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ABSTRACT: Since the Simplified Molecular Input Line Entry System (SMILES) is oriented to the atomic-level representation of
molecules and is not friendly in terms of human readability and editable, however, IUPAC is the closest to natural language and is
very friendly in terms of human-oriented readability and performing molecular editing, we can manipulate IUPAC to generate
corresponding new molecules and produce programming-friendly molecular forms of SMILES. In addition, antiviral drug design,
especially analogue-based drug design, is also more appropriate to edit and design directly from the functional group level of IUPAC
than from the atomic level of SMILES, since designing analogues involves altering the R group only, which is closer to the
knowledge-based molecular design of a chemist. Herein, we present a novel data-driven self-supervised pretraining generative model
called “TransAntivirus” to make select-and-replace edits and convert organic molecules into the desired properties for design of
antiviral candidate analogues. The results indicated that TransAntivirus is significantly superior to the control models in terms of
novelty, validity, uniqueness, and diversity. TransAntivirus showed excellent performance in the design and optimization of
nucleoside and non-nucleoside analogues by chemical space analysis and property prediction analysis. Furthermore, to validate the
applicability of TransAntivirus in the design of antiviral drugs, we conducted two case studies on the design of nucleoside analogues
and non-nucleoside analogues and screened four candidate lead compounds against anticoronavirus disease (COVID-19). Finally,
we recommend this framework for accelerating antiviral drug discovery.

■ INTRODUCTION
Greater understanding of viral life cycles, prompted, in
particular, by the need to combat the human immunodefi-
ciency virus, has resulted in the discovery and validation of
several targets for therapeutic intervention. Consequently, the
current antiviral repertoire now includes more than 90 drugs.1

But we still lack effective therapies for several viral infections,
and established treatments are not always effective or well-
tolerated, highlighting the need for further refinement of
antiviral drug design and development. Here, Erik De Clercq
describes the rationale behind current and future drug-based
strategies for combating viral infections.2 For the clinical use of
the antiviral drugs, you can read the literature.3 This review
address currently used antiviral drugs, mechanism of action,
and antiviral agents reported against COVID-19.4

The global pandemic substantiated by coronavirus disease
2019 (COVID-19) is an unexpected public health crisis that
demands the timely development of new therapeutics and viral
detection platforms.5 Merck’s Molnupiravir (inducing viral

error catastrophe) has once again entered the spotlight in the
same way as Remdesivir (a coronavirus RNA polymerase
inhibitor), but with a slightly different mechanism of action, as
Molnupiravir mainly causes genetic mutations to exert antiviral
effects.6 To date, only one oral drug, Paxlovid from Pfizer, has
been approved for marketing in China for coronavirus.
Paxlovid is a 3CL protease inhibitor and hence differs from
Molnupiravir which is an RNA polymerase inhibitor.
Molnupiravir binds to RNA polymerase of the progeny
coronavirus and incorporates a wrong nucleotide into the
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newly synthesized RNA molecule, thus masking the survival
capability of offspring viruses.
In the recent past, a small amount of research has been

committed to identifying nucleoside analogues for the
development of novel and efficacious antiviral drugs. As the
viruses are prone to hypermutation and breed resistant
variants, the development of nucleoside analogue drugs holds
great promise. Conclusively, nucleoside analogues substantiate
a pharmacological class of compounds with cytotoxic,
immunosuppressive, and antiviral properties.
To classify antiviral drugs based on their types of mechanism

of action, we consider two types of antiviral analogs:
nucleoside analogues and non-nucleoside analogues. There
are several nucleoside analogues and non-nucleoside analogues
as antiviral drugs.7

The last decade has witnessed successful applications of a
diverse array of novel drug development methods including
expert manual design, computer-aided drug design (CADD),
and quantitative structure−activity relationships (QSARs).8

With the emergence of deep learning and the incorporation of
the new paradigm of artificial intelligence (AI) in science, there
are overwhelmingly animated fascinating discoveries. Extensive
research has primarily focused on the deep generation model
and indeed accomplished astonishing results.9 De novo
molecular generation models contain several different
branches, graph-based model10 and transcriptome-based
model,11 antibody-based design method,12 protein−protein
interaction-based model,13 molecular substructure tree gen-
erative model,14 targeting RNA for small molecule drug
design,15 three-dimensional (3D) equivariant diffusion for
target-aware molecule generation,16 reinforcement learning
(RL) tunes pretrained networks to generate molecules with
user-defined properties,17 multitarget RL has also been
incorporated to optimize drug similarity and molecular
similarity,18 etc. According to the published literature, many
variants of the transformer model have obtained enormous
success in the natural language processing (NLP) discipline,
such as BERT,19 GPT,20 T5,21 DETR,22 ViT,23 NAT,24 and
Wav2Vec2.25 The codes of all these models can be found in ref
26. IUPAC names and SMILES strings can be employed as a
type of language and can be used as inputs for different models.
For instance, LSTM,27 cGAN,28 MolGPT,29 C5T5,30 and
smiles-gpt.31

Notably, numerous evidence manifested that conditional
and interpretable generative models can generate molecules
that successfully meet our needs better than generic molecular
generative models on a specific target.32

■ IUPAC REPRESENTATION AND SMILES
REPRESENTATION

The future of chemistry is language.33

The IUPAC (International Union of Pure and Applied
Chemistry) nomenclature is a globally recognized unique
naming system that assigns names to chemical compounds.
The SMILES (Simplified Molecular Input Line Entry System)
is another naming system, which allocates symbolic repre-
sentation to compounds, known as SMILES strings. IUPAC
harmonized chemical names globally and established the
nomenclature of organic chemistry that documented instruc-
tion on the unambiguous names for all compounds.34

Furthermore, we can clearly observe that the IUPAC name
is close to natural language, an abstract representation and easy
handling for human, consisting of English words, numbers, etc.,

while the SMILES string is a combination of chemical
elements, low-level representation, hard to read but program-
ming friendly, consisting of atomic symbols, bonds, etc.
Antiviral drug design, especially analogue-based drug design,

is also more appropriate to edit and design directly from the
functional group level of IUPAC than from the atomic level of
SMILES, since designing analogues involves altering the R
group only, which is closer to the knowledge-based molecular
design of a chemist.
In this study, considering the advantage of the human-based

IUPAC name and computer-based SMILES strings, we
integrate them to the transformer-based model. We propose
a novel transformer-based molecular generative model (Trans-
Antivirus) for the design of antiviral lead compounds. First, we
perform pretraining on the constructed training set. Thereafter,
the two antiviral tasks as the downstream task will be fine-
tuning, and finally, 30 000 molecules will be generated for
model evaluation.
Although several models exist to establish a mapping

relationship between the IUPAC name and SMILES string,
molecular optimization for specific molecular properties with
the IUPAC name as input and the SMILES string as output
has not been explored yet. Hence, our model is the first
exploration of the relationship between the chemical semantics
and molecular structure for the molecular design and
optimization by editing the IUPAC name and adding different
prefixes, especially for the design and optimization of antiviral
drug. In addition, the data set for our fine-tuning was collected
specifically for antiviral drug design, and although our
approach is general, from the perspective of application, the
results demonstrate that our model can be used for antiviral
drug discovery and generates several potential candidates for
anticoronavirus disease (COVID-19) drug design that can go
for further experimental validation or provide reference
compounds.

■ DATA AND METHODS
Data Preparation. The SMILES strings and IUPAC name

of all molecules were downloaded from PubChem.35 They
were filtered using a series of criteria: (i) filtering out the
SMILES strings containing disconnected ions or fragments;
(ii) compound standardization by RDKit36 for the removal of
salts and isotopes as well as charge neutralization. Upon
filtration, a total of 106 459 817 molecules were retained.
Subsequently, we calculated the essential properties of these
molecules including molecular weight (MolWt), partition
coefficient (LogP),37 synthetic accessibility score (SAscore),38

rotatable bonds (ROTB), hydrogen bond donor (HBD),
hydrogen bond acceptor (HBA), topological polar surface area
(TPSA), and quantitative estimate of drug-likeness (QED)39

by RDKit tool. The filtration rules were parametrized as
follows.
(a) 100 ≤ MolWt ≤ 900
(b) −5 ≤ LogP < 8
(c) SAscore <4
(d) ROTB < 10
(e) HBD < 5
(f) HBA < 10
(g) TPSA < 150
(h) QED ≥ 0.3
Right after the filtration, 79 156 024 molecules were

retained. Finally, we sorted out 30 million molecules as the
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training set, and every molecule contained the IUPAC name,
SMILES string, and LogP value.
The fine-tuning data set was divided into two components:

nucleoside analogues and non-nucleoside analogues. For
nucleoside analogues, we collected SIMILES strings from the
literature40 and retreived their IUPAC names from the
PubChem database. Afterward, their properties were calculated
by RDKit. For non-nucleoside analogues, we took non-
nucleoside analogues as our fine-tuned data set and collected
SMILES strings from this paper,41 while the postprocessing
remained the same as for nucleoside analogues.
In this study, we first applied the Tokenization procedure on

the sequence. Consequently, we assigned a character-based
SMILES tokenization with tokens in SMILES strings
corresponding to individual atoms and bonds. In contrast,
we constructed a rule-based IUPAC tokenizer with tokens in
the IUPAC names analogues to well-known functional groups
and moieties. In order to understand the SMILES and IUPAC
tokenizers in depth, the readers are referred to these
references.30,34,40,41

For each molecule, a particular property is usually a
continuous value; thus, we should convert the continuous
value of a property to its discrete values, for example, high,
middle, and low. Herein, we choose LogP as our manageable
property, where −0.4 and 5.6 as two breakpoints are used to
delineate three intervals. For each molecule, a token (one
either of <high, middle, low>) will be appended in the front of
the sequence.
After sequence tokenization and appending the discretized

property value, we encoded all the tokens as the incremental
integer sequence from 3, specifically, 0 as padding mark, 1 as
start mark, and 2 as the end mark. Notably, the start mark is
the encoded integer of the discretized property value in the
IUPAC sequence, but in the SMILES sequence, the start mark
is 1, and the end mark and padding marks are the same in both
the IUPAC sequence and SMILES sequence.
In this section, we introduce our model and the improve-

ment from three aspects. Conclusively, an end-to-end learning-
based prediction model is proposed to solve the molecular
generation and optimization problem.
Overall, our encoder-decoder transformer implementation

closely follows that of its originally proposed platform. We can
conclude two critical points from the T5 model. At first, the T5
model is trained with a maximum likelihood objective
regardless of the task.21 On the other hand, we note that the
choice of text prefix used for a given task is essentially a
hyperparameter.
Inspired by the two aforementioned points, we developed

our own property-controlled molecular generative model. First,
we add a prefix to the head of each input as a property-
controlled condition and prepend the resulting sequence with a
token indicating the computed property value of the original
molecule. To obtain these property value tokens, we
discretized the distribution of the property values into three
buckets. Octanol−water partition coefficient (LogP); low:
(−∞,−0.4), middle: (−0.4,5.6), and high: (5.6,∞). The
second end point is to get the output of maximum likelihood
objective as IUPAC embedding representation.

■ MODEL ARCHITECTURE
IUPAC-Based T5 Model. T5 model implementation

closely follows its originally (Transformer) proposed form.
First, an input sequence of tokens is mapped to a sequence of

embedding that is then passed into the encoder. The encoder
consists of a stack of “blocks”, each of which comprises two
subcomponents: a self-attention layer followed by a small feed-
forward network. Layer normalization is applied to the input of
each subcomponent. T5 uses a simplified version of layer
normalization where the activations are only rescaled and no
additive bias is applied. After layer normalization, a residual
skip connection adds the input of each subcomponent to its
output. Dropout is applied within the feed-forward network,
on the skip connection, on the attention weights, and at the
input and output of the entire stack. The decoder is similar in
structure to the encoder, except that it includes a standard
attention mechanism after each self-attention layer that attends
to the output of the encoder. The self-attention mechanism in
the decoder also uses a form of autoregressive or causal self-
attention, which allows the model to attend only to past
outputs. The output of the final decoder block is fed into a
dense layer with a softmax output whose weights are shared
with the input embedding matrix. All attention mechanisms in
the Transformer are split up into independent “heads” whose
outputs are concatenated before being further processed.
T5 uses a simplified form of position embedding where each

“embedding” is simply a scalar that is added to the
corresponding logit used for computing the attention weights.
To summarize, T5 is roughly equivalent to the original
Transformer with the exception of removing the Layer Norm
bias, placing the layer normalization outside the residual path,
and using a different position embedding scheme.21

In contrast to the idea implemented in T5, such as C5T5,30

we mainly fed the output (maximum likelihood objective) of
T5 into next transformer model, as input to the next step of
learning to map brand-new intersequence relationships. Since
the whole framework is joined together for training, instead of
training the T5 model first and then another Transformer
model, the output of T5 (the first part) in our framework is an
IUPAC embedding vector considered as a constraint, which is
not transformed into an IUPAC sequence but directly used as
input vector for the next module, as detailed in Figure 2.
But there is a question: the vocabulary size is 32 128 in T5,

IUPAC: 1491, SMILES: 870; thus, the size of IUPAC’s
encoding vocabulary in T5 is different from the next
transformer model. To accommodate the size of the next
encoded dictionary table, a linear layer was added as an
adaptive layer. Therefore, we added a linear layer (32 128,
512) before entering into an Embedding layer of Transformer,
and dropped the linear layer (1491, 512) in the original
transformer.42

Similar to the IUPAC2Struct model,34 our model also
focuses on learning the chemical semantic relationship
between the IUPAC name and SMILES. As we know, the
IUPAC name and SMILES are two different levels of language
coding systems. The former is close to our abstract natural
language, which is composed of some chemical terms,
numbers, and special symbols. Nevertheless, the latter consists
of atomic symbols, bonds, and special symbols. We can first
obtain the embedding vector representation of tokens at the
natural language semantic level through the IUPAC predictor
and then use their contextual information to encode and guide
the vector representation of the context relationship of low-
level semantic tokens in the SMILES predictor. Therefore, by
learning the embedding vector representation space of IUPAC,
we can guide and expand the space of SMILES molecule
generation, combining randomness and controllability to
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achieve the ability for molecule generation and optimization
under specific conditions.
In the IUPAC2Struct model, only the mapping relationship

between the two encoding systems is considered, and the
relationship within the sequence is not explicitly modeled.
Therefore, for the IUPAC2Struct model, we can only assume
that it is a language translation system from IUPAC to
SMILES and not a molecular generative model.
In contrast to C5T5, which learns only within one coding

language system, IUPAC or SMILES, our model directly learns
the mapping relationship between the two language systems,
IUPAC and SMILES.
In summary, we used a pair of encoders and decoders to

extract the interrelationships within the IUPAC names. Then,
we use another pair of encoders and decoders to learn the
mapping relationships between the IUPAC representation and
SMILES strings. The former can simultaneously capture the
contextual semantic relationships inside the chemical language,
and the latter can learn the translation relationships and
expand the space of SMILES molecule generation.
To prove that it is supposed to lead to improved

performance, we compared the TransAntivirus model with

the C5T5 model in the Results and Discussion section. We
concluded that TransAntivirus presented an optimal perform-
ance in terms of the generated molecular distribution, wherein
a possible explanation is the introduction of the additional
IUPAC embedding space for learning semantic relationships
within the SMILES strings through a self-attention mechanism.

■ END-TO-END LEARNING MODELS
It is worth mentioning that the TransAntivirus prediction
model is integrated into a unified end-to-end neural network
learning framework (Figure 1). At first, TransAntivirus is
leveraged to learn the IUPAC name internal relationship over a
property-controlled deformed transformer model and pretrain-
ing and fine-tuned training patterns, respectively. Second, the
original transformer prediction model receives the first part of
TransAntivirus’s output (maximum Likelihood) to employ
further nonlinear transformations. The final predictions are
obtained through the decoding of the transformed softmax
vector. All parameters Winvolved in TransAntivirus prediction
model are simultaneously optimized via a gradient descent
with adaptive moment estimation.43 The Figure 2 modified

Figure 1. Framework of TransAntivirus model.

Figure 2. Efficient and enhanced sampling of molecular chemical space for virtual screening and molecular design using TransAntivirus model.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00536
J. Chem. Inf. Model. 2024, 64, 2733−2745

2736

https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00536?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00536?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


from the original transformer illustrates our proposed frame-
work.
The proposed model is mainly composed of two

components.
(1) IUPAC embedding representation: operates directly

on IUPAC name that intuitively encodes rich chemical
semantics for organic chemists and performs transfer
learning with a unified text-to-text transformer to
leverage their intuitions about chemical knowledge.

(2) IUPAC2SMILES generator: yields IUPAC-SMILES
association relationship with the learned latent repre-
sentations from first component as input to enable the
controllable SMILES string generation and optimization.

■ EXPERIMENTAL SETUP
The implemented experimental code is based on the open-
source machine learning framework “Pytorch” (https://
pytorch.org). The employed variant transformer models are
based on the open-source deep learning platform “Hugging
Face library” (https://huggingface.co/t5-base). All experi-
ments were performed on Windows 10 operating system, an
Ubuntu 20.04.4 LTS operating system of an Intel(R) Xeon(R)
Gold 6226R CPU 32 cores, 2.9 GHz CPU and 128G memory,
and a single A40 GPU, 24G memory.

■ MODEL EVALUATION
In this study, we randomly split a preprocessed data set into
two subsets, 30 million molecules for pretraining, and 50 000
molecules as the test data set. The batch size is 64 in both
training and evaluation steps, and 10 epochs are executed
during each period. The whole pretraining and evaluation
processes elapsed 20 days, which is almost 2 days per epoch.
After training and fine-tuning, the model was applied to

generate molecules for the assessment of their Fraction of valid
(Valid), Uniqueness (Unique@k), Novelty, Frechet ChemNet
Distance (FCD),44 Internal diversity (IntDiv),45 QED, LogP,
and sample spatial distribution.

■ DOCKING PROTOCOL AND MM-GBSA ENERGY
CALCULATION

The three-dimensional (3D) structure of the receptor is
subjected to the protein preparation and docking modules of
the Schrödinger Release 2022-1 version. The preparation
involved the assignment of the hydrogen bonds, bond orders,
addition of hydrogen optimization by OPLS4 force field,
minimization of the proteins, and deletion of water molecules
beyond 5 Å of the Het group in the complex.46 Using the Glide
application, a protein receptor grid was generated (allocation
of ligand binding site for docking). Additionally, docking of all
ligands was carried out using Glide’s Ligand Docking
module.47

The Prime MM-GBSA module of the Schrödinger Tool
calculates the energy of optimized free receptors, free ligand,

and a complex of the ligand with a receptor.48 It also calculates
the ligand strain energy by placing the ligand in a solution that
was autogenerated by the VSGB 2.0 suite. The prime
MMGBSA method computes the relative binding-free energy
(ΔG binding) of each ligand molecule by the following
equation

= + +G G E G(bind) (solv) (MM) (SA) (1)

where ΔG(solv) is the difference between the GBSA solvation
energy of the receptor-inhibitor complex and the sum of the
solvation energies for the unliganded receptor and inhibitor.
ΔE(MM) is the difference of molecular mechanics energy
between the receptor-inhibitor complex and the sum of the
molecular mechanics energies of the unliganded receptor and
inhibitor. ΔG(SA) is a difference in surface area energies of the
complex and the sum of the surface area energies for the
unliganded receptor and inhibitor.

■ RESULTS AND DISCUSSION
Herein, we present the training and fine-tuning process and
then perform analysis of the model performance, analysis of the
property distribution of the generated molecules, chemical
space analysis, and property optimization analysis. Further-
more, to demonstrate the application of our model for antiviral
drug design, we provide two case studies for targets of two
types of antiviral drugs (nucleoside analogues and non-
nucleoside analogues). Finally, we perform molecular docking,
MM-GBSA energy, and virtual screening of novel lead
compounds as candidate antiviral drugs.
Analysis of Model Performance. To evaluate the

efficiency of TransAntivirus over existing models, we calculated
the same metrics from generated molecules and the original
molecules by MOSES platform.45 The experimentally
compared results of our proposed model and the other three
generative models (LSTM, cGAN, and C5T5) have been
summarized in Table 1.
Herein, each metric depends on the generated set and

reference (training) set. We have rounded each number to four
decimal places, where the Valid and Unique@1k and Unique@
10k indicate that the molecular generated by TransAntivirus is
better than LSTM, cGAN, and C5T5 in terms of the validation
and uniqueness. In Table 1, the FCD, IntDiv, and Novelty
indicate that TransAntivirus is preferentially better than other
models. Relative to C5T5, our model performs the better
novelty, FCD, and diversity by introducing the new framework,
especially regarding the maximum likelihood of latent variant
space and bridging gap between the IUPAC name and
SMILES strings. It indicates that TransAntivirus could be
improved by learning the inter- and inner-sequences relation-
ship.
Based on the above results, it can be confirmed that

TransAntivirus is significantly superior to the control methods
in terms of novelty, validity, uniqueness, FCD, and IntDiv.

Table 1. Properties of the Generated Compounds for Three Generative Models: Properties Include Numbers of Valid, Unique,
and Novelty Compounds; FCD, Frećhet ChemNet Distance

Model Valid Unique@1000 Unique@10000 FCD IntDiv Novelty

LSTM 0.9954 0.9944 0.9956 5.6139 0.8558 0.9857
cGAN 0.9926 0.9911 0.9927 4.8349 0.8819 0.9807
C5T5 0.9913 0.9925 0.9934 9.1964 0.8939 0.9890
TransAntivirus 0.9998 0.9991 0.9989 10.9471 0.8953 0.9993
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Comparison of Chemical Properties Distribution.
Chemical property distribution is an efficient presentation for
visually evaluating the generative model. To gain further
insight into the performance of TransAntivirus, we conducted
extensive experiments to systematically compare the properties
distribution of the molecules generated by LSTM, cGAN,
C5T5, and TransAntivirus.
We randomly selected 30 000 compounds from train data

set and input them into the MOSES platform.45 After training
and generating 30 000 molecules, we calculated these proper-
ties including molecular weight, natural products likeness (NP-
likeness), LogP, SAscore, QED, and quantitative estimate of
protein−protein interaction targeting drug-likeness
(QEPPI).13,49

It is noteworthy that both C5T5 and our model are
conditional generation models. It means that the properties

distribution of generated molecules is decided to be the input
sequence and the condition set; instead, the other two models
can sample without input. Thus, here, we need to focus on
these two conditional models for how to generate the novel
molecules. To be fair, we fed the same conditions and same
sequences into C5T5 and TransAntivirus, then generated
10 000 compounds, and filtered out the valid molecules.
In Figure 3, the red curve represents the property

distribution of molecules generated by the TransAntivirus.
Other curves colored by blue, pink, and yellow represent the
property distribution of molecules generated C5T5, cGAN,
and LSTM, respectively. For MolWt distribution, all the
compounds are less than 1000, and the peak of all curves is
about 250. Compared to C5T5, the molecules generated by
our model have overall larger MolWt. Furthermore, Figure 3
shows a clear difference between the distribution of QED and

Figure 3. Performance Analysis of TransAntivirus model.

Figure 4. Chemical space analysis for (a) nucleoside analogues and (b) non-nucleoside analogues.
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LogP properties between TransAntivirus and C5T5. The peak
of the curve for TransAntivirus shows the biggest value than
other models in term of NP-likeness. The compounds
generated by TransAntivirus arrive at the peak of distribution
in a bigger horizontal coordinate than C5T5 except for QED
and LogP in Figure 3. However, we cannot suppose that the
distribution curve can indicate which model is better, since
each model has its own target and merit.
Chemical Space Analysis. After fine-tuning on both

nucleoside analogues and non-nucleoside analogues, we
performed calculation of MACCS fingerprint for each
molecule. Then, we applied t-SNE (t-distributed stochastic
neighborhood embedding) to map the high dimensional
features space to two-dimensional (2D) space.50 Figures 4a
and 4b represent nucleoside analogues and non-nucleoside
analogues, respectively. The dense green dots in the scattered
plot represent the original data, while the light grayish dots
represent the generated sample. The results in Figure 4
demonstrated that the generated data have occupied the larger
space than the original data. For the generated data that have
widely spread and pervaded to more blank spaces, we assume
that it is caused by the introduction of maximum likelihood,
the space conversion between the input set (regarded as
discrete space), and the output maximum likelihood (regarded
as continuous space). Thus, there are several different
molecules to be generated for the same input, but they are
similar and very close in continuous space for the randomness.
Property Optimization Analysis. In this section, we

compared data space before and after optimization of
properties for nucleoside analogues and non-nucleoside
analogues, especially in terms of the LogP property space. A
detailed account of the prediction results can be accessed in
the Supporting Information.

For nucleoside analogues, we collected 208 compounds
from the reference article.40 The nucleoside analogues
included the parent nucleosides (four distinct nucleotide
triphosphates, i.e., adenosine triphosphate (ATP), guanosine
triphosphate (GTP), cytidine (CTP), thymidine (TTP), and
uridine (UTP, which replaces TTP in RNA)). In addition, we
selected a group of approximately 188 synthetic nucleoside
analogues (the synthetic nucleosides). To prepare the input
data before fine-tuning, at first, we converted the SMILES
strings to IUPAC names and calculated the LogP value for
each molecule. Thereafter, the selected nucleoside analogues
(total of 170 molecules) were fed to the model and
consequently generated 5000 compounds with the target
level of LogP property. After calculating the LogP value of the
generated molecules and filtering out the molecules by rule like
molecular mass >1000, invalid molecules were recognized by
the RDKit. Hence, we applied another parameter levenshtein
distance >10, wherein a total of 4822 molecules were retained.
The results are illustrated in Figure 5. The upper and lower left
panels of the bar chart portrayed the sum and mean LogP
values for the nucleoside analogues, respectively. Since the
input data were divided into three groups including low (LogP
value < −0.4), medium (−0.4 > LogP value <5.6), and high
(LogP value >5.6), the expected LogP level for each molecule
was also categorized as low, medium, and high. Conclusively,
our results confirmed that the experimental LogP level (“ori” in
bar chart) and the expected LogP level have significant
difference. To this end, we argued that our model is reliable
enough to predict nearly expected LogP level to the
experimental LogP score of the newly generated nucleoside
analogues.
For non-nucleoside analogues, we essentially collected the

fine-tuning data from the published article.41 We randomly
took 1000 molecules and fine-tuned the model for ten epochs.

Figure 5. Comparison between the input data and generated data in three levels of LogP for nucleoside analogues and non-nucleoside analogues.
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Afterward, the fine-tuned model generated 10 000 molecules.
Finally, 8102 compounds were obtained for LogP calculation
after the filtration while applying the same rules as in the case
of nucleoside analogues. If the LogP value of input molecules is
under −0.4, this compound is identified to low level, and if
over 5.6, designated as high level; otherwise, it is medium. As
illustrated in upper and lower right panels of Figure 5, the
obtained results closely resembled the same pattern as
established by the nucleoside analogues. Consequently, it
indicates that the optimization of properties across one or two
level is achieved successfully. For instance, if the input
molecule’s LogP is low level, the expected LogP level is med,
which is called low → med (regard as a case), and it is
successful when the model predicts a molecule with the med
level of LogP. For other cases, such as med → high, high →
med, med → low, low → high, and high → low, in our
experiment, all tests except for two boundaries are achieved
from the overall statistics. In Figure 5, we compared the sum
and mean for each case.
For the exception of two boundary conditions: high → high

and low → low, where the prediction could not achieve the
target, it may probably be explained by two reasons. First, it
may not be possible to find elements that are able to establish
the LogP value of the target compound higher or lower. In
other words, comparing to the original compound, replacing
new elements may also destroy the group of high or low LogP
value. Second, the fraction of higher and lower chemical
groups and molecules may probably be very little in the
training set and fine-tuning data.
In general, we compared the distribution of LogP and

molecular fingerprint space. Although the molecules generated
by TransAntivirus are structurally similar to the fine-tuning
sets, they showed diversity in terms of other properties such as
QED and LogP. For the optimization of properties in
nucleoside analogues and non-nucleoside analogues, Trans-
Antivirus has shown good performance, especially on the LogP
and NP-likeness.
Case Study. To further evaluate the potential of our

proposed model for the design of antiviral drugs, we conducted
two case studies on two different targets for coronavirus

disease (COVID-19). We fine-tuned the known active
molecules for the specific targets by generating models and
then generated virtual molecular libraries. Finally, the
generated molecules were ranked and evaluated by docking
score and MM-GBSA energy score. The case study further
confirms the potential of the proposed antiviral drug generative
model for the design of antiviral candidate compounds.
A Case for the Design of Antiviral Nucleoside

Analogues. In this case study, we collected 170 nucleoside
analogues with bioactivity for SARS-Cov-2 RNA-dependent-
polymerase, which involved five basic nucleosides (adenosine,
guanosine, cytidine, uridine, and thymidine) and 15 nucleoside
analogues (Molnupiravir, Remdesivir, 6-Mercaptopurine, 6-
Thio-dG, 6-Thiopurine riboside, 8-Azaguanine, Azathiopurine,
BCNA,Cloturin, Flufylline, Gemcitabine, GS-441524, Thiami-
prine, Thioguanine, and Tubercidin) that have reported in
vitro activity against the SARS-CoV-2 Nucleosides. We
hypothesize that nucleoside analogues, targeting the SAR-
SCoV-2 RNA-dependent RNA polymerase, contain implicit
chemical information that contributes to their activity against
the enzyme. Thus, searching the molecular space that
optimizes the properties of the anti-SARS-CoV-2 Nucleosides
could lead to more inhibitors against the viral enzyme. For the
anti-SARS-CoV-2 nucleosides, the model was applied to
generate 5000 molecules after fine-tuning, and 4802 molecules
were retained after filtering out by the rules.
According to our findings, the candidates showed the

highest similarity with the reference drug and corroborated
high novelty and strong binding affinity for nucleoside
analogues. Referring to the structure of Remdesivir, first, we
computed the MACCS fingerprint of 4802 compounds and
applied Tanimoto Similarity to exclude those candidates who
have score less than 0.5. Thereafter, the 1546 retained
candidates were used to perform docking and MMGBSA
energy computation. The three-dimensional (3D) structure of
the SARS-Cov-2 RNA-dependent-polymerase (PDB ID:
7BV2) was retrieved from Protein Data Bank (PDB) and
subjected to the protein preparation and docking modules. To
this end, based on several scoring and ranking criteria from
both docking and MMPBSA energy computation, we short-

Figure 6. Ligand interaction diagrams of inhibitors into the binding site of SARS-CoV-2 RNA-dependent-RNA-polymerase (RdRp). The inhibitors
are (A) Remdesivir triphosphate (RTP), (B) Compound a2, and (C) Compound a1. The binding free energy (kcal/mol) for the protein-inhibitor
complexes predicted by the MM/GBSA method.
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listed the top-8 candidate drug-like molecules in Table S1 in
the Supporting Information. Furthermore, the top-2 candidate
molecules were recommended for further evaluation as the
promising candidate hits against the Covid-19 disease.
Since crucial molecular interactions between the potential

drug candidates and protein targets are essential to guide
structure−activity optimization, the binding interactions of
promising antiviral drug candidate hits and SARS-Cov-2 RNA-
dependent-polymerase were explored. The molecular inter-
action pattern of the final two candidate hits is depicted in
Figure 6. As previously reported, a traditional hydrogen bond
(H-bond) will form when the two atoms (capable of H-bond
formation) are oriented in such a position that the angle and
distance between the donor and acceptor is less than 135° and
3.0 Å (acceptor to donor heavy atom), respectively.51 The
binding interaction of Remdesivir triphosphate (Reference
molecule) accomplished several attractive charge interactions
between its triphosphate group and the residues Asp623,
Arg555, Asn691, and Asp760 of the SARS-Cov-2 RNA-
dependent-polymerase (Figure 6a). Compared to Remdesivir
triphosphate, the interaction of our newly generated two
candidate compounds showed a preferential binding pattern.
The docking results of the TransAntivirus generated

candidate hit molecule 1 (Compound a2) showed the
formation of five hydrogen bonds with SARS-Cov-2 RNA-
dependent-polymerase (Figure 6b). The in-depth analyses
depicted that the sugar moiety of Compound a2 established
three H-bonds with Arg555, Thr680, and Asn691 of SARS-
Cov-2 RNA-dependent-polymerase. In parallel, the other two
H-bonds were formed between the terminal amino and
carboxylic groups of Compound a2 and the Arg555 and
Cys622 residues of the SARS-Cov-2 RNA-dependent-polymer-
ase. Moreover, it was also noticed that a π-cation interaction
and a salt bridge were formed with the aromatic ring of the
nucleoside moiety and the terminal carboxyl group of
Compound a2 and the Arg555 and Arg553 residues of the
SARS-Cov-2 RNA-dependent-polymerase, respectively (Figure
6b).

Compound a1 in Table S1, which exhibited the highest
binding affinity among the hit molecules, obtained a high
hydrogen bond occupancy as compared to Remdesivir.
Compound a1 formed a total of eight hydrogen bonds with
SARS-Cov-2 RNA-dependent-polymerase (Figure 6c). As
illustrated in Figure 6c, the sugar moiety of compound a1
formed three H-bonds with Thr680, Asn691, and Asp760 of
the SARS-Cov-2 RNA-dependent-polymerase. Furthermore, the
terminal nitrile and carboxyl groups of Compound a1 formed
two H-bonds each with Lys551 and Arg553 and Lys621 and
Cys622 residues of the SARS-Cov-2 RNA-dependent-polymer-
ase. Similar to the Reference molecule, the adenine moiety of
Compound a1 also established a H-bond and a π-cation
interaction with the Arg555 residue of the SARS-Cov-2 RNA-
dependent-polymerase (Figure 6c). In addition, π-alkyl hydro-
phobic interactions were observed with Asp623 and Lys621.
Since the newly generated candidate hits established a strong
network of H-bonds with the conserved binding site residues
of the SARS-Cov-2 RNA-dependent-polymerase, it is therefore
suggested that polar interactions (H-bonds) could improve the
binding affinity of the candidate hits.
A Case for the Design of Antiviral Non-Nucleoside

Analogues. To evaluate the potential of the proposed model
for the design of non-nucleoside analogues, we chose the
SARS-CoV-2 3CLpro protein. The 3D structure of SARS-CoV-
2 3CLpro protein (PDB ID: 6W63)52 was retrieved from PDB.
First, we collected 70 molecules as input with bioactivity for
SARS-CoV-2 3CLpro. Thereafter, we sampled 10 000 molecules
from a fine-tuned model and filtered out some molecules by
applying the rules like molecular mass >1000, invalid
molecules recognized by the RDKit, levenshtein distance
>10, (refer to the input molecules) 8104 molecules were
retained. Then, we calculated the Tanimoto Similarity based
on MACCS fingerprint with the reference molecule Bedaqui-
line.53 So, molecules that secured similarity greater than 0.5
were retained; hence, a total of 3706 molecules were
shortlisted. Finally, these 3706 molecules and Bedaquiline
were evaluated for their SAscore and QED. To this end, only

Figure 7. Ligand interaction diagrams of the inhibitors into the binding site of SARS-CoV-2 3CLpro. The inhibitors are (A) bedaquiline, (B)
Compound b7, and (C) Compound b18. The binding free energy (kcal/mol) for the protein-inhibitor complexes predicted by the MM/GBSA
method.
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987 molecules could successfully fulfill the aforementioned
criteria. Next, the successful candidate molecules were
subjected to molecular docking, Prim MM-GBSA energy
calculation, and virtual screening for identification of novel
lead. The docking and energy calculation procedure remained
the same as those in the first case study.
To this end, based on several scoring and ranking criteria

from both docking and MM-GBSA energy computations, we
shortlisted the top-18 candidate drug-like molecules in Table
S2 in Supporting Information. Furthermore, the top-2
candidate molecules were recommended (through the eyes)
for further evaluation as the promising candidate compounds
against the Covid-19 disease. Figure 7 shows the selected
candidates that exhibit how to interact with the receptor. The
binding interaction of Bedaquiline (Reference molecule)
accomplished several attractive charge interactions between
its group and the residues Cys145 and Glu166 of the SARS-
Cov-2 3CLpro (Figure 7a). The hydrophobic interactions of
Bedaquiline were established with residues His41, Met49, and
Glu166 of 3CLpro. Compared to Bedaquiline, the interaction
of our newly generated two candidate compounds showed
preferential binding pattern. The docking results of the
TransAntivirus generated candidate hit molecule (Compound
b7) showed the formation of four hydrogen bonds, four
hydrophobic interactions, and a Salt Bridge with SARS-Cov-2
3CLpro (Figure 7b). In Figure 7b, the generated molecule
(Compound b7 in Table S2) formed hydrophobic interactions
with residues Thr25, His41, Met49, and Met165 and hydrogen
bonds established with residues Ser144, Glu166, and Gln189
of SARS-Cov-2 3CLpro. Furthermore, Salt Bridges formed
between the group Tertamine of Compound b7 and residue
Glu166 of SARS-Cov-2 3CLpro.
The generated molecule (Compound b18 in Table S2)

showed the formation of five hydrogen bonds with Thr25,
Gly143, His163, and Glu166 residues and hydrophobic
interactions with the residues Met165, Pro168, and Gln189
of SARS-Cov-2 3CLpro (Figure 7c). The MM-GBSA energy of
Compound b18 is −52.38 kcal/mol and more stable than that
of the Reference molecule (−36.09 kcal/mol), as shown in
Table S2. The same goes for Compound b18 (−45.99 kcal/
mol).

■ DISCUSSION
Overwhelmingly, the transformer-based model has the
potential to model long-range dependencies and symmetric
molecular structures. We compared the proposed framework
to other baseline models. The results show that TransAntivirus
performs significantly better than the control methods in terms
of novelty, validity, uniqueness, and diversity. TransAntivirus
showed excellent performance in the design and optimization
of nucleoside and non-nucleoside analogues by chemical space
analysis and property prediction analysis. Furthermore, for the
applicability of TransAntivirus in the design of antiviral drugs,
the two case studies show that the generated antiviral
analogues demonstrate similar features and diversity with
their inputs. However, we find that the generated compounds
could not go beyond the reference molecule and only
performed well on specific properties but worse on other
properties. It indicates that the sequence-based single modality
approach only performs conditional permutations in the
dimension of sequence. Although we achieve conditional
control generation and optimal generation of molecular
properties, the generated molecules are still screened in the

subsequent molecular docking using many physics-based
methods, so if more information can be fused into the
model, it will help to find drug molecules that meet the
requirements more quickly, which is what is studied in
multiobjective property optimization.

■ CONCLUSION
In this study, to generate chemically valid molecules and
compare performance with other models, we trained our
model and three control models on a large data set. For the
optimization of molecular properties, the model was fine-tuned
on the small data set, and then we generated molecules and
compared them with the input data for similarity. To validate
the applicability of TransAntivirus in the design of antiviral
drugs, the model was fine-tuned on a small data set consisting
of the parent nucleosides, the SARS-CoV-2 Nucleosides, and
the Synthetic Nucleosides for the design of nucleoside
analogues (non-nucleoside analogues have similar operations).
Finally, we performed two case studies and screened four
candidate lead compounds against anticoronavirus disease.
Compared to most molecule generation models based on

SMILES, using the IUPAC-directed expansion of the SMILES
molecule generation space can help optimize the generated
molecules more accurately from a chemical semantic
perspective. This is mainly achieved through two ways: (1)
by adding attribute encoding prefixes at the beginning of
IUPAC input sequences, thereby achieving overall changes in
specific attributes of the molecule, and (2) by masking a
position in the IUPAC token sequence to achieve pointwise
optimization, thus achieving molecule generation and opti-
mization at the IUPAC language level.
The significance of our study in the fields of fundamental

and translational biology is demonstrated by several observa-
tions. It shows that the TransAntivirus was fine-tuned on only
a small set of 20 nucleosides, generating several molecules that
are similar or identical to natural or synthetic nucleoside
analogues. These generated nucleoside analogues have
chemical alterations that involved either the ribose or
nucleobase moiety. Then, that focused molecular generation
could also be directly leveraged to explore the molecular space
around antiviral nucleosides and non-nucleoside analogues;
specifically, they are active against SARS-CoV-2. Finally, the
generative models could aid in the molecular design of
nucleosides and non-nucleoside analogues with a wide range of
applications from prebiotic chemistry to drug discovery.
It is important to highlight some limitations of our study.

First, the metrics for the assessment of generative design
models continue to evolve, and it is not feasible to explore all
metrics that have been reported in the literature. It is critical
that performance assessments of generative models are always
taken in the context of the metrics that are applied in the goals
of a given project. Second, gold-standard validation sets for
generative molecular design problems do not exist. Thus,
assessing the similarity between the generated molecules and
the reference sets, we recognize that some otherwise
biologically significant molecules may be missed.
There are several directions for future studies, which we can

exclude from our study. As our proposed TransAntivirus is a
general approach for bimodal molecular generation and
property optimization, it would be interesting to apply it to
other domains and problems, for instance, learning of
relationship between SMARTS and SMILES. Moreover,
multiobjective optimization of molecular properties is a very
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challenging problem. Nevertheless, TransAntivirus can be
easily extended to multiobjective molecular optimization by
encoding it as a prefix to the top of the molecular sequence.
Finally, multiobjective and multimodal research is the

current critical direction for molecular generation. Incorporat-
ing more dimensional data and meeting the requirements of
more objectives are crucial for the development of such an AI
model; for example, a reinforcement learning method can be
combined with TransAntivirus, and a prompt-based approach
can be used to fine-tune.
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