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ABSTRACT: Delayed diagnosis of patients with sepsis or septic shock is associated with increased
mortality and morbidity. UPLC-MS and NMR spectroscopy were used to measure panels of
lipoproteins, lipids, biogenic amines, amino acids, and tryptophan pathway metabolites in blood
plasma samples collected from 152 patients within 48 h of admission into the Intensive Care Unit
(ICU) where 62 patients had no sepsis, 71 patients had sepsis, and 19 patients had septic shock.
Patients with sepsis or septic shock had higher concentrations of neopterin and lower levels of HDL
cholesterol and phospholipid particles in comparison to nonsepsis patients. Septic shock could be
differentiated from sepsis patients based on different concentrations of 10 lipids, including
significantly lower concentrations of five phosphatidylcholine species, three cholesterol esters, one
dihydroceramide, and one phosphatidylethanolamine. The Supramolecular Phospholipid Composite
(SPC) was reduced in all ICU patients, while the composite markers of acute phase glycoproteins
were increased in the sepsis and septic shock patients within 48 h admission into ICU. We show that
the plasma metabolic phenotype obtained within 48 h of ICU admission is diagnostic for the
presence of sepsis and that septic shock can be differentiated from sepsis based on the lipid profile.
KEYWORDS: ICU, sepsis, septic shock, NMR spectroscopy, mass spectrometry, pharmaco-metabonomics, plasma IVDr,
metabolic phenotyping, diagnostic modeling, lipoproteins, lipids, SPC, APACHE

■ INTRODUCTION
Despite notable improvements in the delivery of intensive care
in recent years, severe sepsis and septic shock remain a
significant clinical problem with a substantial morbidity,
mortality, and economic burden.1,2 Globally, almost 50 million
sepsis cases were reported in 2017 with mortality rates at 20−
50% depending on age and regional disparities.3 Sepsis is defined
as a life threatening organ dysfunction condition caused by the
dysregulated host response to infection4 but due to the
heterogeneity of the timing and presentation of symptoms,
diagnosis and prognostication of patients with sepsis is
challenging.5 The molecular mechanisms underpinning sepsis
pathobiology are incompletely understood but host oxidative
stress,6 endothelial disruption,7 and mitochondrial dysfunction8

contribute to the dysregulated host response in sepsis and may
result in significant systemic metabolic changes.9 Metabolic
phenotyping methodologies may therefore be useful for
understanding sepsis pathogenesis.10 For example, Mao et al.
and others have found disrupted amino acid and carbohydrate
metabolism in patients with systemic inflammatory response
syndrome, which shifted to disrupted fat metabolism in multiple
organ dysfunction syndrome.11−13

The diagnosis of sepsis relies on a clinical assessment of the
likelihood of infection and associated systemic features. Gold
standard diagnosis is subsequently dependent on the positive
identification of a pathogenic organism using standard clinical

pathogen culturing,14 which occurs in only a minority of patients
with sepsis and may take days to confirm. Around 20% of
patients in the intensive care unit with sepsis will progress to
septic shock, which is associated with multi organ failure and
9.8% mortality.15−17 Clinical scoring systems such as the Acute
Physiology and Chronic Health Evaluation (APACHE),
APACHE II, APACHE III, Simplified Acute Physiology Score,
Sequential Organ Failure Assessment, and Mortality Probability
Model II can be used to assess the illness severity level but these
scoring systems have low specificity and sensitivity, particularly
with respect to predicting clinical outcomes.18 Although
improved patient outcomes have been achieved over the last
three decades through the implementation of these predictive
severity scores, together with evidence-based management
strategies,19 mortality remains high. Effective treatment of sepsis
relies on rapid diagnosis and subsequent, goal directed therapy
since the mortality rate of patients with septic shock can increase
8% for every hour delay in antimicrobial therapy.20 Thus, early
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identification of sepsis and progression to septic shock present a
critical unmet clinical need.
We have previously shown that preinterventional metabolic

phenotyping can enable prediction of interventional outcomes
such as drug toxicity,21 drug metabolism,22 and anticancer drug
efficacy in animals and humans.23 The same principle using a
training-test set model can be applied to predict disease
trajectory outcomes including recovery or progression to long-
COVID in SARS CoV-2 infection24 or even COVID-19 induced
death in intensive care unit (ICU) patients.25 Since the
biomarkers that are currently used to identify sepsis are
inadequate for discriminating between sepsis and septic shock
patients in ICU, we applied a multiplatform metabolic profiling
approach to ascertain whether plasma profiles could be used to
differentiate patients with no sepsis, sepsis, and septic shock at
admission into ICU regardless of admission route or type.
Plasma samples collected from patients within 48 h of

admission into ICU were analyzed by ultra-high performance
liquid chromatography mass spectrometry (UPLC-MS) to
obtain 36 amino acid and tryptophan pathway intermediates
and 975 lipids. In addition, nuclear magnetic resonance (NMR)
spectroscopy was used to quantify 117 lipoprotein parameters,
glycoproteins and a Supramoleculer Phosphoplipid Composite
(SPC) known to be associated with inflammatory processes.26,27

For this Western Australian cohort, we demonstrate that a
subset of 15metabolites can successfully stratify patients into the
correct sepsis clinical outcome upon admission into ICU.

■ MATERIALS AND METHODS

Participant Enrolment and Sample Collection

Blood plasma samples were collected from 152 patients within
48 h of admission into ICU where 62 patients did not have
sepsis, 71 patients had sepsis without shock, and 19 had septic
shock. A second blood collection was completed 48 h after the
first blood collection (sample n = 104) and a third completed at
7 days (sample n = 46) post admission. All participants provided
informed consent to clinical investigations, according to the
Declaration of Helsinki, and the data were anonymized to
protect their confidentiality. Samples were approved for analysis
as part of the ROCIT (Restoration of the microbiome in critical
illness) study,28 which was conducted in the ICU’s of five
hospitals in Perth, Western Austral ia (ANZCTR
12617000783325). Research ethics committee approvals were
completed (South Metropolitan Health Service Human
Research Ethics Committee: RGS000004 and Murdoch
University Ethics: 2019/037). Plasma samples were stored at
−80 °C until analysis.
For the purpose of comparison of healthy individuals with the

ICU patients, control samples (n = 50) were collected by the
Basque Biobank for research (BIOEF) prior to the COVID-19
pandemic from an apparently healthy population. All partic-
ipants provided informed consent to the clinical investigation,
according to the Declaration of Helsinki, and the data were
anonymized to protect their confidentiality. The sample
handling protocol was evaluated and approved by the Comite ́
de Ética de Investigacioń conmedicamentos de Euskadi (CEIm-
E, PI+CES-BIOEF 2020−04 and PI219130). Shipment of
human samples to the ANPC had the approval of theMinistry of
Health of the Spanish Government. Samples were stored at −80
°C. Samples were approved for analysis as part of the
International Severe Acute Respiratory and Emerging Infection
Consortium (ISARIC)/World Health Organisation (WHO)

pandemic trial framework (SMHS Research governance office
PRN:3976 and Murdoch University Ethics no. 2020/052, and
no. 2020/053).
1H NMR Sample Preparation

Samples were defrosted at room temperature for 1 h. NMR
samples were prepared in a SamplePro Tube (Bruker Biospin)
robot system for liquid handling. Every sample was automati-
cally prepared as a mixture of phosphate buffer (75 mM
Na2HPO4, 2 mM NaN3, 4.6 mM sodium trimethylsilyl
propionate-[2,2,3,3−2H4] (TSP) in H2O/D2O 4:1, pH 7.4 ±
0.1) and plasma at a 1:1 ratio for a final volume of 600 μL into 5
mm SampleJet NMR tubes.
1H NMR Spectroscopy Data Acquisition and Processing
Parameters

NMR spectroscopic analyses were performed on a 600 MHz
Bruker Avance III HD spectrometer, equipped with a 5 mm BBI
probe and fitted with the Bruker SampleJet robot cooling system
set to 5 °C. A full quantitative calibration was completed prior to
the sample analysis using a protocol described elsewhere.29 All
experiments were acquired using Bruker In Vitro Diagnostics
research (IVDr) methods. For each sample prepared, two
experiments were run with a total analysis time of 8.5 min: (i) a
standard 1D experiment with solvent presaturation (32 scans,
98K data points, spectral width of 30 ppm) and (ii) a DIRE
experiment (64 scans, 98K data points, spectral width of 30
ppm).30

From the standard 1D experiment, a total of 112 lipoprotein
parameters for each sample were generated using the Bruker
IVDr Lipoprotein Subclass Analysis (B.I.-LISA) method
whereby the −(CH2)n at δ = 1.25 and −CH3 at δ = 0.80
peaks of the 1D spectrum after normalization to the Bruker
QuantRef TM manager within Topspin were quantified using a
PLS-2 regression model.31 B.I.LISA data consist of total plasma
lipid analytes cholesterol, free cholesterol, phospholipids,
triglycerides, Apolipoproteins A1/A2/B100 and the B100/A1
ratio, and analyte distributions in different density classes of
plasma-lipoproteins: high-density lipoprotein (HDL, density
1.063−1.210 kg/L), intermediate-density lipoprotein (IDL,
density 1.006−1.019 kg/L), low-density lipoprotein (LDL,
density 1.019−1.063 kg/L), and very low-density lipoprotein
(VLDL, 0.950−1.006 kg/L). Themain lipoprotein classes HDL,
LDL, and VLDL are subdivided into different density subclasses.
LDL subdivisions included LDL1: 1.019−1.031 kg/L, LDL2:
1.031−1.034 kg/L, LDL3: 1.034−1.037 kg/L, LDL4: 1.037−
1.040 kg/L, LDL5: 1.040−1.044 kg/L, LDL6: 1.044−1.063 kg/
L). HDL subfractions were also assigned to 4 density classes:
HDL1 1.063−1.100 kg/L, HDL2 1.100−1.112 kg/L, HDL3
1.112−1.125 kg/L, and HDL4 1.125−1.210 kg/L, and the
VLDL subfractions were divided into 5 density classes. A list of
all the 112 lipoprotein subfractions and parameter annotations
are shown in Table S1. DIRE spectra preprocessing included
baseline correction using an asymmetric least-squares routine
and the spectra were normalized to the eretic signal using the R
package metabom8 (version 1.0.0, github.com/tkimhofer/
metabom8). To estimate the signal intensities of the
glycoprotein peaks, GlycA and GlycB spectral regions were
integrated (δ2.03 and δ2.07 ppm, respectively). The GlycA
signal (δ2.03) is a composite of N-acetyl signals from five
proteins: α-1-acid glycoprotein, α-1-antitrypsin, α-1-antichymo-
trypsin, haptoglobin, and transferrin. The GlycB acetyl signal
(δ2.07) arises from glycoprotein N-acetylneuraminidino
groups.27 The region containing the Supramolecular Phospho-
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lipid Composite (SPC) peak was integrated to determine SPC1
(δ3.200−3.236) corresponding predominantly to small HDL
(HDL4) phospholipids, SPC2 (δ3.236−3.252) corresponding
to larger HDL phospholipid particles (HDL1-HDL3) and SPC3
(δ3.252−3.300) corresponding to LDL phospholipids (26).
Liquid Chromatography Mass Spectrometry (LC-MS)

Biogenic amines, amino acids, and tryptophan metabolites were
measured using two LC-MS quantification methods following
previously reported methods for tryptophan and associated
catabolites32 and amino acids.33 In brief, samples were thawed at
4 °C and prepared for analysis. For the quantification of the
biogenic amines and amino acid metabolites, a Bruker Impact II
QToF mass spectrometer (Bruker, Daltonics, Billerica, MA)
coupled to a Waters Acquity I-class UPLC system (Waters
Corp., Milford, MA) was used. Full scan mass spectrometry data
in high resolution were acquired using electrospray ionization
positive in amass range ofm/z 30−1000, operated in broadband
collision-induced dissociation (bbCID) function to generate
fragmentation data. Resulting data files were processed for peak
integration and quantification using the Target Analysis for
Screening Quantification (TASQ; v2.2) software (Bruker
Daltonics, Bremen, Germany), where calibration curves were
linearly fitted with a weighting factor of 1/x. For the
measurement of tryptophan and associate catabolites, a Waters
TQ-XS triple quadrupole (QQQ) coupled to a Waters Acquity
I-class UPLC system (Waters, Wilmslow, UK) was used
operating in positive electrospray ionization using multiple
reaction monitoring (MRM). Obtained raw files were processed
for peak integration and metabolite quantifications using the
TargetLynx package within MassLynx v4.2 (Waters Corp.,
Milford, MA) where calibration curves were linearly fitted using
a weighting factor of 1/x. Resulting data matrices were
combined, and quality control was checked prior to statistical
analysis.
LC-MS Lipid Analysis

Plasma lipid analysis was performed by ultrahigh-performance
liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) using a Exion UHPLC system coupled to a QTRAP
6500+ mass analyzer (Sciex Concord, CA) from a previously
published method.34 In brief, plasma samples (10 μL) were
thawed at 4 °C and combined with 90 μL of stable isotopically
labeled internal standards diluted in isopropyl alcohol for
extraction, utilizing a Biomek i5 liquid handling system for the
preparation (Beckman Coulter, MountWaverley, Victoria 3149,
Australia). Samples were chilled and centrifuged for 15 min at
14000g before 50 μL of supernatant was transferred into a 350
μL 96-well plate for analysis (Eppendorf, Macquarie Park, NSW,
Australia). For quality control (QC) an independent plasma
pool was prepared and injected following each block of 9
experimental samples throughout the analytical sequence, which
were used for the assessment of analytical precision. The raw
files generated were preprocessed using SkylineMS,35 and
quality control random forest signal correction (QC-RFSC)
from the statTarget package was used to correct for analytical
drift.36 Feature filtering, RSD QC > 30%, and feature intensity
threshold filtering < 5000 in > 50% of the QCs were applied and
metabolites were removed from further statistical analysis based
on their failure to meet acceptable analytical precision. The
comprehensive analysis covered 20 subclasses of lipids including
cholesterol esters (CEs), ceramides (CERs), diacylglycerides
(DAGs), dihydroceramides (DCERs), free fatty acids (FFAs),
hexosylceramides (HCERs), lactosylceramides (LCERs), lyso-

phosphatidylphocholines (LPCs), lysophosphatidylphoethanol-
amines (LPEs), lysophosphatidylglycerides (LPGs), and
lysophosphatidylinositols (LPIs), lysophosphatidylserines
(LPSs), monoacylglycerols (MAGs), phosphatidylcholines
(PCs), phosphatidylethanolamines (PEs), phosphatidylglycer-
ides (PGs), phosphatidylinositols (PIs), phosphatidylserines
(PSs), sphingomyelins (SMs), and triacylglycerides (TAGs).
Data Analysis

All computation and data visualization were performed using R
and RStudio IDE with the open-source R package metabom8
(version 1.0.0), available from GitHub (github.com/tkimhofer/
metabom8). Mann−Whitney U tests were performed to
compare metabolite concentrations within different groups.
The Cliff’s delta statistic was calculated for all parameters to
assess the overall effect size for the intergroup differences.37

Absolute Cliff’s delta scores were interpreted as 1 indicating
maximum difference (regardless of sign) and 0 indicating no
difference. Orthogonal projection to latent structures-discrim-
inant analysis (O-PLS-DA)38 was used to model variance in the
data between different sepsis groups and to extract discriminat-
ing features between the groups. The optimal number of
orthogonal components for each model was determined using
the area under the receiver operator characteristic curve
(AUROC) calculated from predictive component scores,
generated using a standard 7-fold cross-validation (CV)
procedure. Adjusted p-values were used to assess the significance
of metabolites, lipoproteins and lipids.

■ RESULTS AND DISCUSSION

Demographics of the Patient Cohort

Admission into ICU came via one of four routes, the emergency
department, ward, and operating theater either elective or
emergency (Table 1) and were classified into four different types
of admissions, cardiothoracic, medical, surgery, or trauma. On
admission into the ICU, the Apache II (Acute Physiology and
Chronic Health Evaluation II) score was significantly different
between the no sepsis and sepsis groups (p = 3.5× 10−4) and the
no sepsis versus septic shock groups (p = 2.5 × 10−3), while it
was not significantly different between the sepsis and septic
shock patients. C-Reactive protein was significantly higher in the
sepsis group compared to the no sepsis group (p = 9.3 × 10−4)
and higher in the septic shock group compared to the no sepsis
group (p = 0.01). However, there was no significant difference
between the sepsis and septic shock groups. Overall, survival at
60 days post-admission into ICU was 94%.
Here, we aimed to stratify patients based on their plasma

metabolic profiles obtained within 48 h admission into ICU
according to their clinical diagnosis of (i) no sepsis, (ii) sepsis, or
(iii) septic shock. In the first instance, an O-PLS-DA model was
built to establish whether the samples obtained at ICU
admission could differentiate patients who went on to develop
sepsis or septic shock from those who did not develop sepsis.
Subsequently, a second model was built to establish whether
there was a difference in the plasma profiles of patients who
developed sepsis versus septic shock at the baseline. The
variables were selected using a Cliff’s delta value of above 0.5 or
below −0.5 obtained by univariate analysis. This resulted in four
variables included in model 1 and 10 variables included in model
2.
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Stratification of Nonseptic Patients versus Septic and
Septic Shock Patients within 48 h of Admission to ICU
(Model 1)
Higher concentrations of neopterin and lower concentrations of
four lipoproteins, high density phospholipid (HDPL), high
density cholesterol subfraction 4 (H4CH), high density
phospholipid subfraction 4 (H4PL), and high density lip-
oprotein Apolipoprotein A1 subfraction 4 (H4A1)were selected
as being characteristic of the sepsis/septic shock group. An O-
PLS-DAmodel was constructed using these 5 parameters, which
resulted in a model with a CV-AUROC 0.80 (Figure 1A). The
AUCROCofmodel 1 was 0.81, and the area under the precision
recall (AUC PR) curve was 0.70. The use of this metabolite
panel proved superior to CRP for differentiating non sepsis
patients from those that had sepsis and septic shock at admission
into ICU, where the AUC ROC of C-reactive protein was found
to be 0.76 with an AUC PR of 0.66 (Figure S1a).

The data sets for the assays were also modeled independently,
stratified by no sepsis versus the sepsis and septic shock group
within 48 h of admission into ICU using O-PLS-DA. In each
case, models were built using a set of combined variables from
the individual analyte sets: lipids (n = 975), lipoproteins (n =
112), amino acid and tryptophan pathway intermediates (n =
36), and the inflammatory markers, the glycoproteins, and SPC
(n = 5).When all participants were included in the analysis of the
lipid data set, a significant model could not be generated with the
resulting CV-AUROC = 0.59. For the other matrices, the
baseline sample taken on admission to ICU was able to
differentiate those patients who went on to develop sepsis and/
or septic shock from those who did not, yielding CV-AUROCs
of 0.66, 0.78, and 0.68, respectively, for the MS-derived amino
acid and tryptophan pathway (AATr) intermediates (Figure
S2), the NMR derived lipoproteins (Figure S3), and the NMR
derived glycoproteins and SPC (Figure S4). OPLS loadings,
Cliff’s delta, and adjusted p-values can be found for the
independent assays in Tables S2−S4.
While the four lipoproteins were found at higher concen-

trations in no sepsis versus the sepsis and septic shock group,
neopterin was higher in the sepsis and septic shock group. All
these parameters are significantly different between the sepsis
and nonsepsis groups, p-values between 6.4 × 10−9 and 3.2 ×
10−7 (Figure 1c). Values for a healthy control group are included
for comparison, and it can be seen that the selected parameters
all strongly differentiate both ICU groups from the control
group (Figure 1). Of the five parameters that were able to
predict development of sepsis or septic shock versus no sepsis,
only neopterin (p-value = 0.04) was able to discriminate
between sepsis and septic shock (Figure S5). In addition,
comparison of the parameters for each of the three groups versus
the healthy controls yielded significantly different p-values,
reflecting the systemic perturbation following inflammation,
infection, and sepsis.
High density lipoprotein has been previously shown to be

reduced in sepsis patients.39−41 HDL contains apoprotein A1
(ApoA1) and is primarily involved in transporting cholesterol
from peripheral tissues back to the liver and as such has a
cardioprotective function, in addition to having antiapoptotic,
antithrombotic, and anti-inflammatory properties.42 Upon
infection, HDL binds and neutralizes the bacterial lip-
opolysaccharide and lipoteichoic acid.43,44 The apolipoprotein
A2 in HDL has been shown to suppress the inhibitory effect of
high concentrations of lipopolysaccharide binding protein
(LPS) prior to HDL binding to LPS, which also serves to
augment monocyte activity and control the response to sepsis.45

Although H4A2 was not selected based on the Cliff’s delta (cd =
−0.46) cut off, it was nevertheless significant (p-value = 2.32 ×
10−4) and is consistent with prior literature. It has been
hypothesized that this renders the toxins inaccessible to their
receptor CD14 on macrophages, preventing the release of
cytokines, such as IL-1, IL-6, and TNF-α, thus protecting against
progression to septic shock.46,47 In addition, it has been shown
that physiological concentrations of HDL can exert an anti-
inflammatory effect by inhibiting the activation of adhesion
molecules on endothelial cells.48 Previously, studies have
reported that HDL levels at time of admission to ICU were
more predictive of 28 day mortality than any other measured
parameter.49 Here, we show that the HDL4 concentrations were
reduced in all ICU patients at admission into the ICU, but
notably, patients who were diagnosed with sepsis and septic
shock had particularly low HDL4 levels in comparison with

Table 1. Full Cohort Demographicsa

ICU patients
no sepsis
(n = 62)

ICU
patients
sepsis

(n = 71)

ICU patients
septic shock (n

= 19)
healthy
(n = 50)

sex, male 38 (61.30%) 42 (59.15%) 8 (42.10%) 35
(70.00%)

age, years [SD] 64.00
[±17.34]

67.00
[±12.98]

64.00 [±14.80] 62.55
[±1.48]

BMI, kg/m2 [SD] 25.47
[±2.37]

total days in
hospital

8 [±8.40] 11 [±10.38] 11 [±13.73]

total days in ICU 2 [±3.71] 4 [±3.93] 4 [±6.23]
source of
admission to
ICU

ED 19 (30.65%) 37 (52.11%) 8 (42.11%)
OT elective 22 (35.48%) 13 (18.31%) 1 (5.26%)
OT emergency 7 (11.29%) 6 (8.45%) 4 (21.05%)
ward 14 (22.59%) 15 (21.13%) 6 (31.58%)
admission type to
ICU

cardiothoracic 18 (29.03%) 8 (11.27%) 0 (0.00%)
medical 26 (41.94%) 43 (60.56%) 11 (57.89%)
surgery 13 (20.97%) 19 (26.76%) 8 (42.11%)
trauma 5 (8.06%) 1 (1.41%) 0 (0.00%)
chronic
respiratory
disease

6 (9.68%) 5 (7.04%) 0 0

chronic
cardiovascular
disease

6 (9.68%) 13 (18.31%) 1 (5.26%) 0

chronic liver
disease

1 (1.62%) 1 (1.41%) 0 0

chronic renal
disease

4 (6.45%) 4 (5.63%) 2 (10.53%) 0

chronic immune
disease

1 (1.62%) 0 0 0

Apache II score 11.5 [±6.15] 15.0
[±6.08]

15.0 [±7.32]

CRP at enrolment
(mg/L)

66.2
[±121.0]

220.0
[±127.8]

210.0 [±134.7]

patients who did
not survive past
60 days

2 3 1

aDefinition of abbreviations: APACHE II = Acute Physiology and
Chronic Health Evaluation II; BMI = body mass index; CRP = C-
Reactive protein; ED = emergency department; ICU = intensive care
unit; OT = operating theater.
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those who did not. Not only have decreased levels of HDL been
reported with sepsis, but they have also been noted with a
plethora of other inflammatory diseases for example coronary
artery disease;50 diabetes51,52 and SARS-CoV-2 infection, where
the reduced levels of HDL4 are predictive of disease
severity.25,53−55 HDL4-apolipoprotein A1, HDL4-apolipopro-
tein A2, and HDL4 phosphospholipids were found to be
associated with survival in a study on pulmonary arterial
hypertension and HDL4 particles were shown to act as carriers
for proteins prekallikrein (a precursor of kallikrein) and
neurolipin-1, which act as modulators of inflammatory
cascades.56

In contrast to the lower levels of HDL4 in patients with sepsis
and septic shock, plasma neopterin levels were elevated.
Neopterin is a marker of oxidative stress and inflammation.57

It is produced as the oxidation product of 7,8-dihydroneopterin,

which is generated by IFN-γ (produced by T lymphocytes)-
activated macrophages.58 Levels of neopterin can indicate
infection, trauma, cancer, and cardiovascular disease59−61 and
neopterin levels have been shown to be increased in sepsis
patients,62 which is consistent with the findings in the current
study. Some studies have shown that neopterin correlates with
mortality in patients with sepsis63 and in one study in liver
transplant patients, early post-transplant neopterin plasma levels
were identified as a sensitive predictivemarker of bacteremia and
mortality 1 year post-transplant.64 Although neopterin concen-
trations were different between the no sepsis versus sepsis/septic
shock in the current study, they did not differentiate survivors
from nonsurvivors, most likely due to the fact that the mortality
in the ROCIT study was only 6% and therefore survival analysis
was underpowered. Another study monitored the dynamic
profile of neopterin and found the maximum elevation in

Figure 1. O-PLS-DA of nonsepsis (blue triangle) vs sepsis (red square) and septic shock (red circle) within 48 h of admission into ICU (R2X = 0.72,
CV-AUROC = 0.80), arrows indicate loadings of neopterin, HDPL, H4PL, H4A1, and H4CH. (B) Area under the ROC and area under the precision
recall curve for this model (model 1 AUC ROC = 0.81 (red line), model 1 AUC PR = 0.7 (black line). (C) Box plots of HDPL, H4PL, H4CH, H4A1
and neopterin for healthy participants, no sepsis ICU patients, and sepsis and septic shock ICU patients. Significance levels of theMann−Whitney tests
are shown for comparison of the groups.
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neopterin levels was reached 12 h after admission to ICU,65

suggesting that the time window for analyzing circulatory fluids

is important.

Stratification of Septic versus Septic Shock Patients within
48 h of Admission into ICU (Model 2)

As before, metabolites that had a Cliff’s delta above 0.5 or below
−0.5 were selected, yielding a final panel of ten differential lipids
including three cholesterol esters (CE(18:0), CE(18:2), and CE
(20:3)), one dihydroceramide (DCER(26;1)), one phosphati-

Figure 2.O-PLS-DA of septic (orange) versus septic shock (red) patients within 48 h of admission into ICU (R2X = 0.64, CV-AUROC= 0.81), arrows
indicate loadings of the lipids, * =CE(18:2), PC(18:0/20:3); # = PC(20:0/20:3), CE(18:0), PC(18:2/20:3), andCE(20:3). (B) Area under the ROC
and area under the precision recall curve for this model (AUC ROC = 0.85 (red line), model 2 AUC PR = 0.96 (black line). (C) Box plots of the lipids
included in the model 2 analysis for healthy participants, sepsis, and septic shock patients. Significance levels of theMann−Whitney tests are shown for
the comparison of the 3 groups. CE(18:2) is not shown here as a box plot comparison as it did not pass quality control requirements in the healthy
control cohort (variability was above 30% in the long term reference QC samples).
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dylethanolamine (PE.P(18:0/20:5)), and five phosphatidylcho-
lines (PC(16:0/20:2), PC(18:0/20:3), PC(18:2/20:1), PC-
(18:2/20:3), and PC(20:0/20:3)). An O-PLS-DA model was
constructed using these 10 lipids, which resulted in a model with
a CV-AUROC 0.81 (Figure 2A), indicating a predictive model
for differentiating sepsis from septic shock. The AUC ROC of
model 2 was 0.85 and AUC PR was 0.96. The AUC ROC built
from the metabolite panel outperformed that of C-reactive
protein, which was found to be 0.51 with an AUC PR to be 0.78
for this cohort (Figure S1b). All 10 lipids were significantly
reduced in septic shock patients in comparison to sepsis patients
(p-values 1.5 × 10−4−8.9 × 10−4) (Figure 2c). In comparison to
the healthy controls, all the lipids were highly significantly
different except for PC(18:2/20:1).
O-PLS-DA models were built to compare the sepsis versus

septic shock patients within 48 h of admission into ICU for each
of the independent assays: the NMR-derived lipoproteins (CV-
AUROC = 0.60, Figure S6); the MS derived lipids (CV-
AUROC = 0.68, Figure S7); and the NMR derived
inflammatory markers (CV-AUROC = 0.63, Figure S8). A
model could not be generated from the MS derived amino acid
and tryptophan pathway intermediates (CV-AUROC = 0.55),
indicating that these parameters were not significantly different
between the two groups. OPLS loadings, Cliff’s delta, and
adjusted p-values can be found for the independent assays in
Tables S5−S7.
It is known that sepsis and septic shock cause extensive lipid

dysregulation with the severity of dysregulation mirroring the
progression from sepsis to septic shock.66,67 Four phosphati-
dylcholine species were found in this study to be markedly

reduced in septic shock patients in comparison to sepsis patients
on admission into ICU (p-values 4.0 × 10−4−8.9 × 10−4).
Previous studies have shown total phosphatidylcholine species
to be reduced in septic shock in comparison to the baseline
measurements.68,69 The liver is the major source of phospha-
tidylcholines,70 and it has been hypothesized that reduction in
plasma phosphatidylcholine levels is caused by pro-inflamma-
tory cytokines such as TNF-α, where the cytokines influence the
expression of hepatic lipid-modifying enzymes.71

Two cholesterol esters were significantly different between
the sepsis and septic shock patients at admission into ICU (CE
(18:0), p-value = 8.9 × 10−4 and CE (20:3), p-value = 3.9 ×
10−4). Cholesterol esters are produced by lecithin-cholesterol
transferase (LCET) enzyme from cholesterol and phosphati-
dylcholine. This is consistent with the fact that during sepsis and
septic shock LCET activity is decreased.72 In addition, we have
demonstrated that the precursor of both CE (18:0) and CE
(20:3), PE.P (18:0/20:5), is decreased in sepsis and septic shock
patients. Depleted plasma concentrations of CE (18:0) together
with a second cholesterol ester CE (16:0) have been reported as
predictors of sepsis following cardiac surgery.73 Cholesteryl ester
transfer protein (CETP) is another plasma protein that regulates
HDL composition by facilitating the transfer of cholesteryl
esters from HDL to LDL and VLDL lipoproteins. Infection and
inflammation have been shown to cause a decrease in CETP,
which is bound toHDL in blood,74,75 whichmay impact levels of
free cholesteryl esters in blood, although their concentrations
are determined by a number of factors and the relationship is not
simple. DCER (26:1) and PE.P (18:0/20:5) are also
significantly reduced in comparison to the healthy controls,

Figure 3. Box plots of healthy controls (black), patients with no sepsis (blue), patients with sepsis (yellow), and patients with septic shock (red) for the
glycoproteins and SPC within 48 h of admission into ICU. Mann−Whitney-U tests between the groups are shown above the corresponding plots. (A)
GlycA (B) GlycB, (C) SPC1, (D) SPC2, (E) SPC3, (F) SPC/Glyc.
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indicating an impairment of the antioxidant defense system and
an increase in oxidative stress.
Glycoproteins and SPC as Inflammatory Markers

The glycoprotein NMR signal contains contributions from α-1-
acid glycoprotein, α-1-antichymotrypsin, α-1-antitrypsin, hap-
toglobin, and transferrin30 and are known to be markers of
inflammation, and studies have shown that these markers
(GlycA and GlycB) are more reliable than high sensitivity CRP
in reflecting inflammation profiles.76 SPC signals arise from the
trimethylammonium headgroups of phospholipids in lip-
oprotein subcompartments, where SPC1 represents the
phospholipid content of HDL4, SPC2 is the phospholipid of
HDL1−3, and SPC3 is the phospholipid from LDL.26 We have
previously shown with SARS-CoV-2 infection that the relative
levels of glycoproteins and SPC gives insight into the
inflammatory status of a patient where the glycoproteins are
increased and SPC decreased in comparison to healthy control
samples.25,28 We have also shown that the SPC regions change
differently in nonsevere burns patients and remain perturbed at
6 weeks post-injury.77

At admission into ICU, GlycA and GlycB values in sepsis and
septic shock patients were significantly different from those of
the healthy controls but were not elevated in the ICU patients
who did not develop sepsis. However, the sepsis patients were
significantly different from the ICU patients who did not
develop sepsis (Figure 3A,B). There was no significant
difference between the sepsis and septic shock patients. At the
second blood collection, 48 h after the initial collection, the no
sepsis, sepsis, and septic shock patients were all significantly

different from the healthy controls for GlycA and GlycB, while
there was no significant difference between the three sepsis
groups (Figure 4A,B). Interestingly, 7 days post-admission, the
healthy controls are significantly different for GlycA from the no
sepsis (p-value = 2.5 × 10−4), sepsis (p-value = 2.7 × 10−6), and
septic shock (p-value = 1.9 × 10−4) groups (Figure S9).
Similarly, the healthy controls exhibited significantly lower
concentrations of GlycB from the ICU no sepsis (p-value = 1.0×
10−5), sepsis (p-value = 6.9 × 10−6), and septic shock groups (p-
value = 2.4 × 10−5). There was no significant difference between
the no sepsis, sepsis, and septic shock groups for GlycA and
GlycB, indicating that 48 h after entry into ICU, all patients had
elevated GlycA and GlycB regardless of cause of entry to ICU
and whether they had sepsis or not. Multiple studies have
reported a correlation between GlycA and cytokine concen-
trations, particularly SCF, IL6, HGF, IL-18, MIP-1β, and IL-2.78
IL-6 is the mediator of the acute phase response and induces
hepatic synthesis and secretion. Increases in circulating
glycoprotein concentrations have been shown to correlate
with clinically relevant acute phase proteins such as CRP,79

where in our study, the r was only equal to 0.45 (Figure S10).
Previous studies have shownGlycA concentrations to be directly
associated with endotoxemia, which also was correlated with
higher levels of VLDL, while being inversely associated with
HDL and LDL particle diameter.80 We found HDL4 to be lower
in ICU patients, who went on to develop sepsis or septic shock.
Mokkala et al. reported an association between intestinal
permeability and GlycA.81 Elevated GlycA is associated with
chronic infections and has also been found to be predictive of

Figure 4. Box plots of healthy controls (black), patients with no sepsis (blue), patients with sepsis (yellow), and patients with septic shock (red) for the
glycoproteins and SPC 48 h post-collection of the first blood sample at admission in ICU. Mann−Whitney-U tests between the groups are shown
above the corresponding plots. (A) GlycA, (B) GlycB, (C) SPC1, (D) SPC2, (E) SPC3, (F) SPC/Glyc.
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future hospitalization for acute infection,78 which may be
indicative that GlycA plays a role in susceptibility to infection.
We found a significant difference in GlycA and GlycB levels in

sepsis and septic shock patients at admission compared to
controls. By 48 h post-first collection, non sepsis, sepsis, and
septic shock patients could not be differentiated by GlycA or
GlycB (Figures 3 and 4). On the other hand, the plasma
Supramolecular Phospholipid Composite, particularly SPC1,
showed a more sustained response over the first 48 h in ICU,
being lower in ICU patients than healthy controls and of the
patients in ICU (Figures 3C and 4C). Significant p-values were
obtained when comparing SPC1 in the no sepsis ICU patients
with sepsis patients (p = 5.2 × 10−4) and no sepsis ICU patients
with septic shock patients (p = 5.0 × 10−4). This confirms the
findings of model 1 in this study, where HDL4 is prognostic in
determining those patients with sepsis and septic shock in
comparison to those without at admission into ICU.
The contrasting patterns between the supramolecular

phospholipid cluster (specifically SPC1) and the acute-phase
glycoproteins (GlycA and GlycB) may suggest that the
glycoproteins reflect acute inflammatory crises, whereas
depletion of SPC1 reflects a more reactive response in
differentiating ICU patients who did or did not have sepsis.
Since neopterin, which was identified as differentiating between
ICU patients who did/did not have sepsis or septic shock, is also
a known inflammatory marker, we assessed whether plasma
neopterin concentrations were correlated with GlycA, GlycB, or
SPC and found no significant correlation. The lack of coherence
among these three sets of inflammatory markers would suggest
that their different temporal patterns are consistent with distinct
inflammatory stages or processes. Both GlycA and neopterin
have been found to independently outperform CRP in terms of
predicting early infection and inflammation82 although some
studies have reported contrasting findings.83

■ CONCLUSIONS
Sepsis and septic shock remain a significant economic burden
and are associated with high morbidity and mortality. Fast
diagnosis of these conditions would lead to clinically advanta-
geous outcomes. We have shown that nonsepsis, sepsis, and
septic shock ICU patients have differential metabolic signatures,
which can be utilized to diagnose patients in a time-efficient
manner. While a total of 1128 lipoproteins, lipids, amino acid
and tryptophan metabolites, and inflammatory markers were
measured here, we have demonstrated that of these 15
parameters can be used to correctly stratify patients into the
correct clinical outcome with high accuracy. Using these
metabolites, lipids, lipoproteins, and inflammatory markers as
a diagnostic for sepsis and septic shock could potentially reduce
the mortality rates as diagnosis can be made within an hour of
blood collection.
There are several limitations within this study; first, the

sample size is small; however, we have demonstrated a proof of
concept (with ROC for the models being 0.81 and 0.85), to
further validate with a larger cohort. It should also be noted that
time of onset of infection and sepsis is not known, and blood
collections were only completed on admission into ICU. In
addition, only clinical metadata such as CRP is provided at the
first blood collection. Therefore, no modeling longitudinally was
completed for each patient.
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