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We considered methods for transporting a prediction model for use in a new target population, both when
outcome and covariate data for model development are available from a source population that has a different
covariate distribution compared with the target population and when covariate data (but not outcome data) are
available from the target population. We discuss how to tailor the prediction model to account for differences in
the data distribution between the source population and the target population. We also discuss how to assess the
model’s performance (e.g., by estimating the mean squared prediction error) in the target population. We provide
identifiability results for measures of model performance in the target population for a potentially misspecified
prediction model under a sampling design where the source and the target population samples are obtained
separately. We introduce the concept of prediction error modifiers that can be used to reason about tailoring
measures of model performance to the target population. We illustrate the methods in simulated data and
apply them to transport a prediction model for lung cancer diagnosis from the National Lung Screening Trial
to the nationally representative target population of trial-eligible individuals in the National Health and Nutrition
Examination Survey.

covariate shift; domain adaptation; generalizability; model performance; prediction error modifier; transportability

Abbreviations: MSE, mean squared error; NHANES, National Health and Nutrition Examination Survey; NLST, National Lung
Screening Trial; OLS, ordinary least squares; WLS, weighted least squares.

Users of prediction models typically want to apply the
models in a specific target population of substantive interest.
For example, a health-care system may want to deploy a
clinical prediction model to identify individuals at high risk
for adverse outcomes among all patients receiving care.
Prediction models are often built using data from source
populations sampled in prospective epidemiologic cohorts,
confirmatory randomized trials (1), or administrative
databases (2). In most cases, the sample of observations
from the source population that is used for developing the
prediction model is not a random sample from the target
population where the model will be deployed, and the two
populations have different data distributions (e.g., a different
“case-mix” (3)). Consequently, a model developed using the
data from the source population may not be applicable to the
target population and model performance estimated using
data from the source population may not reflect performance
in the target population.

Ideally, we would use both covariate and outcome data
from a sample of the target population in order to develop

and evaluate prediction models. In many cases, however,
only covariate data are available from the target popula-
tion, and outcome data, alongside covariate data, are avail-
able only from a source population with a different data
distribution. For example, when developing a prediction
model, covariate data are often available in administrative
databases representative of the target population, but out-
come data may be unavailable (e.g., when outcome ascer-
tainment requires specialized assessments) or inadequate
(e.g., when the number of outcome events is small due
to incomplete follow-up). In this setup, the lack of out-
come information from the target population precludes the
development or the assessment of prediction models using
exclusively target population data. Thus, using covariate and
outcome data from the source population may be an attrac-
tive alternative, provided we can adjust for differences in the
data distributions of the two populations. More specifically,
we are faced with two transportability tasks: 1) tailoring
a prediction model for use in the target population when
outcome data are only available from the source population;
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and 2) assessing the performance of the model in the target
population from which outcome data are unavailable.

These transportability tasks have received attention in the
computer science literature on covariate shift and domain
adaptation (4–12). Related ideas have also appeared in the
extensive epidemiologic literature on addressing updating,
refitting, recalibrating, or extending a prediction model to a
target population, but this literature has typically assumed
that outcome and covariate information is available from
both the source and target population (3, 13–17). Further-
more, the tasks of prediction model transportability are
related to the problem of transporting inferences about treat-
ment effects to a new target population (18–21), but there are
important differences between transportability analyses for
causal effects and those for prediction models, in terms of
target parameters, assumptions, and estimation methods.

Here, we examine the conditions that allow transporting
prediction models from the source population to the tar-
get population, using covariate and outcome data from the
source population and only covariate data from the target
population. Specifically, we tailor a prediction model for use
in the target population and show that measures of model
performance in the target population can be identified and
estimated, under different sampling designs, even when the
prediction model is misspecified. To aid reasoning about
transportability of measures of model performance to the
target population, we introduce the concept of prediction
error modifiers. Last, we illustrate the methods using sim-
ulated data and apply them to transport a prediction model
for lung cancer diagnosis from the National Lung Screening
Trial (NLST) (22) to the nationally representative target
population of trial-eligible individuals in the National Health
and Nutrition Examination Survey (NHANES).

SAMPLING DESIGN AND IDENTIFIABILITY
CONDITIONS

Let Y be the outcome of interest and X a covariate
vector. We assume that outcome and covariate information
is obtained from a simple random sample from the source
population {(Xi, Yi) : i = 1, . . . , nsource}. Furthermore, co-
variate information is obtained from a simple random sample
from the target population, {Xi : i = 1, . . . , ntarget}; no
outcome information is collected from the target population.
This “non-nested” sampling design (23, 24), where the
samples from the target and source population are obtained
separately, is the one most commonly used in studies
examining the performance of a prediction model in a
new target population. For that reason, we discuss results
for non-nested designs in some detail below (and provide
technical details in Web Appendix 1, available at https://
doi.org/10.1093/aje/kwac128). Nested sampling designs are
an alternative approach where the sample from the source
population is embedded, by prospective design or via record
linkage, within a cohort representing the target population
(21, 24, 25) (we provide results for nested designs in Web
Appendix 2).

Let S be an indicator for the population from which data
are obtained, with S = 1 for the source population and
S = 0 for the target population. We use n = nsource +

ntarget to denote the number of observations in the composite
data set consisting of the data from the source and target
population samples. This composite data set is randomly
split into a training set and a test set. The training set is
used to build a prediction model for the expectation of the
outcome conditional on covariates in the source population,
E[Y|X, S = 1], and then, the test set is used to evaluate model
performance. We use gβ(X) to denote the posited parametric
model, indexed by the parameter β, and g

β̂
(X) to denote the

“fitted” model with estimated parameter β̂. We use f (· ) to
generically denote densities.

We assume the following identifiability conditions, A1
and A2:

A1: Independence of the outcome Y and the population S,
conditional on covariates. For every x with positive density
in the target population, f (X = x, S = 0) �= 0,

f (Y|X = x, S = 1) = f (Y|X = x, S = 0) .

Condition A1 connects the source and target populations;
in applications, it will typically be a fairly strong assump-
tion. Informally, it requires the relationship between Y and
X to be common across populations, allowing us to learn
about the target population even when outcome data are
available only from the source population. Condition A1
implies conditional mean exchangeability over S: For every
x such that f (X = x, S = 0) �= 0, E[Y|X = x, S = 1] =
E[Y|X = x, S = 0]. For nonbinary outcomes, however, the
converse is not true: Conditional mean exchangeability over
S does not imply condition A1.

We note that condition A1 is not testable without outcome
information from the target population sample and thus
needs to be evaluated on a case-by-case basis in view of
background knowledge about the relationship between the
source and target population. Developing sensitivity analysis
methods (26) for examining the impact of violations of this
condition may be the subject of future work. Furthermore,
if outcome data can be collected from the target population
sample, condition A1 becomes testable and can potentially
be relaxed, allowing the combination of information on
the covariate-outcome association from both the source and
target population (this is what various previously proposed
methods for updating or refitting models focus on (15, 13, 3,
16)).

A2: Positivity. Pr[S = 1|X = x] > 0, for every x such that
f (X = x, S = 0) �= 0.

Informally, condition A2 means that every pattern of the
covariates needed to satisfy condition A1 can occur in the
source data. This condition is in principle testable, but formal
evaluation may be challenging in practice, particularly when
the covariates are high-dimensional (27).

As we discuss next, conditions A1 and A2 will allow us
to tailor the prediction model and assess its performance for
use in the target population.

TAILORING THE MODEL TO THE TARGET POPULATION

Recall that gβ(X) is a model for E[Y|X, S = 1]. Suppose
that the parameter β takes values in the space B. We say
that the model is correctly specified if there exists β0 ∈ B
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such that gβ0(X) = E[Y|X, S = 1] (28). The approach
for tailoring the fitted model g

β̂
(X) for use in the target

population depends on whether the posited model gβ(X)
is correctly specified. Throughout this paper we focus on
maximum likelihood estimators of gβ(X), but many of the
ideas generalize to more general M-estimators (29).

Correctly specified model

Suppose that the model gβ(X) is correctly specified and
thus we can construct a model-based estimator g

β̂
(X) that

is consistent for E[Y|X, S = 1]. Under condition A1, a
consistent estimator for E[Y|X, S = 1] is also consistent
for E[Y|X, S = 0] (because the two expectations are equal).
Moreover, when the model for the conditional expectation is
parametric and the parameter β is estimated using maximum
likelihood methods, then the unweighted maximum likeli-
hood estimator β̂ that uses only training-set data from the
source population is optimal in terms of having the smallest
asymptotic variance (30, 31).

Misspecified model

Now, suppose that the model gβ(X) is misspecified, as we
would expect to be the case in most practical applications.
Then, the maximum likelihood estimator that uses only data
from the source population is inconsistent for β; in fact,
as the sample size goes to infinity, the limiting value of
the estimator of the misspecified model does not minimize
the Kullback-Leibler divergence between the estimated and
true conditional density of the outcome given covariates
(31). Instead, the Kullback-Leibler divergence is minimized
by using a weighted maximum likelihood estimator with
weights set equal to the ratio of the densities in the target
and source populations, that is, f (X|S = 0)/f (X|S = 1).

In applied work, the density ratio is typically unknown
and needs to be estimated using the data, but direct estima-
tion of density ratios is challenging, particularly when X is
high-dimensional (32). Instead, we can use the fact that the
density ratio is, up to a proportionality constant, equal to the
inverse of the odds of being from the source population,

f (X|S = 0)

f (X|S = 1)
∝ Pr[S = 0|X]

Pr[S = 1|X]
,

to replace density ratio weights with inverse-odds weights
and obtain an estimator of the model tailored for use in
the target population. The inverse-odds weights can be
obtained by estimating the probability of membership in
the source population conditional on covariates—a task
for which many practical methods are available for high-
dimensional data (33). Thus, a reasonable approach for
tailoring a potentially misspecified prediction model for
use in the target population would proceed in three steps.
First, estimate the probability of membership in the source
population, using training data from the source population
and target population. Second, use the estimated probabil-

ities to construct inverse-odds weights for observations in
the training set from the source population. Third, apply
the weights from the second step to estimate the prediction
model using all observations in the training set from the
source population.

An apparent difficulty with the above procedure is
that, in non-nested designs, the samples from the source
population and target populations are obtained separately,
with sampling fractions from the corresponding under-
lying populations that are unknown by the investigators.
When that is the case, the probabilities Pr[S = 0|X]
and Pr[S = 1|X] in the inverse-odds weights are not
identifiable from the observed data (and cannot be estimated
using the observed data) (24, 34). Although the inverse-odds
weights are not identifiable, in Web Appendix 1 we show
that, up to an unknown proportionality constant, they are
equal to the inverse-odds weights in the training set,

Pr[S = 0|X]

Pr[S = 1|X]
∝ Pr[S = 0|X, Dtrain = 1]

Pr[S = 1|X, Dtrain = 1]
, (1)

where Dtrain is an indicator of whether data from an observa-
tion is in the training set. It follows that we can use inverse-
odds weights estimated in the training set, when estimating
β with the weighted maximum likelihood estimator (in the
second step of the procedure described above).

ASSESSING MODEL PERFORMANCE IN THE TARGET
POPULATION

We now turn our attention to assessing model perfor-
mance in the target population. For concreteness, we focus
on model assessment using the squared error loss function
and on identifying and estimating its expectation, the mean
squared error (MSE), in the target population. The squared
error loss (Y − g

β̂
(X))2 quantifies the discrepancy between

the (observable) outcome Y and the model-derived predic-
tion g

β̂
(X) in terms of the square of their difference. The

MSE in the target population is defined as

ψ
β̂

= E[(Y − g
β̂
(X))2|S = 0].

Although we focus on the MSE in the main text of this paper,
our results readily extend to other measures of performance;
in Web Appendix 1 we give identifiability results for general
loss function-based measures.

Prediction error modifiers

To help explain why measures of model performance
need to be tailored for use in the target population, we
introduce the notion of “prediction error modifiers” to
describe covariates that, for a given prediction model,
are associated with prediction error as assessed with
some specific measure of model performance. Slightly
more formally, and using the squared error loss as an
example, we say that X is a prediction error modifier
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for the model g
β̂
(X), with respect to the squared error

loss function in the source population, if the conditional
expectation E[(Y − g

β̂
(X))2|X = x, S = 1] varies as a func-

tion of x. Several parametric or nonparametric methods are
available to examine whether E[(Y − g

β̂
(X))2|X, S = 1]

is constant (i.e., does not vary over different values of
X). If condition A1 holds and X is a prediction error
modifier in the source population for values of X that
belong in the common support of the source and target
populations, then X is also a prediction error modifier in the
target population. When the distribution of prediction error
modifiers differs between the source and target populations,
measures of model performance estimated using data from
the source population are unlikely to be applicable in
the target population, in the sense that the performance
of the model in the source data may be very different
(either better or worse) compared with performance of
the same model in the target population. Potentially large
differences in performance measures between the source
and target population can occur even if the true outcome
model in the two populations is the same (i.e., even if
condition A1 holds) because most common measures of
model performance average (marginalize) prediction errors
over the covariate distribution of the target population (as
is the case, e.g., for MSE), and the covariate distribution of
the target population can be different from the distribution
in the source population.

Figure 1 shows an example of a prediction error modifier
that has a different distribution between the source and target
population, resulting in a “true” MSE in the target population
that is higher than the MSE in the source population. In
Figure 1B we plot the inverse-odds weights as a function
of the prediction error modifier X; in Figure 1C we plot the
expectation of the squared errors (from the “true” model of
the outcome expectation) as a function of X (i.e., the true
conditional MSE function). Because both the expectation of
the squared errors and the inverse-odds weights (and there-
fore the probability of membership in the target population)
increase as X increases, the target population MSE (which
is equal to the expectation of the conditional MSE over
the target population distribution of X) is larger than the
source population MSE. Hence, directly using the source
population MSE in the context of the target population
would lead to over-optimism about model performance.

Assessing model performance in the target population

In our setup, where outcome information is only avail-
able from the sample of the source population, we need
to account for differences in the data distribution between
the source population and the target population to assess
model performance in the target population. Proposition 1
in Web Appendix 1 shows that, under the setup described
previously and conditions A1 and A2, ψ

β̂
is identifiable by

the following functional of the source and target population
data distribution:

ψ
β̂
=E[E[(Y−g

β̂
(X))2|X, S=1, Dtest =1]|S=0, Dtest =1],

(2)
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Figure 1. An example of a prediction error modifier, X. A) A scatter-
plot of the simulated data, including the unmeasured target popu-
lation outcomes. Data from the source population are depicted by
black triangles; data from the target population are depicted as white
circles.The solid black line is the true conditional expectation function
E[Y|X, S = 1]. B) The inverse-odds weights (IOW) as a function
of X; C) the conditional expectation of the squared deviations of
the observations from the true model as a function of X (informally,
this can be thought of as the “true” conditional mean-squared-error
(MSE) function for the correctly specified model). In these data,
larger values of X correspond to higher probability of membership
in the target population, S = 0 (corresponding to lower odds of being
from the source population and higher inverse-odds weights), and
higher MSE. Hence, X is a prediction error modifier that is differ-
entially distributed between the source and the target population.
This leads to the target population MSE being larger than the source
population MSE. Panel (A) was created from a single draw from the
simulation model described under “Illustration using simulated data”
by sampling a random subset of observations.

or equivalently using an inverse-odds weighting expression

ψ
β̂

= 1

Pr[S = 0|Dtest = 1]

E
[ I(S = 1) Pr [S = 0|X, Dtest = 1]

Pr[S = 1|X, Dtest = 1]
(Y−g

β̂
(X))2|Dtest =1

]
.

(3)

Here, Dtest is an indicator for whether an observation is in
the test data (from either the target or the source population).
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Importantly, the components of the above expressions can be
identified from the observed data and do not require outcome
information to be available from the target population.

The identifiability result in expression 3 suggests the fol-
lowing weighting estimator (35, 31) for the target population
MSE:

ψ̂
β̂

=
∑n

i=1 I(Si = 1, Dtest,i = 1)ô(Xi)(Yi − g
β̂
(Xi))

2

∑n
i=1 I(Si = 0, Dtest,i = 1)

, (4)

where ô(X) is an estimator for the inverse-odds weights in
the test set, Pr[S=0|X,Dtest=1]

Pr[S=1|X,Dtest=1] . Typically, ô(X) will be obtained
by specifying a model for the probability of membership
in the source population conditional on covariates (among
observations in the test set), Pr[S = 1|X, Dtest = 1]. Pro-
vided that this model is correctly specified, the estimator ψ̂

β̂

is consistent for ψ
β̂
. To ensure independence between the

data used to train the model and the data used to evaluate the
model, we propose to use inverse-odds weights estimated
using the training set for model building and inverse-odds
weights estimated using the test set for estimating model
performance. As is often the case when using weighting
methods, empirical near-violations of the positivity condi-
tion A2 can lead to high variability of the inverse-odds
weighting estimator and we recommend careful examination
of the distribution of the estimated weights in applications
(27, 36, 20).

An important feature of our results is that they do not
require the prediction model to be correctly specified. In
other words, we do not assume that g

β̂
(X) converges to the

true conditional expectation of the outcome in the source
population, E[Y|X, S = 1]. This implies that measures of
model performance in the target population are identifiable
and estimable, both for misspecified and correctly specified
models, provided conditions A1 and A2 hold. Informally,
our identifiability results require the existence of a common
underlying model for the source and target population, and
overlap of their respective covariate distributions, but they
do not require the much less plausible assumption that
investigators can correctly specify that model.

Our results pertain to applications where the prediction
model is built using the training data and is evaluated using
the test data, and where the entire composite data set is
split into a test and a training set that are used for model
estimation and assessment. In some cases, an established
model is available, and the goal of the analysis is limited
to assessing model performance in the target population. In
that case, no data from the source or target population need
to be used for model development, and all available data can
be used to evaluate model performance and treated as a part
of the “test set.”

Furthermore, we have proceeded as if the source popula-
tion data in the training set are used to estimate parameters
of a prespecified parametric model, without employing any
form of model selection (e.g., variable choice or other spec-
ification search) or tuning parameter selection. But, when
developing prediction models, analysts often consider mul-
tiple models, and statistical learning algorithms usually have

one or more tuning parameters. Model and tuning parameter
selection is commonly done by minimizing a measure of
prediction error. In Web Appendix 3, we discuss how to
tailor data-driven model and tuning parameter selection to
the target population.

Last, note that provided the prediction model is correctly
specified, conditional mean exchangeability over S, that is
E[Y|X, S = 1] = E[Y|X, S = 0] (rather than condition A1),
is sufficient for the parameter β to be identifiable using data
from the source population alone. For nonbinary Y , however,
conditional mean exchangeability is not in general sufficient
for transporting measures of model performance, such as the
MSE. To illustrate, in Web Appendix 4 and Web Figure 1 we
give an example where mean exchangeability holds but is
not sufficient to identify the target population MSE (because
assumption A1 is violated).

ILLUSTRATION USING SIMULATED DATA

We used simulated data to illustrate 1) the performance of
correctly and incorrectly specified prediction models when
used with or without inverse-odds weights; 2) the potential
for reaching incorrect conclusions about model performance
in the target population when using a naive (unweighted)
MSE estimator that uses only the source population outcome
data to estimate the target population MSE (i.e., naively
applying the MSE from the source population data to the
target population); and 3) the ability to adjust for this bias
using the inverse-odds weighting MSE estimator.

Data generation

We simulated outcomes using the linear model Y = 1 +
X+0.5X2+ε, where ε ∼ N (0, X2) and X ∼ Uniform(0, 10).
Under this model, the errors are heteroscedastic because
the error variance directly depends on the covariate X. We
simulated membership in the source population using a

logistic regression model ln
(

Pr[S=1|X]
1−Pr [S=1|X]

)
= 1.5−0.3X. We

set the total sample size to 1,000 and split the source and
target population data randomly, with a 1:1 ratio, into the
training and test sets.

With this data-generating mechanism, the true target pop-
ulation MSE is larger than the true source population MSE,
and both conditions A1 and A2 are satisfied. We considered
two prediction models, a correctly specified linear regres-
sion model that included main effects of X and X2 and a
misspecified linear regression model that included only the
main effect of X. We also considered two approaches for
estimating the parameters of each posited prediction model:
ordinary least squares (OLS) regression (unweighted) and
weighted least squares (WLS) regression where the weights
were equal to the inverse of estimated odds of being in the
source-data training set. We estimated the inverse-odds of
membership in the training set, Pr[S = 0|X, Dtrain = 1]/
Pr[S = 1|X, Dtrain = 1], using a correctly specified logistic
regression model for Pr[S = 1|X, Dtrain = 1]. Figure 2
highlights the relationship between the correctly specified
outcome model, and the large-sample limits of the weighted
and unweighted estimators of the misspecified outcome
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Figure 2. An example using simulated data to illustrate transporta-
bility of prediction models. The solid curved line depicts the “true”
conditional expectation function E[Y|X, S = 1] (which for this data-
generating distribution is equal to E[Y|X, S = 0]); the solid straight
line is the large-sample limit of the misspecified regression model
estimated using source population data without using weighting; and
the dotted line is the large-sample limit of the misspecified regression
model estimated using source population data with inverse-odds
weights. The weighted estimation gives more inf luence to observa-
tions with higher values of X, compared with unweighted estimation,
because higher values of X are associated with higher odds of a
sampled observation being from the target population (i.e., lower
odds of being from the source population, corresponding to higher
inverse-odds weights). This is seen in the figure as for high values of
X the weighted model better approximates E[Y|X, S = 1] compared
with the unweighted model, but the opposite is true for smaller values
of X. This figure ref lects the data-generating mechanism described
under “Illustration using simulated data” (the population limits of
misspecified models were obtained by simulating a large number of
observations from the true model and fitting misspecified models,
with and without weighting).

model. For the inverse-odds weighting estimator ψ̂
β̂
, we esti-

mated the odds weights ô(X) by fitting a correctly specified
logistic regression model for Pr[S = 1|X, Dtest = 1] using
the test set data.

Simulation results

The results from 10,000 runs of the simulation are pre-
sented in Table 1. For both OLS and WLS estimation of the
prediction model, the correctly specified model resulted in
smaller average estimated target population and source pop-
ulation MSE compared with the misspecified model. When
examining different approaches for estimating the prediction
model for use in the target population, OLS performed
slightly better than WLS when the model was correctly
specified (average MSE of 45.8 vs. 46.2). In contrast, OLS
performed worse than WLS (average MSE of 66.3 vs. 58.0)
when the prediction model was incorrectly specified. The
last column in the table shows that the average of the inverse-
odds weighting MSE estimator across the simulations was
very close to the true target population MSE (obtained via
numerical methods) for all combinations of outcome model
specification (correct or incorrect) and estimation approach

(OLS or WLS). In all scenarios of this simulation, the
average of the estimator for the source population MSE
was biased for the target population MSE. Hence, naively
using the estimated source population MSE as an estimator
for the target population MSE would lead to substantial
underestimation (i.e., showing model performance to be
better than it is in the context of the target population). In
contrast, the inverse-odds weighting estimator would give
an accurate assessment of model performance in the target
population.

A PREDICTION MODEL FOR LUNG CANCER
DIAGNOSIS

We applied the methods to tailor a prediction model
for lung cancer diagnosis to the general US population
of trial-eligible individuals, using outcome information
from a large clinical trial. Specifically, we obtained source
population data from the computed-tomography arm of the
NLST (37), a large randomized trial comparing the effect of
computed tomography versus chest radiography screening
for individuals at high risk for lung cancer (nsource =
25, 825 after removing 897 observations with missing
data). The results of the study helped inform national
policy for lung cancer screening (38, 39). The outcome
we focused on is whether a participant was diagnosed
with lung cancer within 6 years from study enrollment.
Because computed-tomography screening for lung cancer
is implemented nationally, a natural target population is
everyone in the United States who is eligible for screening.
We obtained target population data from the NHANES,
which was designed to obtain a representative sample of
the noninstitutionalized US population. We used the subset
of NHANES participants who provided information to a
smoking substudy conducted between 2003 and 2004 and
met the NLST eligibility criteria, which are very similar to
the criteria used for recommending lung cancer screening in
the United States (39, 38) (unweighted ntarget = 222 after
removing 3 observations with missing data). NHANES is a
cross-sectional study so no follow-up information on lung
cancer diagnosis was available from the target population.
Web Appendix 5 provides additional information on the
two data sets and describes how we handled the NHANES
sampling weights in the analysis.

The prediction model for lung cancer diagnosis was esti-
mated using inverse-odds weighted logistic regression for
the conditional probability of lung cancer diagnosis with
main effects of the following variables as predictors: age,
body mass index, race/ethnicity (Black, White, Hispanic,
other), education (less than high school, high-school gradu-
ate, associate’s degree/some college, college graduate), per-
sonal history of cancer, smoking status, smoking intensity,
duration of smoking, and smoking quit time.

The coefficients and 95% confidence intervals for the
prediction model parameters are presented in Web Table 1
in Web Appendix 5. Using the weighted MSE estimator
given above, the estimated Brier score in the target popu-
lation (which is equivalent to the target population MSE for
binary outcomes) for the inverse-odds weighted prediction
model was 0.053. For comparison, when applying the same
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Table 1. Target Population Mean Squared Error, Average of the Source Data Mean-Squared-Error Estimators, and Average of the Weighted
Estimators for the Target Population Mean Squared Error From a Prediction Model Simulation

Model Specification,
Estimation Approacha

True Target
Population MSE

Average of Unweighted
MSE Estimator

Average of Weighted
MSE Estimatorb

Correctly specified, OLS 45.8 22.5 45.8

Incorrectly specified, OLS 66.3 34.5 66.3

Correctly specified, WLS 46.2 22.8 46.2

Incorrectly specified, WLS 58.0 43.6 57.9

Abbreviations: MSE, mean squared error; OLS, ordinary least squares; WLS, weighted least squares.
a Correctly specified and incorrectly specified refer to the specification of the posited prediction model.
b Weighted MSE estimator results were obtained using the estimator in equation 4. OLS regression was unweighted; WLS regression was

with weights equal to the inverse of the odds of being from the source population

model (estimated using inverse-odds weights) to the source
population without using weights in the MSE estimator, the
estimated Brier score was 0.035. The difference in the two
MSE estimates highlights that using inverse-odds weights
when assessing model performance (e.g., estimating the
Brier score) is necessary in addition to using inverse-odds
weights for tailoring the model to the target population.

DISCUSSION

We considered transporting prediction models to a tar-
get population that is different from the source population
providing data for model development, when outcome and
covariate data are available on a simple random sample from
the source population, and covariate data—but not outcome
data—are available on a simple random sample from the
target population. Specifically, we discussed how to tailor
the prediction model to the target population and how to cal-
culate measures of model performance in the context of the
target population, without requiring the prediction model to
be correctly specified. A key insight is that most measures of
model performance average over the covariate distribution,
and as a result, estimators of these measures obtained in data
from the source population will typically be biased for the
corresponding measures in the target population, when the
covariate distribution differs between the two populations.
Prospective external validation using a random sample of
covariates and outcomes from the target population would
be the ideal way to evaluate model performance in the
target population. But when such evaluation is infeasible
(e.g., due to cost or when long-term follow-up is needed to
obtain outcome information from the target population), the
methods proposed here can be an appealing alternative.

An important aspect of our approach is the explicit consid-
eration of the target population where the prediction model
will be applied and the use of covariate information from
a sample of that population. In practice, lack of access to
data from the target population could limit the applicability
of the methods we described (40). Over time, however, we
expect that this limitation will be mitigated by the increasing
availability of routinely collected data (e.g., electronic health
records and medical claims) and survey data from relevant
target populations.

For simplicity, we assumed that the covariates needed
to satisfy the conditional independence condition A1 are
the same as the covariates used in the prediction model. In
practice, the set of covariates needed to satisfy condition
A1 may be much larger than the set of covariates that are
practically useful to include in the prediction model. Our
identifiability results can be easily modified to allow for
the two sets of covariates to be different. Furthermore,
to maintain focus on transportability methods, we did
not address important practical issues such as missing
data and measurement error. Nevertheless, the methods
we describe can be combined with standard methods for
addressing these issues (e.g., weighting methods for missing
data (41) can be combined with the inverse-odds estimators
we describe).

Future research could consider the statistical properties of
transportability methods in the presence of missing data, as
well as extensions to address censoring (e.g., failure-time
outcomes) and measurement error. Future research could
also consider data-driven approaches to identify prediction
error modifiers or subgroups of participants with differential
prediction accuracy, the development of more efficient and
robust estimators than the inverse-odds weighting estimator
given above (42), and methods for combining samples from
the source and target population when both contain outcome
information.
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