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Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone
oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to
investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other
endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it,
resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and
Complex | activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species
(ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and
capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-
depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell
proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR
cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs.
Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on
cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo
experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection,
revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid
oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in
NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy.
Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and

angiogenesis.
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INTRODUCTION

Angiogenesis is the process by which new blood vessels form
from pre-existing ones, and it is a fundamental biological
mechanism with critical implications for various physiological
and pathological conditions [1-5]. Central to angiogenesis are
endothelial cells, which line the inner surface of blood vessels
[6-8]. When angiogenesis is triggered, typically in response to
signals like tissue injury, low oxygen levels and release of growth
factors, endothelial cells become activated [1-5]. Endothelial cells
then undergo changes including increased permeability and
adhesion molecule expression [1-5]. These endothelial cells then
migrate to the target site, secrete enzymes to break down the
surrounding tissue, proliferate, and eventually organize into
tubular sprouts, forming new blood vessels [1-5]. Dysregulation
of angiogenesis can lead to various diseases, including cancer,
diabetes, and cardiovascular diseases, it is therefore extremely

important to understand the mechanism of endothelial cell
activation and angiogenesis [1-5].

Endothelial cells require energy in the form of ATP to undergo
activation, and mitochondria serve as the primary source of this
energy [9, 10]. The energy is crucial for processes such as sprouting,
migration, and proliferation of endothelial cells, allowing them to
form new blood vessels efficiently [11, 12]. Without functional
mitochondria, endothelial cells will lack the energy needed for this
activation, compromising their ability to respond to physiological and
pathological stimuli effectively [11, 12]. Apart from their role in
energy production, mitochondria also actively engage in the
regulation of several critical cellular processes [13-18]. These include
cellular differentiation, signal transduction, apoptosis, as well as the
control of cell growth and the cell cycle in endothelial cells [13-18].
Thus, proper mitochondrial function is vital for endothelial cell
activation and angiogenesis process.
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Mitochondrial Complex |, also known as NADH:ubiquinone
oxidoreductase or respiratory Complex |, is a crucial component of
the mitochondrial electron transport chain (ETC) [19, 20]. NDUFS8
(NADH:ubiquinone oxidoreductase core subunit S8) is an impor-
tant component of the complex [21, 22]. NDUFS8's role within
Complex | involves facilitating the transfer of electrons from NADH
to ubiquinone, a pivotal step in oxidative phosphorylation
(OXPHOS) and energy production [21, 22]. This electron transfer
leads to the pumping of protons across the inner mitochondrial
membrane, creating a proton gradient essential for ATP synthesis
[21, 22]. The current study explored the potential functional
significance and underlying mechanism of NDUFS8 in endothelial
cell activation and angiogenesis.

MATERIALS AND METHODS

Reagents

Chemicals were sourced from Sigma-Aldrich (St. Louis, MO) unless
specified otherwise. The anti-NDUFS8 antibody was obtained from Abcam
(Cambridge, UK). The anti-NDUFS1 antibody was provided by Cell
Signaling Tech (Danvers, MA). All other antibodies were described in our
previous studies [23, 24]. Fluorescence dyes were obtained from Thermo-
Fisher Invitrogen (Soochow, China), and all viral constructs were supplied
by Genechem (Shanghai, China).

Cells

Human umbilical vein endothelial cells (HUVECs), human microvascular
endothelial cells (RRMEC), human dermal endothelial cells (hDEC), and
human cerebral microvascular endothelial cells (hCMEC) were reported in
our previous studies [23, 24]. These endothelial cells were always
maintained under pro-angiogenic active conditions [25], and their
genotypes were confirmed through short tandem repeat (STR) analysis,
population doubling time measurement, and morphological examination.

NDUFS8 short hairpin RNA (shRNA)

NDUFS8 silencing was achieved by using lentivirus-packaged
NDUFS8 shRNAs, kdNDUFS8-sh2, and kdNDUFS8-sh5, targeting different
sequences (Genechem, Shanghai, China). Endothelial cells were infected
with the virus (multiplicity of infection/MOI = 15) for 48 h and selected
with puromycin for 6-7 passages. Control endothelial cells were
transduced with scramble control non-sense shRNA (“kdC” [24]). In the
resulting stable cells, NDUFS8 expression was verified at both mRNA and
protein levels. For NDUFS8 silencing in vivo, the NDUFS8 shRNA sequence
(mouse, Genechem) was sub-cloned into the AAV5-TIE1 construct
(reported previously [23, 25, 26]) to generate AAV.

NDUFS8 knockout (KO)

NDUFS8 KO was accomplished in stable HUVECs with the clustered
regularly interspaced short palindromic repeats (CRISPR)-associated
protein 9 (Cas9)-expressing construct (described in our previous studies
[23, 24]). Lentivirus-packaged CRISPR/Cas9-NDUFS8-KO construct [24] (with
sgRNA against human NDUFS8, Genechem) was used for infection,
followed by puromycin selection for 4-5 passages. NDUFS8 KO was
confirmed through PCR assays, establishing single stable NDUFS8 KO
HUVECs (“koNDUFS8"). Control HUVECs were stably transduced with
lentiviral CRISPR/Cas9-control construct with scramble control non-sense
sgRNA (“sgC").

Ectopic overexpression of NDUFS8

NDUFS8 overexpression involved infecting HUVECs or other endothelial
cells with lentivirus encoding NDUFS8-overexpressing
(hNDUFS8[NM_002496.4], 6532 bp) construct (GV248 vector, no EGFP
tag, Genechem) at MOI = 15. After puromycin selection for 5-6 passages,
stable cells, “0eNDUFS8,” were established. Control endothelial cells were
transduced with the lentiviral empty vector (“Vec” [23, 24]). NDUFS8
expression was confirmed at both mRNA and protein levels.

Other assays
Various in vitro cellular functional assays, gene/protein detections, and
biochemical assays were performed as previously described in detail
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[23, 24], including assessments of cell proliferation (EdU-nuclear staining),
migration (“Transwell” assay), invasion (“Matrigel Transwell” assay),
capillary tube formation, reactive oxygen species (ROS) production
(through MitoSOX staining), mitochondrial depolarization (JC-1 staining),
Caspase-3 and Caspase-9 activity, TUNEL-nuclear staining, mitochondrial
Complex | activity, and cellular ATP levels. Quantitative real-time PCR (qRT-
PCR) and Western blotting followed established protocols [25, 27-31]. For
cell migration/invasion assay, cells were stained with crystal violet. The
cytochrome C ELISA assays have been described in detail elsewhere
[32, 33]. Figure S2 listed the uncropped blotting images.

Animal studies

The adult C57BL/6 mice and AAV intravitreous injection procedures were
described early in our previous studies [23, 24]. Retinal vasculature was
stained with isolectin B4 (IB4) as previously detailed [23, 24, 26, 34]. The
protocols were approved by the Institutional Animal Care and Use
Committee and the Ethic Committee of Soochow University, following
ARVO (Association for Research in Vision and Ophthalmology) statement
guidelines.

Measuring the ratio of reduced glutathione (GSH) to oxidized
glutathione (GSSG)

A GSH/GSSG ratio kit was procured from Thermo Fisher Scientific (Suzhou,
China). The lysates of murine retinal tissues were mixed with 5,5"-Dithio-
bis(2-nitrobenzoic acid) (DTNB), glutathione reductase, and NADPH.
Subsequently, the lysates were further mixed with a reaction solution,
and the absorbance at 430 nm was recorded over a period of five minutes
using a spectrophotometer. A standard curve was established with GSH
and GSSG standards to determine their concentrations in the lysates, and
the ratio was normalized to the protein concentration.

Thiobarbituric acid reactive substances (TBAR) assay

A TBAR assay kit was from Thermo Fisher Scientific (Suzhou, China). Tissue
protein lysates were allowed to react with thiobarbituric acid (TBA) to form the
TBAR complex. After cooling and centrifugation to eliminate any precipitate,
the absorbance at 545 nm was measured using a spectrophotometer.

Mitochondrial oxygen consumption

Mitochondrial oxygen consumption was monitored via MitoXpress Xtra
dye (Cayman Chemical Company, Shanghai, China) according to the
manufacturer’s protocols. MitoXpress Xtra is quenched by O,, and thus the
amount of fluorescence signal is inversely proportional to the amount of
extracellular O,. Briefly, HUVECs were grown in 96-well plates and were
labeled with MitoXpress Xtra. The wells were sealed with 100 uL 19HS
mineral oil (Cayman Chemical Company). The plate was then measured at
20 min intervals for a total of 100 min to ensure that the fluorescent signal
was stable. Time-resolved fluorescence measurements were performed at
380 nm excitation and 650 nm emission with a dual delay of 30 us and
70us using a fluorescence microplate reader (Corning, NY). The
fluorescence intensity optical density was recorded.

Akt1 mutation

The lentiviral particles containing the constitutively active S473D mutant
Akt1 (caAkt1) were provided by Dr. Chen [35], which were added into
cultured HUVECs. The establishment of stable cells expressing caAkt1 was
achieved through puromycin-based selection.

Analyzing human tissues

Human tissues used in this study were obtained from patients who
provided written informed consent and were part of Dr. Jiang's group
[25, 28]. The use of these tissues was previously reported in published
studies [25, 28], and all research protocols involving human samples were
ethically approved by the Ethics Committee of Soochow University.

Statistical analyses

Statistical analyses were conducted using normally-distributed data,
expressed as means + standard deviation (SD). To assess significance,
one-way ANOVA followed by Scheffe’s f-test (for comparisons involving
three or more groups, using SPSS 23.0) or the two-tailed unpaired t-test
(for comparisons between two groups, using Excel 2007) were employed.
Statistical significance was defined as P-values less than 0.05.
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RESULTS

NDUFSS8 silencing impairs mitochondrial functions in cultured
endothelial cells
To investigate the potential function of NDUFS8 in endothelial
cells, we employed the shRNA strategy to silence NDUFS8. Initially,
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six distinct lentivirus-packed shRNAs were individually transduced
into primary cultured HUVECs [23, 24], followed by the establish-
ment of stable cells through puromycin-based selection. Among
the tested shRNAs, only two, namely kdNDUFS8-sh2 and
kdNDUFS8-sh5, achieved substantial downregulation of NDUFS8
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Fig. 1 NDUFS8 silencing impairs mitochondrial functions in cultured endothelial cells. NDUFS1/NDUFS8 expression in stable HUVECs
treated with NDUFS8 shRNA (“kdNDUFS8-sh2” and “kdNDUFS8-sh5”) or the scramble non-sense shRNA (“kdC”) was shown (A, B). Following a
24 h culture, the mitochondrial respiratory chain Complex | activity (C), cellular ATP levels (D), reduction in mitochondrial membrane potential
(tested via mitochondrial JC-1 staining, E), ROS contents (measured using MitoSOX dye, F), and lipid peroxidation (via BODIPY staining, G)
were shown. Similarly, human microvascular endothelial cells (hRRMEC), human dermal endothelial cells (hDEC), and human cerebral
microvascular endothelial cells (\CMEC) with either kANDUFS8-sh5 or kdC were established. NDUFS8 (H) and NDUFS1 (I) mRNA expression was
quantified, followed by a 24 h culture and examination of mitochondrial respiratory chain Complex | activity (J), cellular ATP content (K),
mitochondrial depolarization (by measuring JC-1 green monomers intensity, L), and ROS production (by measuring MitoSOX intensity, M).
“Pare” denotes the parental control endothelial cells. The data are presented as mean + standard deviation (SD, n = 5). *P < 0.05 compared to
“Pare”/"kdC” cells. “N. S.” represents non-statistically significant disparities (P> 0.05). These experiments were repeated five times, yielding

consistent results. Scale bar = 100 pm.

mRNA and protein levels in HUVECs, as illustrated in Fig. 1A, B.
Importantly, the expression of the control gene NDUFST remained
unchanged in HUVECs subjected to NDUFS8 shRNA treatment
(Fig. 1A, B). As expected, the control shRNA, referred as “kdC,” had
no significant impact on the expression of NDUFS1 and NDUFS8 in
HUVECs (Fig. 1A, B).

The silencing of NDUFS8 through targeted shRNAs led to the
disruption of mitochondrial functions in HUVECs. MitoXpress Xtra
is quenched by O, and thus the amount of fluorescence intensity
is inversely proportional to the amount of O,. As shown, the
mitochondrial oxygen consumption, reflected by the increased
MitoXpress Xtra fluorescence intensity over time, was significantly
decreased in NDUFS8 shRNA-expressing HUVECs (Figure S1A).
Moreover, mitochondrial Complex | activity (Fig. 1C) and cellular
ATP levels (Fig. 1D) were significantly reduced in HUVECs
expressing kdNDUFS8-sh2 or kdNDUFS8-sh5. Moreover, this
silencing resulted in mitochondrial depolarization, evident from
the conversion of JC-1 red aggregates to green monomers
(Fig. 1E). Concomitantly, there was a marked increase in oxidative
injury and the production of ROS in NDUFS8-silenced HUVECs, as
demonstrated by the elevated MitoSOX red fluorescence intensity
(Fig. 1F). In addition, enhanced lipid peroxidation was observed in
NDUFS8-silenced HUVECs, as indicated by increased BODIPY
fluorescence intensity (Fig. 1G). In contrast, treatment with the
control shRNA, kdC, had no significant impact on mitochondrial
functions in HUVECs (Fig. 1C-QG).

Furthermore, the lentivirus-packed kdNDUFS8-sh5 was intro-
duced into various other endothelial cell types, including human
microvascular endothelial cells (NRRMEC), human dermal endothe-
lial cells (hDEC), and human cerebral microvascular endothelial
cells (h\CMEC). kdNDUFS8-sh5 led to a substantial downregulation
of NDUFS8 mRNA (Fig. 1H), while NDUFST mRNA expression
remained unaffected (Fig. 11). In these endothelial cells, silencing
of NDUFS8 using kdNDUFS8-sh5 similarly inhibited mitochondrial
Complex | activity (Fig. 1J), reduced cellular ATP content (Fig. 1K),
induced mitochondrial depolarization (Fig. 1L), and triggered ROS
production (Fig. 1TM). These results support that NDUFS8 is
important for maintaining mitochondrial functions in various
endothelial cells.

NDUFS8 silencing impedes in vitro angiogenesis in cultured
endothelial cells

We next explored the effect of NDUFS8 silencing on in vitro
angiogenesis activity in endothelial cells. NDUFS8 silencing by
kdNDUFS8-sh2 and kdNDUFS8-sh5 (see Fig. 1) inhibited prolifera-
tion of HUVECs and significantly decreased the proportion of
nuclei displaying positive EdU staining (Fig. 2A). Moreover,
NDUFS8 silencing impaired in vitro cell migration and invasion
of HUVEGs, as assessed through “Transwell” (Fig. 2B) and “Matrigel
Transwell” (Fig. 2C) assays, respectively. In addition, capillary tube
formation was impeded in HUVECs following NDUFS8 silencing
(Fig. 2D). Treatment with the control shRNA, kdC, had no
discernible impact on proliferation (Fig. 2A), migration (Fig. 2B),
invasion (Fig. 2C), or capillary tube formation (Fig. 2D) in HUVECs.
Disruption of mitochondrial functions is likely the key factor
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behind the inhibition of angiogenesis ability observed in
endothelial cells where NDUFS8 was silenced. The potent
antioxidant N-acetylcysteine (NAC) and ATP supplement signifi-
cantly alleviated kdNDUFS8-sh5-induced inhibitory effects on cell
proliferation (Fig. 2E), migration (Fig. 2F) and capillary tube
formation (Fig. 2G) in HUVECs.

In other endothelial cell types, including hRMEC, hDEC, and
hCMEC, NDUFS8 silencing with kdNDUFS8-sh5 (see Fig. 1) similarly
impeded in vitro angiogenesis. Specifically, kINDUFS8-sh5 inhib-
ited proliferation (EdU incorporation, Fig. 2H), migration (Fig. 2I),
and capillary tube formation (Fig. 2J) in the endothelial cells. These
results support that NDUFS8 is important for in vitro angiogenesis
of endothelial cells.

Induction of apoptosis by NDUFS8 silencing in cultured
endothelial cells

We investigated whether NDUFS8 silencing could induce
apoptosis in endothelial cells. NDUFS8 silencing using
kdNDUFS8-sh2 and kdNDUFS8-sh5 (see Figs. 1 and 2) increased
Caspase-3 activity (Fig. 3A) and Caspase-9 activity (Fig. 3B) in
primary cultured HUVECs. Furthermore, levels of cleaved-
Caspase-3, cleaved-Caspase-9, and cleaved-Poly (ADP-ribose)
polymerase (PARP1) were elevated in NDUFS8-silenced HUVECs
(Fig. 3C). Moreover, increased Cytochrome C release into the
cytosol of HUVECs was confirmed via ELISA assay (Fig. 3D), and it
is a crucial step for mitochondrial apoptosis cascade activation
[36-39]. Moderate but significant apoptosis was observed in
HUVECs expressing kdNDUFS8, as indicated by an increased ratio
of TUNEL-positive nuclei (Fig. 3E, F). Notably, treatment with the
control shRNA, kdC, did not activate Caspases and apoptosis in
HUVECs (Fig. 3A-F).

Importantly, NAC and ATP largely inhibited kdNDUFS8-sh5-
induced Caspase-3 activation (Fig. 3G) and apoptosis (via
measuring TUNEL-nuclei ratio, Fig. 3H) in HUVECs, suggesting
that mitochondrial impairment is a key reason of NDUFS8
silencing-induced apoptosis in endothelial cells. In hRMEC, hDEC,
and hCMEC, NDUFS8 silencing with kdNDUFS8-sh5 (see Fig. 1) also
induced apoptosis activation, as evidenced by increased Caspase-
3 activity (Fig. 3I) and an elevated ratio of TUNEL-positive nuclei
(Fig. 3J).

NDUFS8 knockout impairs mitochondrial functions and
impeded in vitro angiogenesis in cultured endothelial cells
To further substantiate the role of NDUFS8 in endothelial cell
activation and angiogenesis, we employed the CRISPR/
Cas9 strategy to knockout (KO) NDUFS8. Specifically, a lentiviral
CRISPR/Cas9-NDUFS8-KO construct with sgRNA targeting NDUFS8
was stably transduced into Cas9-expressing HUVECs. After
puromycin selection and verification of NDUFS8 KO, single stable
NDUFS8 KO HUVECs (“koNDUFS8”) were established. In compar-
ison to control cells harboring the lentiviral CRISPR/Cas9-KO
construct with non-sense control sgRNA (“sgC”), koNDUFS8
HUVECs exhibited substantial reduction in NDUFS8 protein
expression (Fig. 4A), while the control NDUFS1 protein expression
remained unaltered (Fig. 4A).

Cell Death and Disease (2024)15:253
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CRISPR/Cas9-induced NDUFS8 KO impaired mitochondrial
functions, resulting in decreased mitochondrial Complex | activity
(Fig. 4B) and cellular ATP contents (Fig. 4C) in HUVECs.
Mitochondrial depolarization, as indicated by JC-1 green mono-
mers’ accumulation, was also observed (Fig. 4D). MitoXpress Xtra
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0
hRMEC hDMEC hCMEC

assay results demonstrated that NDUFS8 KO potently inhibited the
mitochondrial oxygen consumption in HUVECs (Figure S1B).
Moreover, koNDUFS8 HUVECs displayed significant ROS produc-
tion and oxidative injury, as evidenced by the increase in MitoSOX
red fluorescence intensity (Fig. 4E).
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Fig. 2 NDUFS8 silencing impedes in vitro angiogenesis in cultured endothelial cells. HUVECs treated with NDUFS8 shRNA (“kdNDUFS8-
sh2” and “kdNDUFS8-sh5”) or the scramble non-sense shRNA (“kdC”) were cultivated for designated hours, cell proliferation (EdU
incorporation in nuclei, A), in vitro cell migration (B) and invasion (C) as well as capillary tube formation (D) were examined. HUVECs with
“kdNDUFS8-sh5” or “kdC” were treated with antioxidant N-Acetylcysteine (NAC, 500 pM) or ATP (1 mM) for designated hours, cell proliferation
(EdU incorporation in nuclei, E), in vitro cell migration (F) and capillary tube formation (G) were examined, with results quantified. Human
microvascular endothelial cells (\RMEC), human dermal endothelial cells (hnDEC), and human cerebral microvascular endothelial cells (hCMEC)
with either kdNDUFS8-sh5 or kdC were cultured for designated hours, cell proliferation (H), in vitro cell migration (), and capillary tube
formation (J) were examined similarly. “Pare” denotes the parental control endothelial cells. The data are presented as mean * standard
deviation (SD, n=5). *P < 0.05 compared to “Pare”/“kdC” cells. *P <0.05 compared to “PBS” pretreatment (E-G). These experiments were
repeated five times, yielding consistent results. Scale bar = 100 pm.
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5’ <0.05

compared to “PBS” pretreatment (G, H). These experiments were repeated five times, yielding consistent results. Scale bar = 100 pm.

NDUFS8 KO in HUVECs led to a reduction in in vitro
angiogenesis ability. The proportion of EdU-positive nuclei
was substantially decreased in koNDUFS8 HUVECs (Fig. 4F),
indicating impaired proliferation. In addition, NDUFS8 KO
inhibited in vitro migration (Fig. 4G) of HUVECs. Furthermore,
capillary tube formation was suppressed after NDUFS8 KO,
resulting in a decreased number of formed capillary tubes in
koNDUFS8 HUVECs (Fig. 4H). Contrarily, apoptosis was detected
in koNDUFS8 HUVECs, supported by the increased TUNEL-
positive nuclei ratio (Fig. 4l). These findings provided strong
support for the notion that NDUFS8 KO impairs mitochondrial
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function and impedes in cultured

endothelial cells.

in vitro angiogenesis

Pro-angiogenic effect of NDUFS8 overexpression in
endothelial cells

We hypothesized that increasing NDUFS8 expression shall then
promote angiogenesis in endothelial cells. To test this hypothesis,
HUVECs were transduced with a lentivirus-packed NDUFS8-over-
expressing construct and stable cells were established through
puromycin-based selection. These cells were designated as
“0eNDUFS8” HUVECs. In comparison to vector control cells
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("Vec"), 0eNDUFS8 HUVECs exhibited a significant increase in
NDUFS8 mRNA (Fig. 5A) and protein (Fig. 5B) expression levels,
while NDUFST mRNA (Fig. 5A) and protein (Fig. 5B) expression was
unchanged. Importantly, in 0eNDUFS8 HUVECs, mitochondrial
Complex | activity (Fig. 5C) and the cellular ATP content (Fig. 5D)
were augmented. The ectopic overexpression of NDUFS8 had a
pro-angiogenic effect, promoting cell proliferation (EdU incorpora-
tion) in HUVECGs (Fig. 5E). In addition, in vitro cell migration (Fig. 5F)
was accelerated in 0eNDUFS8 HUVECs. Furthermore, NDUFS8
overexpression facilitated capillary tube formation in HUVECs
(Fig. 5G), underscoring its pro-angiogenic activity.

The same lentiviral construct was employed to induce stable
NDUFS8 overexpression (“oeNDUFS8”) in other endothelial cells,
including hRMEC, hDEC, and hCMEC. This resulted in robust
upregulation of NDUFS8 mRNA in the endothelial cells (Fig. 5H),
while NDUFST mRNA expression remained unaltered (Fig. 5I). In
the 0eNDUFS8 endothelial cells, cellular ATP contents were
augmented (Fig. 5J). Importantly, NDUFS8 overexpression also
induced pro-angiogenic activity in these endothelial cells,
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enhancing cell proliferation (Fig. 5K), in vitro cell migration
(Fig. 5L), and capillary tube formation (Fig. 5M).

NDUFS8 plays a crucial role in promoting Akt-mTOR pathway
activation in endothelial cells

ATP stands at the core of Akt activation, functioning not only as
the primary energy source driving phosphorylation reactions but
also as the critical supplier of phosphate groups during kinase-
mediated phosphorylation events [40-44]. Its dual role under-
scores the indispensable role of ATP in orchestrating the intricate
processes that culminate in Akt activation [40-44]. Given that
NDUFS8 plays a pivotal role in ATP production and that Akt-
mTOR activation is crucial for angiogenesis [45-47], we
conducted experiments to investigate whether NDUFS8 is
important for Akt-mTOR activation in endothelial cells. In
HUVECs, the silencing of NDUFS8 through shRNA, specifically
with kdNDUFS8-sh2 or kdNDUFS8 -sh5 (see Figs. 1 and 2),
resulted in a significant reduction in the phosphorylation of Akt
and p70S6 kinase 1 (S6K1) (Fig. 6A). There was no observable
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change in the total protein expression of Akt1 and S6K1 (Fig. 6A).
Furthermore, CRISPR/Cas9-mediated KO of NDUFS8 (see Fig. 4)
also caused inactivation of Akt-mTOR cascade in HUVECs,
leading to decreased phosphorylation of Akt-S6K1 (Fig. 6B).
Similar to the shRNA experiments, the total protein expression of
Akt-S6K1 remained unaltered (Fig. 6B). Conversely, in HUVECs
cells overexpressing NDUFS8, “0eNDUFS8” (see Fig. 5), there was
an upregulation in Akt-S6K1 phosphorylation (Fig. 6C). These
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findings collectively suggest that NDUFS8 promotes activation of
Akt-mTOR pathway in HUVECs.

Crucially, supplementing ATP effectively mitigated the Akt-
mTOR inhibition induced by kdNDUFS8-sh5 in HUVECs (Fig. 6D),
implying that mitochondrial dysfunction and ATP depletion might
be the primary mechanism of Akt-mTOR inhibition in endothelial
cells with silenced NDUFS8. Subsequently, lentivirus carrying the
constitutively active (5473D) mutant Akt1 (caAkt1) was introduced

Cell Death and Disease (2024)15:253



Q. Xiong et al.

A. HUVECs B.
kdNDUFS8
Pare kdC sh2 sh5 sgC koNDUFS8
60 kD- p-Akt =12 12 60 kD_El p-Akt
z s . £
60 kD-ElAkﬂ <o08 ®» 0.8 60 kD-El Akt1 £08 508
g % 2 < »
e = 3 @
L LI B F1E z 2"
7 kD‘El S6K1 ParekdC sh2 sh5 = ParekdC sh2 sh5 70 kD-E SeK1 & 2 9
kdNDUFS8 kdNDUFS8 sgC koNDUFS8 sgC koNDUFS8
D. kdNDUFS8-shs
C.  Vec oeNDUFs8 " kdC +ATP
~2 <2 = X038
60 kD- = =
e ¢ & 204
70 kD- p-S6K1 EX 29 70 kD- p-S6K1 Z 0.4 -
= = = ¥
z N < g
0 219 ___ATE L
37kD-|E| GAPDH Vec 0eNDUFS8 Vec 0eNDUFS8 37kD‘E GAPDH kdNDUFS8-sh5 deDUFSS-shS
kdNDUFS8-sh5
E. kdC +caAkt1 G. H.
60 kD- p-Akt T = =~ 15
== g . e e b
— Akt1 s ® 08 <15 E 2
i 0] ; a . 80 @ 10
with caAkt1 p 2 & 10 2 Q
204 = 04 > g 80 8
70 kD- p-S6K1 ¢ X S = 40 g5
P e @ = 48h S 20 5
0 skt %0 2 o T o il 20 B 12
+caAkt1 +caAkt1 kdC +caAkt1 29’ kdC +caAktt = +caAkt1
o kD_E S—— deDUFSS-shS deDUFSB sh5 kdNDUFS8-sh5 kdNDUFS8-sh5 deDUFSS-shS

Fig. 6 NDUFS8 plays a crucial role in promoting Akt-mTOR pathway activation in endothelial cells. Expression of listed proteins in HUVECs
with NDUFS8 shRNA (“kdNDUFS8-sh2” and “kdNDUFS8-sh5”), the scramble non-sense shRNA (“kdC”) (A), the Cas9-expressing construct plus
the CRISPR/Cas9-NDUFS8-KO construct (“koNDUFS8”), the control construct (“sgC”) (B), the lentivirus-packed NDUFS8-overexpressing
construct (“oeNDUFS8") or vector control (“Vec”) (C) was shown. HUVECs with “kdNDUFS8-sh5” or “kdC” were treated with ATP (1 mM) for 12 h,
expression of listed proteins was shown (D). The kdNDUFS8-sh5-expressing HUVECs were further stably transduced with or without
constitutively-active (S473D) mutant Akt1 (caAkt1), expression of listed proteins was shown (E); Cells were further cultivated for indicated
hours, cell proliferation (EdU incorporation in nuclei, F), in vitro cell migration (G) and capillary tube formation (H) were examined, with results
quantified. The data are presented as mean + standard deviation (SD, n =5). *P < 0.05 compared to “kdC"/“sgC"/“Vec" cells. #P< 0.05 (D-H).
These experiments were repeated five times, yielding consistent results.

to kdNDUFS8-sh5-expressing HUVECs, and stable cells established
through puromycin-mediated selection. Figure 6E confirmed the
expression of caAktl (no Taq), which led to the restoration of
Akt-S6K1 phosphorylation in HUVECs expressing kdNDUFS8-sh5
(Fig. 6E). Significantly, the introduction of caAktl markedly
alleviated the inhibitory effects induced by kdNDUFS8-sh5 on cell
proliferation (tested by nuclear EdU staining, Fig. 6F), migration
(Fig. 6G), and capillary tube formation (Fig. 6H) in HUVECs.

Endothelial knockdown of NDUFS8 inhibits retinal
angiogenesis in mice

To investigate the potential impact of NDUFS8 on in vivo
angiogenesis, we conducted experiments on the mouse retinal
vasculature, as previously detailed [24]. Adult mice were initially
subjected to intravitreal injection of murine AAV5-TIE1-NDUFS8
shRNA, incorporating the sequence of endothelial cell-specific
promoter TIET [23, 25]. This intervention can effectively lead to the
knockdown of NDUFS8 only in endothelial cells, referred to as
“NDUFS8-eKD.” As a genetic control treatment, we administered
murine AAV5-TIE1-scramble control shRNA (“AAV-shC”) [24] to
mouse retina. Twenty-one days post-virus injection, murine retinal
tissues were collected, and tissue lysates were analyzed. In
NDUFS8-eKD mice, NDUFS8 mRNA (Fig. 7A) and protein (Fig. 7B)
expression was notably reduced, while NDUFST mRNA (Fig. 7A)
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and protein (Fig. 7B) expression remained unchanged. Further-
more, endothelial knockdown of NDUFS8 resulted in decreased
mitochondrial Complex | activity (Fig. 7C) and reduced ATP
contents (Fig. 7D) in retinal tissues, supporting the impairment of
mitochondrial functions. Moreover, the GSH/GSSG ratio was
reduced (Fig. 7E), suggesting heightened oxidative stress in
NDUFS8-eKD murine retinal tissues. The increased TBAR intensity
further supported lipid peroxidation in the retinal tissues (Fig. 7F).

The examination of retinal vasculature via B4 staining revealed
robust inhibition of angiogenesis in the mouse retina following
endothelial knockdown of NDUFS8 (Fig. 7G). NDUFS8-eKD mice
exhibited a significantly reduced number of retinal vascular
branches and branch points (Fig. 7G). In addition, two endothelial
marker proteins, von Willebrand factor (vVWF) and VCAM-1 [24],
were downregulated in retinal tissues following NDUFS8-eKD (Fig.
7H). Therefore, endothelial knockdown of NDUFS8 inhibited
retinal angiogenesis in mice.

NDUFS8 overexpression in proliferative membrane tissues of
proliferative diabetic retinopathy (PDR) patients

Proliferative diabetic retinopathy (PDR) is characterized by the
growth of abnormal blood vessels in the retina due to
angiogenesis, a process triggered by chronic high blood sugar
levels in individuals with diabetes [48-50]. We therefore examined
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Fig. 7 Endothelial knockdown of NDUFS8 inhibits retinal angiogenesis in mice. The adult C57BL/6 mice were intravitreously administered
with either murine AAV5-TIE1-NDUFS8 shRNA (“NDUFS8-eKD,” 0.12 uL) or AAV5-TIET control scramble shRNA (“AAV-shC’ 0.12 uL). After a
duration of twenty-one days, the murine retinal tissues were collected and tests were conducted on the expression levels of various mRNAs
and proteins within fresh tissue lysates (A, B, H). The mitochondrial respiratory chain Complex | activity (C), cellular ATP levels (D), the ratio of
reduced to oxidized glutathione (GSH/GSSH ratio) (E), and the intensity of thiobarbituric acid reactive substances (TBAR) (F) in retinal tissues
were also measured. In addition, the retinal vasculatures were measured through retinal isolectin B4 (IB4) staining (G). The data are presented
as mean = standard deviation (SD, n =5). *P < 0.05 compared to “AAV-shC” group. “N. S.” represents non-statistically significant disparities
(P> 0.05). These experiments were repeated five times, yielding consistent results. Scale bar = 100 pm.

the expression of NDUFS8 in the proliferative retinal tissues of PDR
patients. Our investigation involved the analysis of previously
documented human tissues [25, 28, 34]. The retinal proliferative
membrane tissues from six distinct PDR patients were collected, in
addition to retinal tissues from three control patients who
underwent traumatic retinectomy and were matched for age
(“Ctrl") [25, 28]. The data presented in Fig. 8A, B revealed a
significant increase in NDUFS8 mRNA and protein expression
within the proliferative retinal membrane tissues of individuals
with PDR. These findings provide further evidence supporting the
potential involvement of NDUFS8 in the development of
pathological retinal angiogenesis.

DISCUSSION
Angiogenesis is the process of forming new blood vessels.
Endothelial cells, which line existing blood vessels, play a vital

SPRINGER NATURE

role in this process [6-8]. They sprout, proliferate, migrate, and
organize to create new blood vessels [6-8]. Mitochondria, the
cellular powerhouses responsible for energy production, provide
the essential ATP required for endothelial cell proliferation,
migration, sprouting, capillary tube formation, and vessel remo-
deling during angiogenesis [9, 10]. In addition, mitochondria are
involved in redox signaling pathways critical for regulating
angiogenic processes [9, 10]. Dysfunctional mitochondria can
disrupt angiogenesis, and contributing to the pathogenesis of
various cardiovascular and metabolic disorders [9, 10].

Early research has illuminated the critical role of specific
mitochondrial components in endothelial activation and angio-
genesis. Wang et al., reported that endothelial knockdown of
mitochondrial outer-membrane protein FUNDC1 (FUN14 domain-
containing protein 1) resulted in reduced vascular endothelial
growth factor receptor 2 (VEGFR2) expression, and hindered tube
formation, spheroid-sprouting in vitro and angiogenesis in vivo
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cell activation and facilitating angiogenesis.

[51]. In endothelial progenitor cells, blocking pyruvate kinase
muscle isoenzyme 2 (PKM2) through C3k-mediated mechanisms
led to the downregulation of angiogenesis-associated genes and
inhibited tube formation [52]. In addition, mitochondrial dysfunc-
tion and oxidative stress were observed in C3k-stimulated
endothelial progenitor cells [52]. Our recent study has further
contributed to this understanding by demonstrating that genetic
depletion or pharmacological inhibition of TIMM4 (translocase of
inner mitochondrial membrane 44), an inner mitochondrial
membrane protein [53], impaired the mitochondrial functions
and impeded angiogenesis in vitro and in vivo [24].

NDUFS8 is a critical subunit of Complex |, involved in the electron
transport chain within the mitochondria, where it helps to transfer
electrons and facilitates the generation of ATP. In the present study,
we investigated the role of NDUFS8 in mitochondrial functions of
endothelial cells. NDUFS8 silencing (by targeted shRNAs) or KO
(through CRISPR/Cas9 method) impaired mitochondrial functions
within various endothelial cells, causing a reduction in mitochondrial
Complex | activity, decreased ATP production, mitochondrial
depolarization, increased oxidative stress and ROS production, and
intensified lipid oxidation. Contrarily, ectopic overexpression of
NDUFS8, using a lentiviral construct, augmented mitochondrial
Complex | activity and increased ATP contents in HUVECs and other
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endothelial cells. Importantly, mitochondrial function impairment,
ATP reduction, oxidative stress, and enhanced lipid oxidation were
detected in mouse retinal tissues with endothelial knockdown of
NDUFS8. All of these evidence indicate that NDUFS8 is crucial for
maintaining mitochondrial functions and overall cellular energy
production within endothelial cells (see proposed signaling carton in
Fig. 9).

We have presented compelling data demonstrating the pivotal
role of the mitochondrial protein NDUFS8 in regulating endothe-
lial cell activation and the angiogenic process. Specifically, the
silencing or knockout of NDUFS8 impeded cell proliferation,
migration, invasion, and capillary tube formation in various
endothelial cell types, including HUVECs, hRMEC, hDEC, and
hCMEC. NDUFS8 depletion led to an increase in apoptosis among
endothelial cells. Significantly, the exogenous addition of ATP or
the antioxidant NAC effectively mitigated the anti-angiogenic
effects by NDUFS8 shRNA in cultured endothelial cells. Ectopic
overexpression of NDUFS8, achieved through a lentiviral con-
struct, demonstrated a pro-angiogenic impact by enhancing cell
proliferation, migration, and capillary tube formation in HUVECs
and other endothelial cell types. In vivo, the intravitreous
administration of an endothelial-specific NDUFS8 shRNA AAV
inhibited retinal angiogenesis (Fig. 9).

Our results suggest that NDUFS8 plays a crucial role in
promoting Akt-mTOR pathway activation in endothelial cells, the
key cascade for endothelial cell activation and angiogenesis
[45-47]. NDUFS8 depletion led to inhibition of Akt-mTOR
activation, which was restored by exogenous ATP supplementa-
tion. Conversely, NDUFS8 overexpression boosted Akt-mTOR
activation. Furthermore, the inhibitory effects of NDUFS8 knock-
down on cell proliferation, migration, and capillary tube formation
were rescued by via caAkt1. This suggests that the promotion of
mitochondrial function and ATP production by NDUFS8 are crucial
for activating the Akt-mTOR pathway, consequently facilitating
endothelial cell activation and angiogenesis (Fig. 9).

PDR stands as a severe and vision-endangering complication
intricately intertwined with angiogenesis [50, 54-56]. In PDR, the
chronic state of hyperglycemia and associated vascular damage
stemming from diabetes mellitus culminates in the formation of
anomalous and frail retinal blood vessels [50, 54-56]. These neo-
vascular structures are a direct consequence of uncontrolled
angiogenesis, primarily driven by the presence of hypoxia, or
oxygen deficiency, and the concomitant release of various
angiogenic growth factors, most notably VEGF [50, 54-56]. The
excessive angiogenesis observed in PDR subsequently leads to the
development of delicate, permeable vessels, often resulting in
retinal hemorrhage, fibrosis, and ultimately, severe vision impair-
ment [50, 54-56]. In the present study, we showed that NDUFS8
expression, at both mRNA and protein levels, is increased in
proliferative membrane tissues of PDR patients, suggesting that
the mitochondrial protein could be a promising therapeutic target
of PDR and possible other disease characterized by pathological
angiogenesis.
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