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Objective: In humans, aging is associated with increased susceptibility to most age-
related diseases. Phloretic acid (PA), a naturally occurring compound found in Ginkgo
biloba and Asparagus, exhibits has potential as an anti-aging agent and possesses
antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed
to investigate the effects of PA on longevity and stress resistance in Caenorhabditis
elegans (C.elegans) and the mechanisms that underlie its effects.

Methods: First, we examined the effects of PA on lifespan and healthspan assay,
stress resistance and oxidative analysis, lipofuscin levels. Second, we examined
the insulin/insulin-like pathway, mitochondria, autophagy-related proteins, and
gene expression to explain the possible mechanism of PA prolonging lifespan.

Results: Our findings demonstrated that PA dose-dependently extended the
C.elegans lifespan, with 200 μM PA showing the greatest effect and increased the
C.elegans lifespan by approximately 16.7%. PA enhanced motility and the
pharyngeal pumping rate in senescent C.elegans while reducing the
accumulation of aging pigments. Further investigations revealed that daf-16,
skn-1, and hsf-1 were required for mediating the lifespan extension effect of PA in
C.elegans since its impact was suppressed in mutant strains lacking these genes.
This suggests that PA activates these genes, leading to the upregulation of
downstream genes involved in stress response and senescence regulation
pathways. Furthermore, PA did not extend the lifespan of the RNAi atg-18 and
RNAi bec-1 but it attenuated SQST-1 accumulation, augmented autophagosome
expression, upregulated autophagy-related gene expression, and downregulated
S6K protein levels. These findings suggest that the potential life-extending effect
of PA also involves the modulation of the autophagy pathway.

Conclusion: These findings results highlight the promising anti-aging effects of
PA and warrant further investigation into its pharmacological mechanism and
medicinal development prospects.
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1 Introduction

Aging poses significant international concerns, bringing forth
formidable socioeconomic and healthcare challenges for both
developed and developing countriesIt represents an irreversible
progression accompanied by process, physiological dysfunction
(Partridge et al., 2018).

Aging is associated with an increased incidence of age-related
diseases such as cancer, diabetes, hypertension, Alzheimer’s
disease, and Parkinson’s disease, leading to a decline in
quality of life and increased healthcare expenses.
Consequently, there is an imperative need to understand the
underlying molecular mechanisms of aging and explore
strategies for retarding or reversing the onset of age-related
diseases. Notably, natural compounds serve as valuable
resources for the development of anti-aging herbal
medicinesand their usehas garnered significant attention
through external interventions, due to their potential in
controlling the progression of age-related diseases and
elucidating their molecular mechanisms.

Phloretic acid (PA) also known as desaminotyrosine, hydro-p-
coumaric acid, Phloretate, and 3-(4-hydroxyphenyl)propanoic acid,
is a naturally occurring phenolic compound that can be produced by
the hydrogenation of p-coumaric acid or synthesized from
phloretin, a byproduct of apple tree. This compound finds wide
application as an intermediate in pharmaceutical formulations, such
as esmolol hydrochloride, which exhibits beta-adrenergic receptor
antagonist activity and specifically targets the heart. Recent studies
have demonstrated the potential of topically applying this drug as a
novel therapeutic approach for diabetic foot ulcers (Kulkarni et al.,
2022; Rastogi et al., 2023a; Rastogi et al., 2023b). Another commonly
used medication is cetraxate hydrochloride, which acts as a mucosal
blood flow enhancer by improving microcirculation in the gastric
mucosa. It enhances mucosal resistance and stimulates PGE2 and
PGI2 production in the gastric mucosa. Additionally, it inhibits
gastric acid secretion and pepsin activation while promoting ulcer
healing (Suzuki et al., 1976; Ishimori et al., 1979). Numerous
experiments have demonstrated that PA, which serves as an
intermediate product in pharmaceuticals, has various effects,
including anti-inflammatory, antioxidant, and
immunomodulatory effects; however, its anti-aging properties
have not been studied. Therefore, further are currently available.
Further research exploring this aspect is warranted.

C.elegans is considered the only classic multicellular model
organism for aging and neurodegenerative research (Wong et al.,
2020). More than half a century ago, Sydney Brenner first
introduced C. elegans as an experimental model organism that
has a short life cycle, simple physiological structure, a large
number of offspring, is easily reproduced, and shares high
genetic homology with mammals to be manipulated without any
difficulty (Brenner, 1974). Therefore, C.elegans has become an ideal
model for aging research and an important model for anti-aging
drug screening to clarify the potential effects of bioactive
compounds on health and lifespan.Our previous investigation
into the screening of natural drug compounds using
Cryptobacterium hidradii as a model organism yielded intriguing
findings (Shi et al., 2023). In this study, we chose C.elegans to study
the anti-aging and anti-stress effects of PA.

2 Materials and methods

2.1 Chemicals

PA (purity≥98%) was purchased from Shanghai Yuanye Bio-
Technology Co. Ltd. (Shanghai, China), 5-fluorodeoxyuridine
(FUDR), and 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein
diacetate (CM-H2DCFDA), and ethanol from Sigma-Aldrich
(United States).

2.2 Worm strains and maintenance

All worm strains used in this study were provided by the
Caenorhabditis Genetic Center (CGC; University of Minnesota,
Minneapolis, MN): N2 (wild-type), CF1038 daf-16 (mu86) I.,
EU1 skn-1 (zu67)IV., PS3551 hsf-1 (sy441)I., RB754 aak-2
(ok524)X., RB759 akt-1 (ok525)V., VC204 akt-2 (ok393)X.,
CB4876 clk-1 (e2519)III., CF1553 [(pAD76) sod-3:GFP + rol6
(su1006)], CL2166 dvIs19 [pAF15 (gst-4:GFP::NLS)], SJ4100
(zcIs13 [hsp-6:GFP]), SJ4005 zcIs4V (hsp-4:gfp),
SJ4058 zcIs9 [hsp60:GFP + lin-15 (+)], NL5901 [unc54p:
alphasynuclein:YFP + unc-119 (+)], DA2123 [lgg-1p:GFP:lgg-1 +
rol6 (su1006)], TJ356 [daf-16p:daf-16a/b:GFP + rol-6] and others.
Worms were cultured on nematodegrowth media (NGM) at 20°C,
except for specific strains requiring alternative conditions.

2.3 Lifespan assay

All strains were cultured on fresh NGM plates for 2–3 generations
without starvation. When synchronized larvae reached the L4 stage,
worms were transferred to an NGM plate containing PA and FUDR
(50 mg/mL, to inhibit nematode reproduction). Dead worms were
counted dailywith worms responding to slight touch from the worm
pickerrecorded as alive. Worms that were missing, dried or hatched
internally were censored from the lifespan count. Experiments were
performed with at least 60 nematodes in each group.

2.4 Phenotype analysis

Lipofuscin analysis: On the 5th and 10th days of PA treatment, the
worms were collected and photographed using a fluorescence
microscope (Leica DFC 7000T) at an excitation wavelength of
360–370 nm and an emission wavelength of 420–460 nm to
quantifylipofuscin accumulation. At least 30 worms were included in
each group, and images of the nematodes were processed using ImageJ.

Body-bending experiment: The worms were synchronized and
incubated overnight at 20°C; L1-stage larvae were then incubated on
NGM plates until late L4stage.On days 5 and 10, the wormswere
transferred to experimental platesadded to water droplets to stabilize
for 1 min, and subjected to body-bending analysis under amicroscope
within 20 s. A minimum of 30 worms were included in each group.

Pharyngeal pumping rate: Following the same preliminary treatment
as the body-bending test, the number of pharyngeal pumping events was
recorded under a microscope on the 5th and 10th days for the 20 s. A
minimum of 30 worms were included in each group.
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Mobility assay: This was carried out on days 9, 14, and 18. Sixty
worms were observed, and the locomotion of motion A to motion C
was quantitatively measured according to previous protocols (Wang
H. et al., 2018). All experiments were performed in triplicate.

2.5 Stress resistance assays

For the heat shock assay, worms were treated with PA for 7 days
from the L4 larvae stage, then transferred to a new NGM plate and
incubated at 35°C forheat shock. Dead worms were counted hourly
until all worms succumbed. In the oxidative stress assay, worms were
treated with PA as described above, then transferred to NGM plates
containing paraquat (20 mM, Sigma‒Aldrich). Dead of worms were
counted daily. Each group comprised at least 60 nematodes, and the
experiment was repeated threetimes.

2.6 Reactive oxygen species assay

L4 stage worms were spread on experimental NGM plates
containing PA, paraquat (20 mM), or N-acetyl-L-cysteine (1 mM)
and incubated at 20°C for 6 days. Afterward, the worms were
collected, washed with M9 buffer at least three times, stained
with an H2DCF-DA (50 μM) probe and shaken at 35°C for
60 min according to the ROS detection kit (Hui et al., 2020).ROS
determination was performed by imaging under a fluorescence
microscope. The experiment was independently repeated at least
three times, with each experiment involving at least 30 worms.

2.7 DAF-16:GFP translocation assay

TJ356 worms cultured to the L4 stage were transferred to the
experimental group (200 μM PA)or two control groups.An NGM
plate containing TJ356 and OP50 bacteria was subjected to heat
shock (37°C, 15 min) as a positive control, while another control
plate was placed in a 20°C incubator as a negative control. The
localization of DAF-16:GFP was observed every hour under a
fluorescence microscope. The green fluorescent nuclear
aggregation particles in the TJ356 worms served as the index
of the DAF-16 gene in the nucleus (Wang et al., 2021).

2.8 Oil red-O staining

Following synchronization, the Subsequently were spread
onto experimental plates and grown until adulthood.
Approximately 1000 worms from both the experimental and
control groups were collected, subjected to multiple washes
with PBS to eliminate excess bacterial fluid, and treated with
Nile red staining reagent. After fixation with paraformaldehyde
(4%) for 25 min, the worms underwent by two washes in PBS+1%
Triton buffer solution. Subsequently, Nile red reagent (5 mg/mL)
was added under light-protected conditions; after an incubation
period of 2 min, the worms were washed three or more times with
PBS+1% Triton buffer solution before microscopic examination
(Leica DFC7000T). ImageJ software was used for image analysis.

Each experiment was repeated three times, utilizing at least
30 worms per repetition.

2.9 RNA interference

RNA interference (RNAi) was performed as previously
described (Shi et al., 2023). RNAi was conducted by feeding
HT115 (DE3) (Fire Lab) bacteria vectors L4440 (control), atg-18,
and bec-1, which produce dsRNA against the target gene. The RNAi
worm lifespan assay was conducted according to previous methods
(Beifuss and Gumienny, 2012).

2.10 Autophagy assay

Todetect autophagy in nematodes, the number ofGFP-positive foci
on the lgg-1 autophagic vesicles was used to evaluate autophagy.
DA2123 worms showed diffuse fluorescence in the cytoplasm of
various tissues. Through the appearance of fluorescent points, the
formation of autophagosome structures can be observed and quantified.

2.11 Real-time quantitative PCR Assay

Approximately 3,000 synchronized N2 worms were cultured to
late the L4 or early adult stage, transferred to the experimental group
(with or without 200 μMPA, containing 20 mM FUDR) and cultured
at 20°C for 24 h. Total RNA was extracted using the Steadypure
Universal RNA Extraction Kit (Accurate Biology) and reverse-
transcribed into cDNA using the PrimeScript™RT reagent kit with
gDNA Eraser (Perfect Real Time). mRNA expression was quantified
by the SYBR Green Premix Pro Taq HS qPCR Kit (Rox Plus) on the
QuantStudio 6 Flex system. The relative mRNA expression levels of
genes were calculated using the 2−ΔΔCT method and normalized to the
expression of the gene cdc-42 (Yanase, 2020).

2.12 Western blot

The worms were collected on day 6 of the PA intervention.
Protein was extracted by homogenization using a sonicator,
and protein concentrations were determined by a
Bicinchoninic Acid Protein Assay Kit (Beyotime). The experiment
was conducted according to the previous protocol (Jeong et al., 2018).
ImageJ software was used for image analysis.

2.13 Statistical analysis

Statistical analyses were conducted using SPSS 26.0 Statistics and
GraphPad Prism 7.0 software. Fluorescence quantification, oil red
quantification, and protein quantification statistics were performed
using ImageJ 1.8.0. Lifespan experiments were analyzed using
Kaplan-Meier survival analysis. Other data were expressed as the
mean ± SD, unless otherwise stated. The p values were determined
by two-tailed t-test.A p-value <0.05 was considered a significant
difference.
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3 Results

3.1 PA can extend the lifespan of C. elegans
and improve aging-related phenotypes

To investigate the impact of PA on lifespan, we treated wild-type
N2 worms with various concentrations of PA (Figure 1A). Our
results showed that PA at each concentration could prolong the

lifespan of C. elegans to a certain extent, while compared with the
control, 200 μM PA had the greatest effect and increased the lifespan
of C. elegans by 16.7% (Figures 1B–D). Lipofuscin is a yellow‒brown
pigment that accumulates with age (Sitte et al., 2000). PA
significantly decreased lipofuscin deposition (Figures 1E,F) and
improved the movement ability and pharyngeal pump activity of
C. elegans (Figures 1G–I) on days 5 and 10 of adulthood. These
results indicated that PA could promote the health of C. elegans.

FIGURE 1
PA extends the lifespan ofC. elegans and enhances its health. (A) The chemical structure of PA is depicted. (B) Survival curves of wild-type N2worms
at 20°Cwith or without different concentrations (50, 100, 200, 400, and 800 µM) of PA are shown. (C) Survival curves of wild-type N2worms treated with
or without 200 μM PA at 20°C are presented; statistical analysis indicated significant differences between the groups (p < 0.001, log-rank test). (D) The
mean lifespan of N2 nematodes was measured after treatment with various concentrations of PA. (E,F) The lipofuscin content in nematodes treated
with a concentration of 200 μM PA; the relative fluorescence intensity was calculated using ImageJ software and is presented. Statistical analysis revealed
significant differences between the groups (mean ± SD, n ≥ 30; ***p < 0.001; t-test). (G,H) Quantification results for body bends and pharyngeal pump
times in wild-type N2 worms are provided; statistical analysis shows statistically significant differences (mean ± SD, n ≥ 30; *p < 0.05 and ***p < 0.001;
t-test). (I)Movement patterns observed in wild-type N2 worms with or without a concentration of 200 μM PA at a temperature of 20°C are categorized
into three types: motion A represents spontaneous activity; motion B corresponds to physical movement after prodding by metal wire stimulation; and
motion C denotes only simple head or tail movement in response to stimulation.

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2024.1384227

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1384227


3.2 The transcription factor FOXO/DAF-16 is
required for PA to extend the lifespan of
C. elegans

DAF-16, a nematode homolog of the mammalian FOXO
transcription factor, plays a crucial role in coordinating diverse
biological processes, including stress tolerance, development,
reproduction, lipid storage, and longevity (Kim and Webb, 2017).
In the insulin signaling pathway, the AKT-1 and AKT-2 kinases act
upstream of DAF-16 (Hesp et al., 2015). Our findings demonstrated
that PA failed to extend the lifespan of daf-16 (mu86) loss-of-
function mutant worms (Figure 2A)and did not significantly
prolong the lifespan of Akt-1 or Akt-2 kinase-deficient mutants
(Figures 2B,C). Notably, PA enhanced the nuclear accumulation of
the DAF-16:GFP fusion protein (Figures 2D,E), and upregulates the
mRNA levels of the DAF-16/FOXO downstream target genes sod-3,
dod-3, clt-1, and clt-3. However, in daf-16 (mu86) loss-of-function
mutants, the expression levels of these genes remained unaltered

regardless of the presence or absence of PA (Figure 2F). Collectively,
these results suggest that the activation of FOXO/DAF-16 is
required for the PA-mediated extension of the C. elegans lifespan.

3.3 Ability of PA to prolong the lifespan of C.
elegans depends on HSF-1

Heat shock transcription factor (HSF-1) regulates the expression
of heat-induced target genes, including small heat shock proteins,
and plays a crucial role in longevity regulation and protein toxicity
management. It serves as a key downstream transcription factor of
the insulin signaling pathway (Brunquell et al., 2017). Our
investigation aimed to determine whether hsf-1 also plays a
critical role in lifespan regulation within the context of PA
treatment targeting the insulin signaling pathway. First, we
examined the impact of PA on the lifespan of the HSF-1 mutant
PS3551. Our results indicated that PA did not extend the lifespan of

FIGURE 2
PA prolonged the lifespan of C. elegans and required FOXO/DAF-16. (A–C) Survival curves of daf-16 (mu86)I., akt-1 (ok525)v., and akt-2 (ok393)X
(mean ± SD, n ≥ 3; t-test). (D,E) Representative images and quantification demonstrating the effect of 200 μM PA on daf-16 nuclear localization in the
TJ356 strain. (F) Relative expression levels of downstream genes regulated by daf-16 in the wild-type N2 L4 stage and mutant CF1038 treated with
200 μM PA for 24 h (mean ± SD, n ≥ 3; *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant; t-test).
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this mutant (Figure 3A). Next, we conducted a heat shock
experiment on wild-type N2 nematodes and found that PA-
treated nematodes exhibited longer survival times then control
worms at 35°C (Figure 3B). This suggests that PA confers a
certain level of resistance to heat stress. HSP-6 is involved in
regulating misfolded protein binding activity in nematodes and
participates in mitochondrial unfolded protein responses during
heat shock (Govindan et al., 2019). Subsequently, we investigated
fluorescence expression using the SJ4005 (hsp-4:GFP), SJ4058
(hsp-60:GFP), and SJ4100 (hsp-6p:GFP) strains to assess the
effect of PA treatment. Our results demonstrated an increase
in protein expression after PA treatment (Figures 3C–E).
Moreover, significant increases in the mRNA levels of the
downstream target genes hsp-1, hsp-4, hsp-6, and hsp-60 were
detected following PA treatment (Figure 3F). These findings
suggest that by inhibiting the IIS signaling pathway, PA can
activate downstream mechanisms to regulate longevity through
HSF-1 in C. elegans.

3.4 PA improved stress resistance and
extended the lifespan of C. elegans by
activating SKN-1

Excessive accumulation of free radicals leads to tissue damage
and degenerative changes in organs (Blackwell et al., 2015). Our
findings demonstrate that PA treatment enhances the survival rate
of worms exposed to paraquat and reduces ROS levels (Figures
4A–C). The transcription factor SKN-1/Nrf-2 regulates the
expression of numerous antioxidant enzymes and phase I
detoxification enzymes. We observed a significant increase in
fluorescence intensity in the LD1 mutant strain treated with PA
compared with the control group, albeit slightly weaker than that
in PQ-treated worms (positive control Figure 4D). However, PA
failed to extend the lifespan of skn-1 (zu67) mutants (Figure 4E).
SOD and GST-4 play crucial roles in the oxidative stress response;
maintaining high levels of SOD-3 and GST-4 expression may
contribute to delaying aging (Pohl et al., 2019). Therefore, we

FIGURE 3
PA administration extends lifespan in an HSF-1-dependent manner. (A) Survival curve of patients treated with mutant PS3551 with or without
200 μM PA (mean ± SD, n ≥ 3; log-rank test). (B) The survival rate of wild-type N2 plants treated with or without 200 μM PA at 35°C significantly increased
by 33.9% (p < 0.001, log-rank test). (C–E)Quantification of fluorescence intensity upon treatment with 200 μM PA in the worm strains SJ4100 (hsp-6p::
GFP), SJ4005 (hsp-4::GFP), and SJ4058 (hsp-60::GFP) revealed significant upregulation compared with the control conditions (mean ± SD, n ≥ 3;
***p < 0.001; t-test). (F) The relative expression of downstream genes of hsf-1 after L4 stage wild-type N2 and the hsf-1 mutant were treated with
200 μM PA for 24 h (mean ± SD, n ≥ 3; ns, not significant; ***p < 0.001; log-rank test).
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treated the sod-3:gfp (CF1553) and gst-4:gfp (CL2166) mutant
strains with PA for 7 days, followed by exposure to heat stress for
2 h. Remarkably, PA treatment significantly increased the protein
expression of SOD-3 and GST-4 (Figures 4F,G). Additionally, the

mRNA levels of skn-1 and its downstream genes skn-1, sod-3, dod-
3, and gst-4 in N2 nematodes treated with PA were elevated;
however, no alterations were detected in their expression within
the skn-1 mutant strain (Figure 4H).

FIGURE 4
PA significantly enhances the antioxidant capacity and extends the lifespan of C. elegans in an skn-1 expression-dependent manner. (A) Lifespan
analysis was conducted on wild-type N2 worms exposed to paraquat for 6 days with or without PA treatment (mean ± SD, n ≥ 30; t-test). (B,C)
Quantitative analysis of representative images of ROS levels in N2 nematodes treated with or without 200 μM PA (±SD, n ≥ 30; ***p < 0.001; t-test). (D)
Representative images of LD1 nucleation upon treatment with 200 μM PA. (E) Lifespan analysis was carried out on skn-1mutant worms treated with
or without PA. (F,G) Quantitative assessment of the fluorescence intensity of CF1553 (SOD-3p::GFP) and CL2166 (GST-4::GFP) with or without
200 μM PA on day 7 (mean ± SD, n ≥ 30; **p < 0.01 and ***p < 0.001; t-test). (H) Relative expression levels of downstream genes regulated by skn-1 after
treatment with or without PA (mean ± SD, n ≥ 3; ***p < 0.001; ns, not significant; t-test).
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3.5 PA extends the lifespan of C. elegans
through the mitochondrial signaling
pathway and is implicated in lipid
metabolism

As previously discussed, the longevity of C. elegans is attributed
to the antioxidant activity of PA. Mitochondrial dysfunction can
lead to oxidative stress and impaired mitochondrial performance
due to ROS production (Dilberger et al., 2019). We investigated
whether mitochondrial function plays a pivotal role in the lifespan
extension induced by PA. Our findings demonstrated that PA fails to
extend the lifespan of mutants with mitochondrial dysfunction,
namely, isp-1, clk-1, and aak-2 (Figure 5A–C). This finding
suggested that PA modulates mitochondrial function in C.
elegans. Furthermore, we observed upregulation of the mRNA
levels of the mitochondria-associated transcription factors atfs-1,

xbp-1, and isp-1 following PA treatment in C. elegans (Figure 5D).
Antioxidants have been reported to enhance lipid metabolism
(Amorim et al., 2022). Our results indicate that PA has the
potential to attenuate Oil Red O staining intensity as an
indicator of lipid storage and downregulate the mRNA
expression of the target genes fat-1, fat-3, fat-7, and sir-2.1, which
are associated with lipid metabolism (Figures 5E–G).

3.6 PA can prolong the lifespan of C. elegans
via autophagy

Autophagy is a highly conserved degradation process that,
when triggered by stressful conditions, eliminates damaged
intracellular macromolecules to maintain cellular homeostasis
and promote organismal health and development (Palmisano

FIGURE 5
PA extends the lifespan of C. elegans and modulates lipid metabolism via the mitochondrial pathway. (A–C) Survival curves of the mitochondrial
dysfunction mutants isp-1, clk-1, and aak-2 treated with 200 μM PA (mean ± SD, n ≥ 3; log-rank test). (D) Relative expression levels of mitochondrial
genes in N2 worms after 24 h of treatment with 200 μM PA (mean ± SD, n ≥ 3; **p < 0.01 and ***p < 0.001; t-test). (E,F) Effects of wild-type N2 on fat
content analyzed with or without 200 μM PA (mean ± SD, n ≥ 30; **p < 0.01; t-test). (G) mRNA expression levels related to fat metabolism genes
were assessed after 24 h of treatment with 200 μM PA (mean ± SD, n ≥ 3; ***p < 0.001; ns, not significant; t-test).
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and Meléndez, 2019). Recent studies have established links
between autophagy and various human diseases. Interestingly,
many interventions that extend lifespan increase the
accumulation of autophagosomes (Peña-Ramos et al., 2022).
We examined the fluorescence of BC12921 following PA

treatment and evaluated the lifespans of atg-18 and bec-1
mutant nematodes associated with autophagy genes. RNAi
targeting autophagy genes, including atg-18 and bec-1, did not
definitively prolong lifespan (Figures 6A,B). However, we observed
that PA treatment reduced the degradation of the phagocytic

FIGURE 6
PA extended the lifespan of C. elegans through the autophagy pathway. (A,B) Survival curves of mutant RNAi atg-18 and RNAi bec-1with or without
200 μM PA (mean ± SD, n ≥ 30; log-rank test). (C,D) Representative images and quantification of BC12921 (SQST-1) treatedwith PA for 3, 5, and 7 (mean ±
SD, n ≥ 30; **p < 0.01; ns, not significant; t-test). (E,F) Representative images and quantification of DA2123 (lgg-1) treated with 200 μM PA for 48 h
(mean ± SD, n ≥ 30; ***p < 0.001; t-test). (G) Relative expression analysis of autophagy-related genes after treatment with 200 μM PA for 24 h
(mean ± SD, n ≥ 3; ***p < 0.001; t-test). (H,I) S6K protein expression remained unchanged following PA treatment (mean ± SD, n ≥ 3; ***p < 0.001; log-
rank test).

Frontiers in Pharmacology frontiersin.org09

Li et al. 10.3389/fphar.2024.1384227

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1384227


substrate SQST-1 in BC12921 (Figures 6C,D) while increasing the
fluorescence intensity of the autophagosome marker lgg-1 in
DA2123 (Figures 6E,F). These findings suggest that PA can
enhance autophagic activity. Furthermore, the mRNA
transcription levels of atg-18, lgg-1, unc-51, and vps34 were
significantly upregulated upon PA treatment (Figure 6G).
Intriguingly, the protein level of S6K, a crucial downstream
gene regulated by the mTOR signaling pathway, decreased
significantly (Figures 6H,I). This finding implies that the
lifespan extension induced by PA may be attributed to
enhanced autophagy through activation of the mTOR pathway.

4 Discussion

Aging is a progressive and time-dependent process (Fulop
et al., 2023), closely associated with the development of most
chronic diseases and increased morbidity and mortality (Roy
et al., 2023). The pursuit of effective strategies to enhance a
healthy lifespan has long been a fundamental objective in aging
research. Natural compounds derived from herbal medicine have
garnered significant attention; therefore, this study selected PA, a
natural compound found in sources such as Ginkgo biloba and
Asparagus, as the subject of investigation to elucidate its
phenotypic effects and potential underlying mechanisms for
extending nematode lifespan. In our study, we observed that
different concentrations of PA significantly increased the
lifespan of C. elegans. Notably, 200 μM PA exhibited the most
prominent effect. Furthermore, we investigated whether PA
could enhance the healthy lifespan of C. elegans and found
that 200 μM PA improved body bending, the pharyngeal
pumping rate, motility, and reduced lipofuscin deposition in
these nematodes. As enhanced stress resistance was also reflected
in the longevity phenotypic characteristics of C. elegans, we
further examined the stress resistance of wild-type worms
after 200 μM PA treatment, which revealed a significant
increase (33.9% and 24.8%) in lifespan under heat stress
(35 °C) and oxidative stress (20 mM paraquat), respectively.
These findings suggest that PA has potential as an anti-aging
and antioxidant drug.

Based on above lifespan experiment findings, it has been
established that PA can increase the lifespan in C.elegans.
Following, our research primarily focusesed on elucidating the
mechanisms underlying the extension of nematode lifespan by PA.
The insulin/insulin-like (IIS) growth factor signaling pathway is
widely recognized as a key regulator of longevity, with the
transcription factor DAF-16/FOXO playing a pivotal role in
stress resistance and longevity regulation (Mendelski et al.,
2019). In response to diverse environmental stimuli, insulin
peptides released by the organism specifically bind to DAF-2,
an IGF-1 receptor homolog that activates downstream signaling
through the conserved PI3K/Akt pathway. This cascade
commences with DAF-2 and ultimately influences FOXO/DAF-
16, a transcription factor located downstream of the IIS pathway
that transcribes genes associated with longevity upon nuclear entry
(Blackwell et al., 2015). When environmental changes or genetic
mutations impede IIS signaling, FOXO/DAF-16 remains
unphosphorylated and translocates into the nucleus to activate

senescence-related genes (e.g., ROS scavenging enzymes)
(Miranda-Vizuete and Veal, 2017), thereby regulating
senescence and longevity. Lowering IIS levels enhances
adversity resistance and delays senescence in C. elegans; this
effect is mediated by IIS inhibition of the downstream protein
DAF-16. These findings suggest that the activation of DAF-16,
along with its downstream genes, is essential for the PA-induced
extension of lifespan, potentially involving modulation through
the IIS pathway.

To ascertain whether PA exclusively regulates DAF-16 to
prolong the lifespan of C.elegans via the IIS pathway, we
investigated the IIS-mediated transcription factors HSF-1 and
SKN-1.The results demonstrated that PA confers a certain level
of resistance to heat stress and oxidative stress. However, none of
these alterations were observed in the mutant strain.This finding is
consistent with previous research indicating that DAF-16 interacts
with other factors known to be implicated in the aging process (Zhu
et al., 2020).

The relationship between mitochondrial damage and oxidative
stress is tightly intertwined in C. elegans. (Tjahjono et al., 2020). Our
findings indicate that PA treatment an upregulation of
mitochondria-associated transcription factors mRNA levels
following PA treatment in C. elegans. But it does not extend the
lifespan of nematode mutants with impaired mitochondrial
respiration. This suggests that PA may exert its effects on
lifespan and oxidative stress extension protection through
modulation of mitochondrial respiration. Lipid accumulation has
been associated with various markers of oxidative stress (Yang et al.,
2019). In wild-type nematodes, increased production of reactive
oxygen species (ROS) may contribute to excessive lipid
accumulation (Wang K. et al., 2018).

Therefore, we conducted oil red staining analysis in
N2 nematodes treated with or without PA, to investigate the
impact of PA on lipid accumulation. The results revealed a
reduction in lipid accumulation in PA-treated nematodes.
Additionally, we assessed the expression levels of target genes
associated with lipid metabolism and observed a significant
increase in mRNA expression levels following PA treatment.This
suggests that PA may regulate oxidative stress and thus affect lipid
metabolism in C. elegans.

Recent studies have revealed that autophagy gene cascades act
downstream of IIS, targeting the target of the rapamycin (TOR)
signaling pathway as well as mTOR and its downstream effector
S6K, which play pivotal roles in numerous life extension
interventions (Na. et al., 2017). Our results indicate that PA
promotes autophagy. Furthermore, in atg-18 and bec-1 mutant
nematodes treated with PA, the longevity phenotype
disappeared, providing evidence for the association between
PA-induced promotion of autophagy and autophagy-related
genes. Furthermore, to establish a link between PA-induced
autophagy and the mTOR signaling pathway, we evaluated the
protein level of S6K, an important downstream gene regulated by
mTOR. Remarkably, our findings showed a significant decrease
in S6K protein level following PA treatment in C. elegans. These
observations suggest that the lifespan extension induced by PA
may be attributed to enhanced autophagy through activation of
the mTOR pathway.The findings presented here are in line with
those documented in the existing literature.
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5 Conclusion

Based on the experimental findings, we hypothesize that PA
potentially activates the transcription factors FOXO/DAF-16, HSF-
1, and SKN-1 primarily through modulation of the insulin signaling
pathway. Additionally, it is suggested that the effects of PA are
contingent upon autophagy pathway regulation and the restoration
of mitochondrial function. These mechanisms collectively
contribute to enhanced stress resistance and an extended healthy
lifespan in C. elegans. Given the limited research on the role of PAs
in aging, our results suggest that PAs are promising candidates for
the development of anti-aging drugs. However, it is important to
note that these observations were limited to C. elegans as a model
organism, and further investigations are warranted to validate these
effects in other model organisms, such as mice. Additionally, further
investigation into the pharmacological mechanisms and
pharmaceutical applications of PAs is warranted.
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