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A power-based sliding window approach to evaluate
the clinical impact of rare genetic variants
in the nucleotide sequence or the spatial position of the folded protein
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Summary
Systematic determination of novel variant pathogenicity remains a major challenge, even when there is an established association be-

tween a gene and phenotype. Here we present PowerWindow (PW), a slidingwindow technique that identifies the impactful regions of a

gene using population-scale clinico-genomic datasets. By sizing analysis windows on the number of variant carriers, rather than the

number of variants or nucleotides, statistical power is held constant, enabling the localization of clinical phenotypes and removal of

unassociated gene regions. The windows can be built by sliding across either the nucleotide sequence of the gene (through 1D space)

or the positions of the amino acids in the folded protein (through 3D space). Using a training set of 350k exomes from the UK Biobank

(UKB), we developed PW models for well-established gene-disease associations and tested their accuracy in two independent cohorts

(117k UKB exomes and 65k exomes sequenced at Helix in the Healthy Nevada Project, myGenetics, or In Our DNA SC studies). The sig-

nificant models retained a median of 49% of the qualifying variant carriers in each gene (range 2%–98%), with quantitative traits

showing a median effect size improvement of 66% compared with aggregating variants across the entire gene, and binary traits’ odds

ratios improving by a median of 2.2-fold. PW showcases that electronic health record-based statistical analyses can accurately distin-

guish between novel coding variants in established genes that will have high phenotypic penetrance and those that will not, unlocking

new potential for human genomics research, drug development, variant interpretation, and precision medicine.
Introduction

Statistical analyses of rare genetic variants in large popula-

tions present unique challenges. Variants that are only

observed in a handful of people, or even one person, lack

statistical power to identify whether they are associated

with a trait.1 Gene-based collapsing methods navigate

this problem by grouping together similar rare variants,

often by predictions of functional consequence, to

improve power.2 However, not all nonsynonymous vari-

ants in a gene, even when they are predicted to be

damaging by various in silico tools, can be expected to

have the same effect on a phenotype, and grouping them

together in this way dilutes the overall signal.

In addition to utilizing cellular and model organism

functional assays, many analysis approaches have been

developed to identify and prioritize the types of rare vari-

ants and gene regions that are most important for an asso-

ciation between a gene and a particular phenotype. First,

analyses of LoF variants (loss of function: nonsense, frame-

shifts, and essential splice sites) and coding variants

(damaging missense and in-frame indels) are often per-

formed separately, to distinguish their effects.3–5 Algo-

rithms like SKAT (Sequence Kernel Association Test) allow
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genetic variants in a single gene to have different effect

sizes and directions of effect, giving an overall signal for

the gene even when not all variants behave the same.6

Other studies have focused on just analyzing the intolerant

regions of the gene or specific gene domains to identify the

source of a gene’s signal.7,8 Sliding window and clustering

methods to localize themost important regions of the gene

have also been tried.9–13 However, there is still a need to

develop a flexible and unbiased statistical analysis method

that effectively selects the parts of a gene to include in as-

sociation studies and apply it to improving the overall sta-

tistical associations for rare coding variants, especially

when it comes to parsing out the portions of the gene

that are not associated with the trait.

Here, we present Power Window (PW), a novel tech-

nique that leverages paired clinical phenotypes with ge-

netic sequence to identify regions of a gene where rare

nonsynonymous variants of any type—for example, LoF

or coding—are statistically significantly associated with a

trait. We use PW to build regional LoF and coding models

for well-established gene-disease associations in a large

training set and test these refinements in two additional

cohorts. Not only do these models replicate in cohorts

with a different composition of variants, but many drive
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dramatic improvements to the effect size or odds ratio

(OR), especially for coding variants. PW showcases that

even in the absence of family data, prior clinical evidence

for that variant, or functional tests, EHR (electronic health

record)-based statistical analyses alone can be used to

refine gene signals to determine the types and locations

of variants that will have high penetrance in population

cohorts. This highly accurate method for prioritizing ge-

netic variants associated with health outcomes unlocks

new potential for common disease genomic risk screening.
Subjects and methods

Genetic data and phenotypes
We utilized the UK Biobank (UKB) population level exome OQFE

pVCFs for 470k individuals (field 23157, with genotypes set to

missing when DP (read depth) < 7 for SNVs and <10 for indels,

and variants excluded if there were no homozygotes or the max

allelic balance was <0.15 for SNVs or <0.2 for indels as per Back-

man et al.14) as well as the imputed genotypes from genome-

wide association study genotyping (field 22801–22823). We also

utilized 62,406 samples that were sequenced and analyzed at Helix

using the Exomeþ� assay as previously described, recruited from

the Healthy Nevada Project (n ¼ 37,989, sequenced January

2018 to March 2023); myGenetics (n ¼ 15,104, sequenced May

2022 to March 2023); and In Our DNA SC (n ¼ 9,313, sequenced

December 2021 to March 2023) (Table S1).8 Standard QC for all

samples included removing individuals with a difference between

genetic and self-reported sex and removing contaminated sam-

ples. For the UKB cohort (n with exomes ¼ 470k), participants

range in age as of 2022 from 51 to 88 and are 55% female, while

the Helix age range is from 18 to 89þ and is 69% female. The

UKB is 83% composed of individuals who are genetically similar

to British Europeans, with another 10% with genetic similarity

to other Europeans and 7% genetically similar to other ancestry

groups, and the Helix cohorts are 77% composed of individuals

with genetic similarity to Europeans, 14% with genetic similarity

to those from the Americas, and 9% with genetic similarity to

those of other ancestries. No filtering was applied to the cohorts

based on genetic similarity.

The Helix cohorts were reviewed by Salus IRB (Institutional Re-

view Board; reliance on Salus for all sites) and approved (approval

number 21143), the WCG IRB (Western Institutional Review

Board, WIRB-Copernicus Group) and approved (approval number

20224919), the Medical University of South Carolina Institutional

Review Board for Human Research and approved (approval num-

ber Pro00129083), and the University of Nevada, Reno Institu-

tional Review Board and approved (approval number

7701703417). The UKB study was approved by the North West

Multicenter Research Ethics Committee, United Kingdom. All par-

ticipants gave their informed, written consent before participa-

tion. All data used for research were de-identified.

Helix cohort phenotypes were processed from Epic/Clarity EHR

data as previously described and updated as of January 2023.8 In-

ternational Classification of Diseases, Ninth and Tenth Revision

codes and associated dates (ICD-9 and ICD-10-CM) were collected

from available diagnosis tables (from problem lists, medical his-

tories, admissions data, surgical case data, account data, claims,

and invoices). The data were sourced from EHR data formatted us-

ing the OMOP CDM v5.4. Each ICD source code was mapped to a
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source concept id and the source concept id was used to extract the

relevant diagnoses. Quantitative phenotypes were transformed via

rank-based inverse normal transformation.

UKB data were provided from the UKB resource (accessed

September 2022). ICD codes and associated dates (both ICD-9

and ICD-10) were collected from inpatient data (category 2000),

cancer register (category 100092) and the first occurrences (cate-

gory 1712), which records the earliest instance of a diagnosis

from the Primary Care data, Hospital inpatient data, Death Regis-

ter records, and self-reported medical conditions mapped to an

ICD-10 code at a three-character resolution (i.e., E11 instead of

E11.0). UKB quantitative phenotypes were processed using the

Neale lab modified version of PHESANT as previously described,

which rank-transforms quantitative traits to normally distributed

data and divides categorical traits into binary sets.8,15,16

ICD codes were translated to phecodes as previously

described17–20 (Table S1).
Genetic analysis
Variant annotation was performed with VEP (Variant Effect Predic-

tor) 104.21 Coding regions were defined according to Gencode

version GENCODE 33, and the MANE (Matched Annotation from

NCBI and EMBL-EBI) transcript (or Ensembl canonical transcript

if there was no MANE transcript) was used to determine variant

consequence. 22,23 Variants were restricted to CDS (coding

sequence) regions and essential splice sites. We did not restrict var-

iants according to missingness or Hardy-Weinberg equilibrium. Ge-

notype processing was performed in Hail 0.2.115–10932c754edb.24

The collapsing analysis was performed as previously described.17

Qualifying variants included coding (missense_variant, inframe_

deletion, or inframe_insertion) that was not PolyPhen and SIFT

benign, or LoF (stop_lost, start_lost, splice_donor_variant, frame-

shift_variant, splice_acceptor_variant, or stop_gained).25,26 A

MAF (minor allele frequency) cutoff of 0.1% was used in all gno-

mAD populations as well as locally within each genetic similarity

group. 27 For visualization, UniProt was used to identify gene

domains.28

We used regenie for genetic analyses, which builds a whole

genome regression model to account for relatedness and popula-

tion stratification and also accounts for case-control imbalances.29

The covariates we included were age, sex, age*sex, age*age, sex*a-

ge*age, and bioinformatics pipeline version, and we used a set of

184,445 common variants to build the whole genome regression

model. Ancestries were analyzed together, as we have previously

established that this method works well for analyzing rare causal

variants grouped together.8,17,30
Training PW models
PW uses a sliding window methodology to create windows with

equal numbers of rare variant carriers across the gene

(Figure 1A). To train, we built windows in 350k UKB samples;

this otherwise randomly selected set (of the 470k UKB exome

release) included all individuals who were first- or second-degree

relatives or twins, so that the subsequent testing set would only

include unrelated individuals. When building the windows, we

required them to each contain 20 qualifying variant carriers out

of these 350k individuals (see Figure S1 for stats about the win-

dows). In the case of homozygotes, the number of rare variant

alleles was used. PWanalyses were run for 65 established gene/dis-

ease relationships (see the results section). Specifically, we built the

windows separately for LoF and coding models, and we only built



Figure 1. Power Window methodology and as applied to GCK in UKB training data
(A) Diagram of the methodology.
(B) PowerWindow (PW) applied toGCK and glucose levels in the UKB350k discovery cohort. Tracks are drawn against theGCK canonical
coding transcript ENST00000403799.8. Coding position is shown at the bottom scale. Coding carriers: each dot represents an individual
carrier and dots are stacked for each carrier at a given position. For brevity, carriers are trimmed to 35 and total number of carriers is indi-
cated when total carriers>40. GCK exons: exons (dark gray to scale; introns not to scale). Exon number indicated below exon track. Sec-
ondary structure and major structural domains are shown according to UniProt. PW: bedtools merge of all significant PWcoding windows
with a positive direction of effect (beta>0.5; pink), as indicated in the ‘‘windows’’ track below. opp-PW:merger of all significant windows
with a negative direction of effect (beta<�0.5; green).Windows: each window that was generated through applying the PWalgorithm is
shown, with a window size of 20 carriers per window. Significant association with glucose levels is indicated when beta <�0.5 or beta
>0.5 (97.5% confidence that the true beta is not 0 in a sample of 20 individuals with a normalized phenotype). Windows are shown in
pink if significant under the positive model and green if significant under the negative model, or gray if not significant (beta between
�0.5 and 0.5).
windows for gene/model combinations that had at least 40 quali-

fying rare variant carriers in the training set (this excluded seven

genes: SF3B1 [MIM: 605590)], GP9 [MIM: 173515], CDKN2A

[MIM: 600160], SLC4A1 [MIM: 109270], GCK [MIM: 138079],

FCGRT [MIM: 601437], and GFI1B [MIM: 604383] from the LoF

model and no genes from the codingmodel).We then ran a regres-

sion analysis of the relevant phenotype in regenie on this training

set for each window generated for each gene.

For PWutilizing the 3D space of the folded protein to build win-

dows (3DPW), predicted coordinates for the atoms in the protein
Hu
were obtained from Alphafold, using the MANE Overlap dataset

when available (mane_overlap_v4.tar) and otherwise the com-

pressed Homo sapiens proteome (UP000005640_9606_HU-

MAN_v4.tar) (proteins R2,700 amino acids in length).31,32 The

predicted coordinates for proteins with at least 2,700 amino acids

were split over multiple files, and their coordinates were harmo-

nized using Kabsch’s algorithm implemented with the scipy.spa-

tial.procrustes function in Python. The position for each amino

acid was chosen based on the alpha carbon x, y, and z coordinates.

Distances between amino acids were calculated according to
man Genetics and Genomics Advances 5, 100284, July 18, 2024 3



Euclidean distance. A window was built centered around each

amino acid change, with inclusion in the window determined

by the Euclidean distance to other amino acid changes, spreading

out in 3D space according to the structure of the protein.

We next decided which windows to retain in our final model

for each gene using a confidence interval approach. While frame-

works for testing the significance of a mixture of high- and low-

effect windows of rare variants in a gene exist from prior works,

here we chose a simple approach that uses an effect size cutoff

from the widely used association analysis software regenie,

with the final goal of testing the output of that model for signif-

icance in an independent cohort.9–13 For a sample size of 20 car-

riers measured for a rank-based inverse normal transformed

phenotype with a true mean of 0, then 97.5% of the time, the

observed mean in the sample will be between �0.5 and 0.5. An

effect size >|0.5| was therefore chosen as the cutoff for a window

to be considered associated with the quantitative trait. Simula-

tions for the gene GCK and the phenotype glucose in which

causal regions were defined and glucose levels reassigned accord-

ing to different parameters can be found in Figure S2 and provide

more information on how the parameters of percent of gene

implicated, number of distinct implicated regions in the gene,

percent of implicated variants that are causal, effect size of causal

variants, and different cutoffs for building models affect the out-

comes. For binary traits, the cutoff was an OR higher than the

maximum expected 99% of the time if the true OR was 1 in a

sample of 20, given binomial probability and the case frequency

for that phenotype. For example, if the true OR was 1, then in a

sample of 20 carriers, 99% of the time a binary trait occurring in 1

out of 100 people would be expected to have fewer than three

case carriers and thus an OR <17.5 when compared with the

349,980 non-carriers. If the binary trait occurred in 1 out of 20

people, then the OR cutoff would be 6.3 (5þ case carriers). The

OR cutoff was thus different for each binary trait and tailored

to its frequency, including tailored to sex-specific analyses

when necessary, such as for breast cancer.

The final PW model for each gene separated the gene into re-

gions that had statistical evidence for an association with the trait

(PW) and those that did not (non-PW). For quantitative traits,

sometimes two directions of effect were observed within different

regions of the same gene, in which case an additional model was

produced for the regions that had the opposite direction of effect

from the main signal for the gene (opp-PW). Models were built

separately for coding (PWcoding) and LoF (PWLoF) annotations.
Testing PW in independent samples
We next tested the PW models, non-PW models, and whole-gene

models in an independent set of 117k unrelated UKB samples. In-

dividuals were analyzed separately according to whether they had

variants within the PWregions, within the non-PWregions, or, for

quantitative traits, within the opp-PW regions. We compared the

ORs and betas in this independent testing cohort between the

whole-gene model, the PWmodel, and the non-PWmodel, where

little signal is expected to remain if the method is appropriately

picking out the associated portions of the gene. We additionally

assessed significance in the test set by removing individuals

without a variant in the gene and directly comparing the PW

with non-PW individuals. Models were considered to be signifi-

cant if they had a p value less than 0.0005, which corrects for 96

tests (the 96 gene-phenotype-model combinations that produced

PW models that did not just include 0% or 100% of the gene).
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For the significant PW models, we additionally performed a

replication study in an independent set of 65k samples sequenced

at Helix. Phenotypes were available to check in this secondary

cohort for 29 of the significant models.
Results

A statistical power-based sliding window method to

localize rare variant association signals within a gene

The basic concept of a sliding window analysis is to group

variants located near each other, in either 1D or 3D space,

into one unit and analyze them together to improve po-

wer, much like a gene-based collapsing analysis but at a

more localized scale. Rather than size our sliding window

by the number of variants, bases, or amino acids covered,

our sliding window moves to maintain roughly the same

number of people within the cohort with a rare qualifying

variant, and thus the statistical power, within each win-

dow (Figure 1A). When a single variant is well powered

on its own, it is removed out into its own separate analysis,

and the window slides past it, continuing to group sur-

rounding variants as appropriate. We call this technique

the Power Window (PW) method.
Parameters and functions

The carrier count used to define windows can be adjusted

to fit different scenarios. There is a balance to strike,

rooted in the currently available cohort sample size, be-

tween being able to home in on a specific region (small

window size) and having adequate power to observe sta-

tistical associations (large window size) (Figure S3). We

use a window size of 20 qualifying variant carriers in a

training set of 350k UKB exomes because this powers us

to identify associations with quantitative traits with an ef-

fect size approximately >|1| for a normalized trait (see

Subjects and methods and Figure S2). This breaks each

gene into a mean of 357 coding windows and 67 LoF win-

dows (Figure S1, where details on TTN—which is

excluded from stats given here due to its size—are also

available). With the same number of qualifying variant

carriers within each window, the statistical power for dis-

covery is the same for each window as our analysis slides

across the gene or protein. Nucleotides or amino acids

that fall within the region of an associated window are as-

signed the same value in new datasets as that window has

in the training set. Thus, new mutations of the same pre-

dicted impact (LoF, missense, etc.) that do not occur in

the training dataset can still be assigned a value based

on their location in the new dataset. This also means

that gene or protein regions with no variation in the

training set are assigned a value based on the values of

variants in the surrounding regions, which defines

whether or not they are within the boundaries of an asso-

ciated window (for example, the third exon in Figure 1A).

The ability of this method to home in on more and more

specific regions of the gene increasingly improves as



sample sizes grow and the distance covered by each win-

dow shrinks.

PW models refine gene-disease association signals

We evaluate the PWmethod using 65 genes with which we

previously demonstrated rare variants to be significantly

associated with well-documented phenotypes in the UKB

using a gene-based collapsing analysis of LoF or coding

variant models.8,17 We chose these associations because

they have strong, well-established effects that can be iden-

tified in smaller cohorts than the sample used here.

Because these gene-phenotype combinations already

have a strong statistical signal at the gene level, they are

good candidates to test whether the signal is truly gene-

wide or can be further localized. There are 37 quantitative

traits and 28 binary traits included in this set. For each

gene, we build and analyze both coding and LoF windows,

irrespective of the original whole-gene association model,

for the relevant phenotype in a training set of 350k UKB

exomes and build a final model that separates the gene

into PW regions and non-PW regions (see Subjects and

methods).

We start with a PWalgorithm that builds windows across

the linear sequence of the coding nucleotides (through 1D

space). We first examine if there are differences in how a

PW analysis of coding variants (PWcoding) or LoF variants

(PWLoF) separates regions within a gene (Figure 2). We

anticipate that PWLoF models will usually implicate the

entire gene instead of specific regions, as generally a LoF

variant anywhere in the gene is likely to have a similar ef-

fect (with tissue-specific splicing causing some exceptions,

see Schiabor Barrett et al.30).

Overall for the 65 genes, we find that applying PWcoding

retains a mean of 34% of the carriers in each gene (range

0%–98%), while PWLoF retains 74% (range 0%–100%) of

carriers. In terms of the percent of the coding sequence

(CDS) retained in the PW model in each gene, this is

40% (range <0%–99%) for PWcoding and 79% (range 0%–

100%) for PWLoF (Figure S4).8,33 While a small percentage

of the gene being retained indicates that the association

signal is very specific, PW also identifies the gene-pheno-

type associations where a rare variant anywhere in the

gene appears to have a similar effect, which occurs

frequently for PWLoF but also for some PWcoding models.

We find that 48% of the PWLoF models retain >90% of

the CDS of the gene, compared with 9% for PWcoding.

To better understand the ways in which PW is able to

refine the signal for different gene-phenotype relation-

ships, we group the same 65 genes based on whether their

primary association from the gene-based collapsing anal-

ysis was for LoF only or for both coding and LoF models

to see if there are differences in the resulting PW models.

We observe that the PWLoF model retains most of its car-

riers, and thus CDS, regardless of the original whole-gene

signal (Figure 2). In contrast, for PWcoding, the portion of

the gene that is kept depends heavily on the type of asso-

ciation seen at the whole-gene level (Figure 2): if the
Hu
whole-gene association signal is mainly for the LoF model

(n ¼ 29), then a mean of 17% (range 0%–69%) of the car-

riers are retained by the PWcoding model, translating to a

mean of 27% (range 0%–90%) of the CDS. When the

whole-gene association can be identified using both cod-

ing and LoF models (n ¼ 36), then a mean of 48% (range

2%–98%) of the carriers are retained, corresponding to a

mean of 50% (range 3%–99%) of the CDS (Figure 2).

PWmodels dramatically improve ORs and effect sizes in

new datasets

To confirm the refinements established in the training set

of 350k UKB exomes, we evaluate the predictive power of

the PW models in an independent testing set of 117k

UKB exomes. For each gene, we identify test set individuals

with qualifying variants in the regions included in the PW

models (PW) or excluded from them (non-PW). This anal-

ysis includes a mean of 51/11 new coding/LoF variants per

gene, adding to the mean of 340/66 coding/LoF variants

already included from the training set (for TTN, which

we exclude from the summary stats due to its size, the

values are 1,373/212 new and 9,275/1,182 existing cod-

ing/LoF variants). We analyze the relevant phenotypes in

these groups compared with non-carriers and compare

the resulting ORs (binary traits) and effect sizes (betas;

quantitative traits) (Figures 3, S6, and S7). We then identify

models that show statistical support for PW as follows.

For binary traits with PWcoding, we find that 24 out of 28

gene-disease associations show a higher OR in the PW

compared with whole-gene model (mean fold

improvement ¼ 3.4, range ¼ 0.45–18.4), and six (21%) of

these differences are statistically significant compared

with the non-PW portions of the gene (Bonferroni correc-

tion at p < 0.0005); Figures 3A and S6A). For example, the

association between coding variants in OCA2 (MIM:

611409) and blonde hair color has an OR of 2.8 (95% con-

fidence interval [CI] 2.3–3.4) for the whole gene, but

PWcoding splits this into 33% of carriers with an OR of 6.3

(95% CI 4.8–8.4) in the test set, while the 67% that are

non-PW carriers have an OR of 1.59 (95% CI 1.2–2.9; p

value 5.1e�20 for a comparison between PW and non-

PW in the test set) (Table S1). The regions implicated in

this model are in the extracellular and citrate transporter

domains of this gene, which can be hypothesized to

impact its ability to maintain melanosome pH (Table S2;

Figure S5). 34

For quantitative traits with PWcoding, the resulting

models are even more reliable for the test set: we find

that 36 out of 37 genes show a more extreme effect size

in the PW compared with whole-gene model (mean

percent improvement ¼ 145%, range ¼ 0% to 1,331%),

and 22 (59%) of these PW effects are statistically signifi-

cantly different from the non-PW effects in the test set

(Figures 3B and S6B). For example, the association between

coding variants in GFI1B (MIM: 604383) and normalized

mean platelet volume has an effect size of 0.52 (95% CI

0.41–0.62) for the whole gene, but PWcoding splits this
man Genetics and Genomics Advances 5, 100284, July 18, 2024 5



Figure 2. Percent carriers kept in Power
Window models
For each gene (n ¼ 65), the percent of the
rare variant carriers from the whole-gene
model who were retained by the PW model
was evaluated for PWCoding and PWLoF.
Within each model, the phenotypes were
grouped into quantitative (pink) or binary
(yellow) traits, and the genes were grouped
based on the original genome-wide associa-
tion as follows: LoF: original whole-gene as-
sociations had an absolute beta at least 3x as
high in the LoF model as the coding model;
coding and LoF: original whole-gene associ-
ations had a beta <3x as high for LoF as for
coding (no gene-phenotype combinations

had a whole-gene coding model absolute beta that was at least 3x higher than the whole-gene LoF beta). Two genes had 0 windows
included in the final model for PWcoding (IFT140 and NF1), and 1 for PWLoF (JAK2). Dotted horizontal line indicates the mean percent
carriers kept in that category. The percent CDS kept can be found in (Figure S4).
into 64% of carriers with an effect size of 0.71 (95% CI

0.57–0.84) in the test set, while the 36% that are non-

PW carriers have an effect size of 0.18 (95% CI 0.01–0.35;

p value 2.3e�6 for a comparison between PW and

non-PW in the test set) (Table S1). The associated regions

overlap zinc finger domains, which have previously been

demonstrated to be involved with this trait

(Figure S5).8,35,36

Compared with the original whole-genemodel, the level

of improvement from PW is often quite dramatic: for

example, 55% of the significant PWcoding models for quan-

titative traits show a more than 60% improvement in the

normalized effect size. Overall, the median fold improve-

ment for significant PWcoding models is 2.2 for ORs (range

1.5–12.3; mean 4.1; binary traits) and 65% for percent

change in effect size (range 2%–1,331%; mean 154%;

quantitative traits) (Figure 4).

In contrast, the PWLoF models show little to modest

improvement over using the whole gene for either quanti-

tative or binary traits and generally do not show a signifi-

cant difference between PW and non-PW regions

(Figures 3A and 3B bottom, S6B, and S7B). For most genes,

when there is a LoF association, the statistical signal for

LoF variants is spread across the entire gene, resulting in

nearly the entire gene being included in PWLoF models.

For example, LoF variants anywhere in LDLR (MIM:

606945) are generally considered pathogenic, and indeed

PWLoF implicates the entire gene (Figure S7B). However,

in specific situations, PWLoF models perform well. For

example, the PWLoF model for TTN (MIM: 188840) with

cardiomyopathy improves the OR by 2.5x in the test set

by mostly restricting to cardiac-expressed exons, and the

PWLoF model for APOB with LDL (low-density lipoprotein)

levels produces an effect size improvement of 118% by

removing the last 1,082 bases of the gene (two-thirds of

the final exon) as well as three single variants that did

not show associations (Tables S1 and S2).30 We also test us-

ing LOFTEE (Loss-Of-Function Transcript Effect Estimator)

to remove low confidence LoF variants from the whole-

gene models, which improves the effect size for some
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genes, but does not consistently result in a positive change

(Figures S6B and S7B).37 In contrast, our method to use

phenotypic evidence to tailor which pLoF variants can be

safely excluded from the LoF category could help curate

potentially pathogenic variants.

Finally, we test the significant PWmodels in an indepen-

dent cohort of 65k individuals sequenced at Helix. In the

65 genes, there are a mean of 78/21 new coding/LoF vari-

ants tested per gene in this set, as well as 106/14 coding/

LoF variants per gene that were already used in the UKB

analysis (for TTN, which we summarize separately, these

numbers are 2,431/331 new and 3,219/152 already used).

We find that 25 of the 27 significantmodels that have cases

in both PWand non-PW regions in this replication cohort

show the same direction of effect as the UKB. However, due

to the smaller sample sizes, the difference between the PW

and non-PW models is only statistically significant

(p < 0.002, correcting for 27 tests) in 10 of the models in

the Helix cohorts (Figure S8).

Overall, our results demonstrate that the PW methodol-

ogy successfully segments gene regions that contribute to

gene-based collapsing analysis signals, dramatically

improving the effects seen compared with whole-gene

models.

Using protein structures to build analysis windows

through 3D space

We next built windows for analysis by focusing on the 3D

protein structure (3DPW). This allows variants to be group-

ed together even when they are distant from each other in

the coding sequence but are near each other in the final 3D

location in the folded protein. Using predictions from Al-

phafold, we calculated the Euclidean distance between all

pairs of amino acid changes in each analyzed protein.31,32

Just as with the PW version that focused on the linear cod-

ing sequence (through 1D space), this analysis built win-

dows out from each amino acid change until 20 carriers

were identified in the training set (Figure 5). Here, we

only focused on coding models, as the precise location of

LoF variants within the 3D structure of the protein is less



PWLoF

PWcoding

PWLoF

PWcoding

Gene Phenotype % kept Fold Δ
SLC45A2 Blonde hair color 31.4% 1.6x
OCA2 Blonde hair color 32.3% 2.2x
CDKN2A Melanomas of skin 63.4% 1.5x
MC1R Red hair color 32.8% 2.1x
PKD1 Cystic kidney disease 3.8% 5.1x
JAK2 Myeloproliferative dis. 12.5% 12.3x
BRCA2 Malig. neoplasm breast 73.4% 1.3x
BRCA1 Malig. neoplasm breast 86.5% 1.2x
TTN Primary cardiomyopathy 30.8% 2.5x
MLH1 Colon cancer 43.2% 4.1x
MSH2 Colon cancer 48.0% 2.9x
PKD1 Cystic kidney disease 72.3% 2.1x

Gene Phenotype % kept % Δ

ALPL ALP 97.8% 1.9%

GOT1 AST 70.6% 37.2%

GPT ALT 97.8% 1.8%

CST3 Cystatin C 68.9% 46.1%

SLC2A9 Urate 48.3% 63.8%

ABCA1 HDL 38.6% 88.8%

FCGRT Albumin 32.9% 152.5%

GPLD1 ALP 75.7% 26.3%

ANGPTL3 ApoA 34.9% 75.6%

PCSK9 LDL 53.8% 50.8%

SHBG SHBG 75.8% 30.9%

ITGA2B Platelet count 12.8% 186.1%

APOB LDL 10.4% 454.2%

SEC23B RDW 11.0% 1331.5%

MC4R BMI 26.9% 145.5%

IQGAP2 MPV 16.4% 279.0%

LDLR LDL 2.1% / 49.0% 65.6%

GFI1B MPV 63.7% 37.4%

GCK Glucose 3.3% / 60.1% 169.1%

ASGR1 ALP 55.4% 43.6%

GP1BB MPV 81.5% 18.2%

TUBB1 PDW 46.1% 81.5%

APOB LDL 51.6% 117.6%

TMPRSS6 MCH 61.5% 85.1%

SEC23B RDW 84.3% 29.4%

A

B

Figure 3. Performance of significant Power Window models in the 117k UKB test set
Performance is shown for (A) binary and (B) quantitative traits. Odds ratio (for binary traits in A) and effect size (for quantitative traits in
B) values for gene regions are defined by inclusion in a PW model (PW, pink dot) or exclusion from a PW model (non-PW, blue dot) are
plotted against the score for the whole gene (gray cross), together with 95% confidence intervals. Each row is an independently tested
gene-phenotype association. Percent of rare variant carriers in the gene that were included in the PWmodel are indicated.When there is
a significant opposite direction of effect within a gene, these are isolated to their own group (opp-PW, green dot) and independently
tested, and percent shown is for negative effect/positive effect models. Models are only shown here if there is a significant difference
between the PW and non-PW models in the independent test set. Remaining models tested, but failing this criterion, are shown in
Figures S6 and S7. ALP, alkaline phosphatase; ALT, alkaline aminotransferase; AST, aspartate aminotransferase; BMI, body mass index;
MCH, mean corpuscular hemoglobin; MPV, mean platelet volume; PDW, platelet distribution width; RDW, red blood cell distribution
width.
likely to be relevant. The 3DPW method split each protein

into roughly the same number of windows as the 1D

method, but the coding nucleotide distance covered by

each window now ranged from 1 to 11,920 (mean of

1,124), whereas the range was 1–1,396 (mean of 61) for

the 1Dmethod. Overall, 59% of the windows included var-

iants that were more than 150 coding nucleotides away

from each other, which was only true for 6% of the

PWcoding windows from the 1D model.
Hu
After building 3DPWcoding models in the training set, we

assessed their performance in the test set and compared

them with the PW models built in 1D space. We found

that these two methods produced nearly identical models,

with 89% of the variants included in the significant

PWcoding model also included in the 3DPWcoding models.

In terms of performance in the test set, the models were

nearly identical, with similar predictive power (Figure 5).

This similarity occurs because while distant amino acids
man Genetics and Genomics Advances 5, 100284, July 18, 2024 7



Figure 4. PW effect size improvement
for significant models
PW-based improvement for significant
gene-trait models measured by percent
change in normalized effect size or fold
improvement inOR. The results are grouped
according to whether they were run with
PWcoding or PWLoF and whether the pheno-
type was binary or quantitative. For quanti-
tative traits, the stats given are (PW effect
size�whole-geneeffect size)/whole-gene ef-
fect size. One model with >500% improve-
ment is not shown (1,331% improvement
for PWcoding for SEC23B with red blood cell
distribution width). For binary traits, the
stats given are the PW OR divided by the
whole-gene OR. Gray dashed lines indicate
the mean value for that category.
can be grouped together, a substantial proportion of the

variants included in 3D windows are also close to each

other in 1D space (Figure 5A). For example, 54% of the var-

iants in 3D windows are within 50 coding nucleotides of

the central variant, which was also true of 70% of the var-

iants in the 1D windows. There is likely to be more distinc-

tion seen between the twomethods when a signal is highly

localized to a small portion of the protein.

PW successfully isolates gene regions with different

directions of effect

Each of the associations that are refined with PW has an

underlying story that is rooted in the biology of the gene

and the phenotype. One unique refinement that PW can

make over a whole-gene model is identifying regions of

the gene with opposite directions of effect, especially for

quantitative traits. PWmodels identify opposite directions

of effect within the same gene for nine PWcoding models

and one PWLoF model (Figure S7). However, only two

were part of significant PWmodels in the test set (Figure 3).

One significant PWcoding model with opposite directions

of effect isGCK, where we identify that non-benign coding

variants in half of the second and most of the third exon

are associated with low glucose levels, while coding vari-

ants in most of the rest of the gene are associated with

high glucose levels (Figure 1). Intriguingly, one variant in

the low glucose region that is a single variant window

(rs373418736), meaning that it is rare (MAF <0.1%) yet

common enough to be analyzed separately (n > 20 car-

riers), shows an opposite direction of effect compared

with the rest of the region. The PW methodology of

breaking out single variant windows allows these opposing

signals within the same regional location to be separated

out and analyzed appropriately.

The other significant PWcoding model with opposite di-

rections of effect is LDLRwith LDL levels. Here, we identify

that the variant rs377437226 in the cytoplasmic region is

associated with lower LDL levels, while non-benign coding

variants in most of the rest of the gene, which would be

extracellular and thus where LDL binds to this gene prod-

uct, are associated with higher LDL levels. This is consis-
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tent with the mechanism of disease, where the LDL recep-

tor no longer interacts/binds LDL well, leaving cholesterol

in the bloodstream, which results in high measured blood

biomarker levels.
Discussion

Here, we present amethod called PowerWindow (PW) that

successfully identifies the variants and regions within

genes that are responsible for the statistical associations

found in gene-based collapsing analyses of rare variants.

We tested this method on 65 established gene-phenotype

associations of rare variants collapsed at the gene level.

Our method distinguishes between the variants and gene

regions that do and do not impact these traits, identifying

statistically significant differences between distinct regions

of the gene with a coding model 59% of the time for quan-

titative traits and 21% of the time for binary traits, as well

as 16% of the time for LoF models. The method often

dramatically improved the association signals, for example

improving the normalized effect size by a median of 65%

for significant coding models for quantitative traits when

compared with an analysis that collapses across the whole

gene. PWalso identifies when the entire gene is implicated

instead of specific regions, which was true for 41% of

PWLoF models and 0 PWcoding models. Finally, in some

cases, PW even identifies variants and regions with oppo-

site directions of effect in the same gene, in this case for

LDLR and GCK.

PW uses the concept of a sliding window to distinguish

gene regions that are associated with a phenotype from

those that are not. However, unlike sliding window ap-

proaches that move according to a fixed number of bases

or variants, PW slides according to the most important

metric for rare variant analyses: the statistical power.9–11

This focus on power, in this case dictated by the number

of individuals carrying rare qualifying variants within a

given region, is the critical feature for its success and is a

key feature of its flexibility. Without this crucial innova-

tion, it is difficult to tell whether regions without statistical



Gene Phenotype PW % kept

ALPL ALP 1D 97.8%

ALPL ALP 3D 97.8%

GOT1 AST 1D 70.6%

GOT1 AST 3D 72.5%

GPT ALT 1D 97.8%

GPT ALT 3D 96.4%

CST3 Cystatin C 1D 68.9%

CST3 Cystatin C 3D 70.6%

SLC2A9 Urate 1D 48.3%

SLC2A9 Urate 3D 55.0%

ABCA1 HDL 1D 38.6%

ABCA1 HDL 3D 42.8%

FCGRT Albumin 1D 32.9%

FCGRT Albumin 3D 35.3%

GPLD1 ALP 1D 75.7%

GPLD1 ALP 3D 77.7%

ANGPTL3 ApoA 1D 34.9%

ANGPTL3 ApoA 3D 36.1%

PCSK9 LDL 1D 49.6%

PCSK9 LDL 3D 57.1%

SHBG SHBG 1D 75.8%

SHBG SHBG 3D 80.1%

ITGA2B Platelet count 1D 12.8%

ITGA2B Platelet count 3D 14.0%

APOB LDL direct 1D 8.9%

APOB LDL direct 3D 11.6%

SEC23B RDW 1D 9.5%

SEC23B RDW 3D 8.5%

MC4R BMI 1D 26.9%

MC4R BMI 3D 38.3%

IQGAP2 MPV 1D 14.4%

IQGAP2 MPV 3D 14.5%

LDLR LDL 1D 2.1% / 46.9%

LDLR LDL 3D 2.1% / 49.6%

GFI1B MPV 1D 63.7%

GFI1B MPV 3D 68.0%

GCK Glucose 1D 3.3% / 56.9%

GCK Glucose 3D 3.9% / 61.4%

ASGR1 ALP 1D 55.4%

ASGR1 ALP 3D 55.7%

GP1BB MPV 1D 81.5%

GP1BB MPV 3D 78.7%

TUBB1 PDW 1D 46.1%

TUBB1 PDW 3D 52.5%

N

1MLDDRARMEAAKKEKVEQILAEFQLQEEDLKKVMRRMQKEMDRGLRLETHEEASVKMLPT60

61YVRSTPEGSEVGDFLSLDLGGTNFRVMLVKVGEGEEGQWSVKTKHQMYSIPEDAMTGTAE120

121MLFDYISECISDFLDKHQMKHKKLPLGFTFSFPVRHEDIDKGILLNWTKGFKASGAEGNN180

181VVGLLRDAIKRRGDFEMDVVAMVNDTVATMISCYYEDHQCEVGMIVGTGCNACYYMEEMQN240

241VELVEGDEGRMCVNTEWGAFGDSGELDEFLLEYDRLVDESSANPGQQLYEKLIGGKYMGE300

301LVRLVLLRLVDENLLFHGEASEQLRTRGAFETRFVSQVESDTGDRKQIYNILSTLGLRPS360

361TTDCDIVRRACESVSTRAAHMCSAGLAGVINRMRESRSEDVMRITVGVDGSVYKLHPSFK420

421ERFHASVRRLTPSCEITFIESEEGSGRGAALVSAVACKKACMLGQ465

B

A

Figure 5. 3D Power Window
(A) Protein structure of GCK as predicted by Alphafold. Colors on the 3D structure indicate level of Alphafold confidence, with dark blue
indicating very high (pLDDT >90), light blue confident (90 > pLDDT >70), yellow low (70 > pLDDT >50), and red very low (pLDDT
<50). For a hypothetical window, the highlighted amino acid 240N in pink is the center of the example Window. The window is built
spreading out in 3D space according to the structure of the protein. The transparent pink circle indicates the boundaries for the analyzed

(legend continued on next page)
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associations are truly not associated or simply lack power.

Performing an analysis where all the windows of the

gene have the same statistical power allows you to rank

the parts of the gene according to their associations in a

manner that is unbiased by variant frequency.

Performing analyses with PW is now feasible with the

availability of very large sample sizes and well represented

phenotypes frompopulation studies and biobanks andwill

continue to improve as sample sizes increase. Being able to

break a gene with an established association down into

windows and still have a reasonable number of carriers of

rare genetic variants—which are themselves rare events—

in each window requires sample sizes that until now had

been unreasonable, and which remain unreasonable for

many genes. For example, MIP (MIM: 154050), which

has a significant association with cataracts, had 238 car-

riers of qualifying coding variants in the set of 350k UKB

training exomes. A window size of 20 carriers produces

only 55 windows for this gene, making it much less prac-

tical to study than a gene like TTN, where 1,362 windows

were made for the LoF model.

PW is able to extend known LoF associations to coding

variants by identifying the regions of the gene inwhich cod-

ing variants have an effect similar to that of LoF variants.

This is important because the complexity of interpreting

novel coding variants has remained a difficult problem in

human genetics. For example, ACMG guidelines allow

novel LoF variants to be considered pathogenic in a gene

where other LoF variants are already established as patho-

genic, whereas each individual non-LoF variant requires,

for example, evidence of association in other individuals

and functional studies to support any pathogenicity asserta-

tions.38 PW uses statistical evidence to distinguish coding

variants, even novel ones, that have an impact similar to

those of LoF variants. As an example, LoF variants in

LDLR are considered pathogenic for high endogenous

LDL.39 Indeed, our PWLoF model confirms that LoF variants

anywhere in this gene are associated with higher LDL levels

(effect size 0.56; Figure S7B). However, PWcoding identifies

that 49% of the carriers of rare non-benign coding variants

in this gene are also associated with higher LDL levels, with

a similar effect size (effect size 0.6, Figure 3). In this way, PW

can uncover latent non-LoF signals from regions of a gene

that might otherwise go unobserved as well as help classify

variants of unknown significance (VUS; Figure S10). This

extension of known biology to additional types of variants

in the gene increases the number of people who would

benefit from genetic screening and also improves our under-

standing of gene function.
Window. In the linear amino acid sequence shown below, 240N is sho
in this window are in light pink.
(B) As in Figure 3, PWmodels and 95% confidence intervals are shown
Each gene-phenotype pair is shown twice, for the 1D and 3DPWmod
kept in the model and final effect sizes. The percentage to the right of
there is both a negative and positive model, the percent carriers re
Figure S9. ALP, alkaline phosphatase; ALT, alkaline aminotransferas
mean corpuscular hemoglobin; MPV, mean platelet volume; PDW, p
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PW was able to identify when variants in different gene

regions could produce significantly different directions of

effect on a phenotype. Among these was the association

between GCK and glucose levels. It is known that depend-

ing on the variant effect on overall glucose metabolism,

mutations can lead to either hyper- or hypoglycemia.40

We find both of these effects, concurrently, with the PW

analysis, highlighting the regions of the gene structurally

and functionally associated with each resulting pheno-

type. While hypoglycemic variants have been reported

throughout various regions of GCK, we find most variants

are concentrated toward the 50 end, some of which are very

well described while others may help to further our mech-

anistic understanding of GCK and thus improve the scope

of variant interpretation possible at this locus.40 This

finding is also supported by a recent deep scan mutagen-

esis study, which found that 50-end mutations were more

likely to lead to lower glucose levels.41

PW works well both when models are built according to

the linear coding sequence of the gene (through 1D space)

and when they are built according to the final structure of

the folded protein (through 3D space). In the gene-pheno-

type combinations studied here, the models built from

these two approaches were largely identical despite the

analyzing windows containing very different sets of vari-

ants. Most of the genes analyzed here are ones where large

swaths of the gene show an association between rare vari-

ants and the phenotype, so that the same areas of the gene

were able to be implicated in both types of models. Howev-

er, it is reasonable to postulate that genes where only a very

specific portion of the protein is involved may show

different signals in 1D and 3D models.

While the theoretical basis for the PW method is a sub-

stantial advancement for identifying the specific regions

of genes in which rare variants are established to be associ-

ated with traits, there are still many refinements to the

methodology that will be beneficial for future studies.

One aspect is that the method requires a balance between

zooming in on specific regions of the gene (requiring a

small carrier sample size cutoff) and obtaining statistical

significance for the regions (requiring a larger carrier sam-

ple size cutoff). Future studies with even larger sample sizes

may reclassify some portions of the genes tested here, iden-

tifying some regions we erroneously excluded or identi-

fying new regions to include. The presented method also

relies on the bioinformatic prediction of which missense

variants are damaging to filter those that qualify for

consideration in the model, although we found similar re-

sults with different bioinformatic tools (Figure S11).42,43
wn in pink, and the amino acids where variants could be included

in the test set of 117k individuals for significant PWcoding models.
els. Themodel results are very similar in terms of percent of carriers
the phenotype is the percent carriers retained in the model; when
tained in the negative model is shown first. For binary traits, see
e; AST, aspartate aminotransferase; BMI, body mass index MCH,
latelet distribution width; RDW, red blood cell distribution width.
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Other improvements will involve focusing on certain clas-

ses of variants in the gene, such as those computationally

predicted to be gain or loss of function, those with

functional data from screenings, those in transcripts ex-

pressed in tissues of interest, and different protein

conformations.41,44,45

The PWmethod is centered on statistics and can accom-

modate all classes of genetic variation to fine-tune rare

variant signals and gene-based results. We believe the PW

technique can have an immediate impact on human geno-

mics research, drug development, variant interpretation,

and precision medicine. As displayed in this work, PW

can improve the specificity of variant interpretation for

rare variants in established gene-level disease associations

through regional refinement of the association. It can

also expand variant classification capabilities by

combining PWanalyses derived from the same phenotype

with carriers defined by both LoF and coding variant

models. In both cases, with more precise or complete

genomic definitions to identify relevant carriers, pheno-

typic penetrance estimates among carriers are likely to

improve—a key metric for the practice of precision medi-

cine. We also anticipate that PW will be a powerful tool

for discovery, as it will be able to characterize variant pat-

terns in a locus to better understand the mechanism of dis-

ease, improve knowledge of gene function to predict new

drug targets, and in some cases may even identify sub-

gene-disease associations that are drowned out when rare

variants are collapsed at the gene level.
Data and code availability

Statistics relating to the Power Window analysis for all

included genes, calculated using the UKB 350k discovery

cohort, are available in Table S3. UKB data are available

for download (https://www.ukbiobank.ac.uk/) to qualified

researchers. The Helix data are available to qualified re-

searchers upon reasonable request and with permission

of the Helix Steering Committee and Helix. Researchers

who would like to obtain the raw genotype data related

to this study will be presented with a Data Use Agreement,

which requires that participants will not be reidentified

and no data will be shared between individuals, third

parties, or uploaded onto public domains. Helix encour-

ages collaboration with scientific researchers on an indi-

vidual basis. Examples of restrictions that will be consid-

ered in requests to data access include but are not limited

to (1) whether the request comes from an academic institu-

tion in good standing and will collaborate with our team to

protect the privacy of the participants and the security of

the data requested; (2) type and amount of data requested;

(3) feasibility of the research suggested; and (4) amount of

resource allocation for Helix and member institutions

required to support a collaboration. The code to calculate

regions to use in Power Window analysis is available at

https://github.com/ecirulli/PowerWindow/.
Hum
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2024.100284.
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