levels of
taxonomic classification as well as traditional bacterial culture.

In summary, we applied multi-omics approaches to reveal complex
networks between oral mucosal microbiota and host gene dysregulation in
the pathogenesis of OSCC. We found differentially abundant oral bacteria,

Fig. 6 | Schematic model hypothesizing the carcinogenetic potential of patho-
genic bacteria in OSCC pathogenesis. F. nucleatum virulence factor FadA has been
reported to activate the E-cadherin/β-catenin associated cell signaling, which further
activates the TNFα/NF-κB proinflammatory pathway, ECM remodeling, and Wnt
signaling. Subsequently, β-catenin can be translocated to the nucleus to form a
complex with T-cell factor protein (TCF) and activate EMT-related genes, such as
SNAI2, LAMA3, INHBA, andMMP1. Moreover, F. nucleatum and T. denticola have

been reported to promote cancer aggressivity via crosstalk between the integrin/FAK
and TLR/MyD88 signaling pathways. Integrin-associated PI3K/Akt signaling can be
activated by P. anaerobius, which regulates cell cycle progression. Gal-GalNAc on
tumor cells is the receptor of Fap2 to recruit F. nucleatum to the tumor site. In
addition, hypomethylation of NRG1 may activate the PI3K/AKT pathway while
hypermethylation of AOX1 may promote cellular invasion and metastasis.
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dysregulated host gene expression, and aberrant DNA CpGmethylation in
tumor microenvironment, with enriched functions related to various
cancer-related pathways. Integrative analysis between bacteria-
transcriptome and bacteria-methylation correlations reveals that dysregu-
lation of host gene transcriptome might be influenced by tumor-enriched
bacteria or by bacteria-associated epigenetic abnormality. Our findings
extend the current understanding of the host-microbiota interactions in the
pathogenesis of OSCC, which provides important insights into the genetic
and functional basis as potential diagnostic markers and therapeutic targets
for formulating more effective prevention and intervention strategies to
manage this morbid entity.

Methods
Patient recruitment
A total of 98 primary OSCC patients of Han Chinese ethnicity admini-
strated to twohospitals inHongKong (PrinceofWalesHospital andUnited
ChristianHospital)were recruited betweenOctober 2015 and January 2020.
Demographic and clinical information at enrollment, including age, gender,
smoking, alcohol consumption, location of the tumor, T stage and N stage,
were collected in Supplementary Table 2. No cases of metastasis were
included in this study.

Ethics approval
This study was approved by The Joint Chinese University of Hong Kong—
New Territories East Cluster Clinical Research Ethics Committee (CREC
reference numbers 2015.396 and 2017.143). All patients agreed to partici-
pate with written informed consent and were reviewed by a pathologist.

Tissue specimen collection and DNA/RNA extraction
Tumor and AN tissues (≥5 cm away from the margin of the tumor) were
collected at the time of surgery as per our previous methodology6. These
specimens were briefly irrigated with sterile saline to wash away surface
contamination and then stored at −80 °C until further use. Around
10–20mg of fresh frozen tissues were manually homogenized into small
pieces and treated with 20 µl proteinase K at 55 °C overnight. DNA and
RNA from the disaggregated samples were simultaneously extracted using
AllPrep DNA/RNAMini Kit (Qiagen, Valencia, CA, USA) and eluted into
50 µl elution buffer separately following the manufacturer’s protocol. DNA
from tumor tissues were tested for HPV infection using a PCR-based
amplicon sequencing assay as previously described47.

Microbiota 16S rRNA gene V3–V4 amplicon sequencing
Extracted DNA was used for oral microbiota profiling by sequencing the
bacterial 16S rRNA gene hypervariable V3–V4 region (341F: 5′–CCTACG
GGN GGC WGC AG–3′, 806R: 5′–GGA CTA CNV GGG TWT CTA
AT–3′)6,48. A pair of dual unique 12 bp barcodes was indexed to each
amplicon set through the forward and reverse primers; successful amplicons
were equally pooled and sequenced on an IlluminaMiSeq using paired-end
300 bp reads. For quality control, each sequencing batch included a mock
DNA community, negative controls and technical replicates.

Microbiota 16S sequence data bioinformatics and statistical
analysis
Demultiplexed short 16S reads passing quality filtering were imported into
QIIME2 (v2021.4) to generate an amplicon sequence variant (ASV) table as
previously described6. The representative reads were further assigned at the
species level usingpplacerby inserting into aphylogenetic tree inferred from
complete sequences of the bacterial 16S rRNA gene to maximize phyloge-
netic likelihood49,50. ASVs with a total count >10 after removing reads
assigned to archaea, mitochondria or chloroplasts were retained, with
operational taxonomic unit (OTU) count tables showing the bacterial reads
per sample at different taxonomic levels. Paired tumor and AN tissues with
more than 2000 readswere retained for further analysis. A phylogenetic tree
was generated by inserting the representativeASV reads into the SLIVA128
reference database using the SATe-enabled phylogenetic placement (SEPP)

method51. Alpha diversity of the observed bacterial ASV reads based on
richness, Shannon and Simpson indexes were calculated using diversity in
the Vegan R package. GUniFrac and Bray–Curtis distance metrics were
computed inferred from the ASV profile to differentiate community com-
positions (beta diversity) between cancer and control groups using per-
mutational multivariate analysis of variance (PERMANOVA) with 9999
permutations using the adonis2 in the Vegan R package52. In the effect size
analysis, disease status (tumor vs. AN) controlled association between
clinical variables, including gender, age, smoking, alcohol consumption, N
and T stages, were performed. Discriminative bacterial taxa between tumor
and AN tissues based on OTU count tables were estimated using linear
discriminant analysis (LDA) effect size (LEfSe) analysis53, with a cutoff of
LDA > 3 (q < 0.05), which was further validated by different compositional
aware tools with bias correction, including ANCOM-BC254, ALDEx255 and
ZicoSeq56, adjusted for the covariates of T stage and smoking (q < 0.05). In
addition, a linear regression analysis test, non-parametric Mann–Whitney
Wilcoxon rank sum test (MWU), Tukey’s honest significant difference
(Tukey HSD) post hoc test, and a binomial generalized log-linear model in
EdgeR57 were applied.Heatmaps of themost discriminative bacterial genera
were generated using the heatmap.2 in the gplots R package, with hier-
archical clustering setting of “hclust(method = “ward.D”) and dis-
t(method = “euclidean”)”. Logistic regression and receiver operating
characteristic (ROC) curvewith the calculationof area under theROCcurve
(AUC) were used to assess the potential biomarkers identified for cancer
case screening. Kaplan–Meier analysis was used for univariate survival
analysis with log-rank test to determine statistical differences in survival
outcomes. An optimal cutoff point inferred from the relative abundance of
individual bacterial taxa in the surveyed samples was calculated to divide
tumor tissues into “high” and ‘low” groups using the cutpointrR script. The
Cox proportional hazard regressionmethod in stepwisemanner controlling
for gender, age, post-surgery treatment and other factors reported sig-
nificant in the univariate analysis was used for multivariate analysis of
survival. A two-sided p value < 0.05 and/or a false discovery rate (FDR)-
adjusted p value (padj or q) < 0.05 was used as the threshold for significance.

HPV detection and genotyping
HPV genotyping was performed using a PCR-based amplicon sequencing
assay targeting the conserved L1 open reading frame (ORF) of HPV as
previously described47. In brief, a pair of dual 12-bp barcodeswas indexed to
the PCR amplicon using forward and reverse primers for demultiplexing.
Short reads generated by Illumina MiSeq PE150 were blasted against a
comprehensive PV reference database using UPARSE58. An operational
taxonomic unit (OTU) count table was created using a 90% identity
threshold, assigning each OTU with a PV type59. Based on the IARC clas-
sification, 12 HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59)
were ranked as high risk (HR) and considered oncogenic60.

Host gene long non-coding RNA sequencing (lncRNA-seq) and
transcriptome profiling
Tumor andANtissues froma subset of 40 randomly selectedOSCCpatients
were profiled for host genome-wide transcriptome using lncRNA-seq. In
brief, total RNA was depleted for rRNA using QIAseq FastSelect rRNA
remove kit and converted to directional RNA library using NEBNext Ultra
IIDirectional RNALibrary PrepKit for IlluminaNovaSeq using paired-end
150 bp reads. Pair-end sequencing reads were mapped to the hg38 human
reference genome using STAR61. Number of readsmapped to the gene exon
regions was counted using featureCounts62; genes with a mean Transcripts
Per Kilobase Million (TPM) greater than 1 were retained. Differentially
expressed genes (DEGs) between tumor and AN tissues were identified
using a binomial generalized log-linear model in EdgeR57 using a cutoff of
q < 0.01 and log2FC (fold change) > 1 (up-regulated genes) or <−1 (down-
regulated genes). Age, smoking, alcohol consumption, and gender were
included as confounding factors in the model. Functional enrichment of
OSCC-associatedDEGswere summarized usingToppGene Suite63. The top
10 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms with
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statistical significance (p < 0.05) were visualized in order. To determine
DEGs associated with disease-specific survival, the expression of each gene
was labeled with a binary value of “High” or “Low” using “optimal” cut-
points determined by cutpointr function in R. The parameter of “metric” in
cutpointr was set as “sum_sens_spec” to maximize the sum of sensitivity
and specificity. The Kaplan–Meier method with 95% CI for Cox propor-
tional hazards ratio was used for univariate survival analysis using coxph
function in R.

The Cancer Genome Atlas (TCGA) OSCCRNA-seq data analysis
A TCGA OSCC RNA-seq HTSeq raw read counts matrix along with
metadata information (age, smoking, alcohol consumption, gender, and site
of resection or biopsy) were downloaded using the TCGAbiolinks R
package64. This dataset contains tissue samples from502OSCCpatients and
44 non-OSCC controls. Samples were further filtered using the following
criteria: (1) one sample was removed due to the lack of “age” information,
and (2) 206 samples were discarded because the “site of resection or biopsy”
didn’t belong to oral cavity, resulting in 309 cases and 30 controls for the
comparison with the Hong Kong (HK) OSCC cohort.

Network analysis between bacterial abundance and host gene
expression
Host DEGs and OSCC-associated bacterial species were explored for
bacteria-transcriptome interactions with Spearman correlation coefficients
calculated using the cor.test function in R. Bacterial count tables were nor-
malized in percentage for the correlation analysis. A p value < 0.05 was used
as the cutoff for significance. Sparse Correlations for Compositional Data
(SparCC)65 was used to explore bacteria-bacteria correlations, with a cor-
relation coefficient q < 0.1 for significance. Heatmaps and networks were
plotted using corrplots function inR andCytoscape v3.7.166, respectively. To
characterize bacteria target pathways in OSCC pathogenesis, up-regulated
host DEGs with positive association with tumor-enriched bacterial species
were summarized for Gene Ontology (GO) biological processes using
ToppGene suite63. The obtained p values were then corrected for multiple
testing using the Benjamini & Hochberg (B & H) method. Enriched GO
terms (q < 0.001) and corresponding q values were used as the input for
REVIGO67 to reduceGOtermredundancy andvisualize semantic clustering
of the identified GO terms. Meanwhile, DEGs associated with tumor-
enrichedbacteria and their correlation coefficientsweremerged for a refined
hallmark gene set enrichment analysis against the Molecular Signatures
Database (MSigDB) using GSEA68. The hallmarks effectively summarized
most of the relevant biological processes of gene sets by reducing variation
and redundancy.

Human DNA CpGmethylation and bioinformatic analysis
Tumor and AN tissues from a subset of 38 randomly selected OSCC
patients were characterized for host DNA CpG methylation using
bisulfite sequencing. In brief, the total DNA was pre-prepared for illu-
mina library using KAPA HTP Library Preparation Kit (Kapa Biosys-
tems, USA). The library was exposed to sodium bisulfite using EpiTect
DNA Bisulfite Kit (Qiagen, USA) and then probed with Methyl-Seq
Capture probes using SeqCapEpiCpGiantKit (Roche,USA) for Illumina
NovaSeq using paired-end 150 bp reads. Paired-end sequencing reads
were trimmed using Trimmomatic69 and aligned to the human reference
genome (hg38) using Bismark70. BAM files were sorted and deduplicated;
only genomic regions with read coverage larger than 10 were included.
Methylation levels were modeled using a logistic regression-based algo-
rithm with overdispersion correction and Chi-square test implemented
in the methylKit R package71. Differentially methylated regions (DMRs)
in tumors compared with AN tissues were identified using a cutoff of
q < 0.01 and meth.diff score > 1.0 (hypermethylation) or <−1.0 (hypo-
methylation). Age, gender, smoking, alcohol consumption, N and T
stages were included as confounding factors in the model. DMRs were
then assigned to the promoter region of genes using the annotatePeak
function in theChIPseeker Rpackage72. The promoter regionwas defined

as 3000 bp upstream and 3000 bp downstream of the transcription start
sites (TSSs). When multiple DMRs were located within the same pro-
moter region, we used a majority voting method to determine the
methylation status of the gene. Spearman’s rank-order correlation test
was used to explore the association between promoter-associated DMRs
and OSCC-enriched bacterial species. A p value < 0.05 was considered as
statistical significance.

Fusobacterium nucleatum co-culture with host epithelial cell
in vitro
To validate the potential of pathogenic bacteria to dysregulate host tran-
scriptome revealed in OSCC tumor microenvironment, an in vitro cell-
basedmodel was established by co-culturing F. nucleatum in HGK12 cell, a
healthy human gingival keratinocyte immortalized head and neck derived
epithelial cell line (gifts from Prof. Lui, School of Biomedical Sciences, The
Chinese University of Hong Kong) and SAS, a human oral tongue squa-
mous cell carcinoma cell line (Cellosaurus, RRID:CVCL_1675). In brief, F.
nucleatum subsp. vincentii, a strain isolated from an OSCC patient and
confirmed by whole genome sequencing, was applied for cell-bacteria co-
culture system at a multiplicity of infection (MOI) of 100:1 for 5 h at 37 °C
under anaerobic condition. HGK12 and SAS were co-cultured with F.
nucleatum once and infected cells were then incubated with fresh Epilife or
DMEM/F12medium, respectively, at 37 °Cwith 5%CO2.After overnight of
culture with or without bacteria, total RNA from cells was extracted using
RNeasy Mini Kit (Qiagen, USA), followed by Illumina lncRNA-seq library
preparation. Three independent repeats were performed for statistical
power. In brief, pair-end sequencing readsweremapped to the hg38 human
reference genome using STAR61. Number of readsmapped to the gene exon
regions was counted using featureCounts62; genes with a mean Transcripts
Per Kilobase Million (TPM) greater than 1 were retained. Differentially
expressed genes (DEGs) between treated and untreated cell lines were
identified using a binomial generalized log-linear model in EdgeR57, with a
cutoff of abs(log2FC) > 0.1 and q < 0.01 considered statistically significant.
Functional enrichment of F. nucleatum-associatedDEGswere summarized
using ToppGene Suite63. The top 10 Kyoto Encyclopedia of Genes and
Genomes (KEGG) terms with statistical significance (p < 0.05) were visua-
lized in order.

Real-time PCR (RT-PCR) of mRNA gene expression
Total RNA was extracted fromHGK12 and SAS cell lines co-cultured with
F. nucleatum (MOI 1:100) by using TRIzol reagent. As a negative-bacterial
control, Fusobacterium mortiferum, a suggested non-invasive and non-
pathogenic specieswithin theFusobacteriumgenus,wasutilized73.Oneµgof
total RNAwas applied for generating complementaryDNAby LunaScript®
RT SuperMix Kit (NEB, #E3010) followed by standard RT-PCR reaction
with Luna®Universal qPCRMasterMixProtocol (NEB, #M3003). TheRT-
PCR primers used for gene expression validation are listed in Supplemen-
tary Table 22.

Western blot of protein expression
Protein samples were obtained from co-cultured HGK12 and SAS cell lines
in the presence or absence of respective bacteria. The sampleswere collected
using RIPA lysis buffer (Santa Cruz). The protein quantification was per-
formed using Pierce™BCAProteinAssay Kits (Thermo Fisher Scientific). A
total of 20 µg of protein from each sample was separated by 10% or 12%
SDS-PAGEand transferredontoPVDFmembranes for blotting.Toprevent
nonspecific binding, all membranes were blocked using 5% non-fat milk in
1X TBST. Primary antibodies against SNAI2 (Cell Signaling Technology,
9585T, 1:500 dilution), INHBA (Abcam, ab128958, 1:500), LAMA3
(Abcam, ab151715, 1:500), LAMC2 (Santa Cruz, sc-28330, 1:1000) and β
actin (Santa Cruz, sc-47778, 1:1000), were then incubated overnight at 4 °C,
respectively, followed by the application of corresponding secondary anti-
bodies for 1 h at room temperature. The target protein bands were detected
using Clarity Western ECL Substrate (Bio-Rad) and imaged using Chemi-
luminescent Western Blot Imager AZURE 300 (Azure Biosystems). All
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expression levels were determined by quantifying the grayscale values of the
target protein bands relative to the reference beta-actin using ImageJ soft-
ware. All blots and gels derive from the same experiment and they were
processed in parallel.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All sequences and codes are available upon request. The 16S rRNA gene
amplicon next-generation sequences analyzed in this study are available in
NCBI SRA database under BioProject PRJNA822685 (accession numbers
from SRR18595688 to SRR18595849). The bioinformatics pipelines and
scripts used in this study have been deposited to the Github repository
(https://github.com/lycai05/OSCC_host_bacteria_interactions).
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