Skip to main content
. 2024 Apr 6;10(7):e29249. doi: 10.1016/j.heliyon.2024.e29249

Table 1.

Summary of clinical studies for artificial intelligence in peritoneal carcinomatosis in recently 6 years.

Reference Study type Number of cases Tumor type Methods Results Year
Diagnosis
Dong D et al. [10] Retrospective 554 advanced gastric cancer patients GC with PC Radiomic nomogram AUC: 0.920 2019
Zixing Huang et al. [11] Retrospective 554 patients GC with PC DCNN AUC: 0.900
Sensitivity: 81.0 %
Specificity: 87.5 %;
2020
Menglei Li et al. [12] Retrospective 779 patients CRC with PC Clinical-radiomics model AUCs: up to 0.855 2020
Zixing Huang et al. [13] Retrospective At least 109 cases GC with PC DCNN NR 2020
Chengmao Zhou et al. [14] Retrospective 1080 patients with postoperative GC GC with PC ML AUC: up to 0.938
Accuracy:up to 90.9 %
2020
Ruijiang Li et al. [15] Multicenter 1978 patients GC DCNN + PMetNet AUC: 0.920–0.946
Sensitivity: 75.4%–87.5 %
Specificity: 92%–98.2 %
2021
Bin Zheng et al. [16] Retrospective 159 patients GC with and without PC ML AUC: 71.2 %
Sensitivity: 43.10 %
Specificity: 87.12 %
2021
Xinyu Jin et al. [17] Retrospective 11408 images from 131 patients PC Meta-learning-based DL AUC: 0.877
Sensitivity: 73.4 %
Specificity: 95.2 %
2022
Lili Wang et al. [18] Retrospective 810 patients GC ML AUCs of clinical models: 0.902–0.969
AUCs of radiomics models: 0.896–0.975
2022
Valentin Bejan et al. [19] Retrospective NR CRC ML Optimal accuracy: 0.75. 2022
Zixu Yuan et al. [20] Retrospective 19,814 images from 130 patients CRC with and without PC DL AUC: 0.922
Sensitivity: 93.75 %
Specificity: 94.44 %
Accuracy: 94.11 %
2022
Dailun Hou et al. [21] Multicenter 88 peritoneal tuberculosis and 90 PC patients PC ML AUC: 0.914–0.971 2023
Yanyan Chen et al. [22] Retrospective 25 patients GC with and without PC Proteomic analysis NR 2023
Jihong Liu et al. [23] Retrospective 98 laboratory tests and clinical feature Ovarian cancer AI model AUC of 0·949 2024
Treatment
Milad Shamsi et al. [24] Retrospective NR PC Computational model NR 2018
J M Bereder et al. [25] Retrospective 373 cases PC ML Accuracy: close to 98 % 2019
Alexandros Laios et al. [26] Retrospective 154 cases OC ML Accuracy: 66 % 2020
Nicholas et al. [27] Retrospective 60 cases OC ML NR 2021
Mohsen et al. [28] Retrospective NR PC Mathematical model MCDT increased penetration depth more than 13 times 2022
Mohamed A. et al. [29] Retrospective 1959 CRS-HIPEC procedures PC ML model AUC: 0.74 2023
Diederick De Jong et al. [30] Retrospective 508 patients with ovarian cancer OC ML and explainable AI AUC: 0.91 2023
Predicting recurrence
Ruijiang Li et al. [31] Retrospective 2320 patients with gastric cancer GC Multitask DL model AUC: 0.843–0.857
C-index: 0.610–0.668
2022
Sun, Zepang et al. [32] Retrospective 584 quantitative features from 2005 patients GC Radiomics AUC: 0.721–0.732 2023

Abbreviation: PC: peritoneal carcinomatosis; AUC: area under curve; DCNN: deep convolutional neural network; ML: machine learning; DL: deep learning; NR: not reported; AI: artificial intelligence; GC: gastric cancer; CRC: colorectal cancer; OC: Ovarian cancer; CRS-HIPEC: cytoreductive surgery and hyperthermic intraperitoneal chemotherapy; MCDT: magnetically controlled drug targeting; PMetNet: peritoneal metastasis network.