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ABSTRACT: Accurate in silico prediction of protein−ligand
binding affinity is important in the early stages of drug discovery.
Deep learning-based methods exist but have yet to overtake more
conventional methods such as giga-docking largely due to their lack
of generalizability. To improve generalizability, we need to
understand what these models learn from input protein and ligand
data. We systematically investigated a sequence-based deep learning
framework to assess the impact of protein and ligand encodings on
predicting binding affinities for commonly used kinase data sets. The
role of proteins is studied using convolutional neural network-based
encodings obtained from sequences and graph neural network-based
encodings enriched with structural information from contact maps.
Ligand-based encodings are generated from graph-neural networks. We test different ligand perturbations by randomizing node and
edge properties. For proteins, we make use of 3 different protein contact generation methods (AlphaFold2, Pconsc4, and ESM-1b)
and compare these with a random control. Our investigation shows that protein encodings do not substantially impact the binding
predictions, with no statistically significant difference in binding affinity for KIBA in the investigated metrics (concordance index,
Pearson’s R Spearman’s Rank, and RMSE). Significant differences are seen for ligand encodings with random ligands and random
ligand node properties, suggesting a much bigger reliance on ligand data for the learning tasks. Using different ways to combine
protein and ligand encodings did not show a significant change in performance.

■ INTRODUCTION
In computer-aided drug discovery, being able to predict the
binding affinity (BA) between a protein and a potential drug
candidate is critical to identify new small molecules from large
libraries. Accurate experimental screening for good binders is
not practical for rapidly testing millions of drug-like
compounds against potential protein targets.1 Over the last
four decades, many different approaches to in silico predictions
for binding affinities have been developed. This encompasses
both structure-based and ligand-based approaches;2 however,
each of them still has certain drawbacks when conducting a
large-scale screening of compound libraries against a certain
protein target. For example, docking3,4 methods can be used to
screen large libraries, but often the desired accuracy for a BA is
not achieved. On the other hand, alchemical free energy-based
affinity prediction techniques5−7 are more accurate, but
computationally costly for the discovery of hits in ultralarge
libraries.8 Both through the rapid development of new machine
learning methods and better availability of binding affinity data,
e.g. through PDBbind,9 KIBA,10, and Davis,11 many different
efforts have been explored to generate ML-based methods for
BA.12,13

In this paper, we will look at some of these machine learning
(ML) models for binding affinity predictions more closely to
gain insights on how components of these models contribute

to the performance of the binding affinity prediction task.
Depending on the type of input data used during training,
these deep learning (DL) methods can be broadly categorized
as sequence- or complex-based methods.2 Complex-based
methods14−20 are trained on features from 3-dimensional (3D)
protein−ligand complexes. Here we focus on sequence-based
methods.
Sequence-based approaches try to learn from Simplified

Molecular Input Line Entry System (SMILES) strings and one-
dimensional (1D) protein sequences. This can either be in the
form of language models21 or converting SMILES and protein
sequences to graphs, leveraging 2D connectivity information
from these graphs.22,23 The 1D and 2D-based DL models
extract the features from the sequence and SMILES string and
the feature vector formed by concatenating encoded protein
and ligand features is used to get to the BA prediction (Figure
1). Zhao et al. compiled a comprehensive overview of deep
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learning-based protein−ligand interaction prediction ML-
based methods,13 which provides a useful starting point. We
will take a closer look at some of the examples from this review,
as our investigations focus on DL architectures from these
examples.
Öztürk et al.24 proposed DeepDTA, one of the earliest

sequence-based methods using CNNs to extract 1D sequence
information on the protein and ligand SMILES. WideDTA25

extended DeepDTA by incorporating additional information
sources, such as protein domains and motifs, and ligand
maximum common substructure words. SMILES strings are a
linearized representation of a ligand graph capturing structural,
geometric, and topological properties. Jiang et al.23 introduced
a more rational approach to utilize the information from the
2D contact map predicted by a supervised deep learning
method, Pconsc4,26 as the representation of the tertiary
structure and have demonstrated improvements in binding
affinity performance. These contact maps capture the details of
residue−residue interactions and can be naturally modeled as
graphs. All of these methods are trained and evaluated using
publicly available kinase data sets.10,11 There are also other
sequence-based DL methods27−31 that have similar architec-
tures to that of Jiang et al.23

In this paper, we systematically investigate sequence-based
DL models, primarily CNN and G(C)NN-based architectures,
to understand how these model architectures learn from
information presented to them through different encodings of
protein sequences and ligand SMILES string. Specifically, we
test ligand and protein encodings in 1D and 2D as summarized
in Figure 1. For protein encodings, we look at 1D encodings
obtained from sequences (Figure 1A) and 2D protein
encodings obtained from contact maps (Figure 1B). For the
1D encodings, we compare the Evolutionary Scale Modeling
(ESM-1b) language model32 to the performance of hand-
crafted Kinase−Ligand Interaction Fingerprints and Structures
(KLIFS) data using a one-hot encoding of the identified
binding sites33 on the downstream binding affinity prediction
task. To test 2D encodings that rely on contact maps we use
four different contact map prediction methods: protein
sequence,32 homology information derived from multiple
sequence alignment,26 and 3D structures34 predicted through
AlphaFold2. Lastly, we use a random contact map as a control.
To study the impact of ligands on the DL framework, the input
SMILES string is transformed into a graph structure and then
processed using a GNN to obtain its encodings, as shown in
Figure 1D. By looking at various perturbations of the ligand
graphs, we can evaluate the effect on the downstream binding

Figure 1. Systematic assessment of protein and ligand encodings on a deep learning framework for protein−ligand binding affinity predictions. A:
1D protein representation is obtained from the input sequence and then passed through a CNN module to obtain the protein encoding. B: 2D
protein encoding where an intermediary step of contact map prediction is required for the protein graph generation to obtain structural information
from the sequences. The generated graphs are passed to graph neural networks to extract features and obtain the protein encodings. C: Overview
structure of the DL framework used for this investigation. The DL framework processes the input sequence and SMILES data using 1D or 2D data
structures to form their respective encodings. These encodings are combined and passed to a fully connected neural network for binding affinity
prediction. D: The input SMILES string is converted to a 2D graph and processed through the graph neural network to obtain the ligand encoding.
E: Combination of protein and ligand encodings, namely concatenation, element-wise product, and concatenating the vectors from protein−ligand
encoding concatenation and element-wise product.
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affinity prediction task. The last point of investigation is how
the ligand and protein encodings are concatenated and how
this may affect any binding affinity prediction Figure 1E. All
experiments were carried out on the Kinase inhibitor
bioactivity (KIBA)10 and Davis11 data sets as outlined in the
methods section. Overall, we found that current architectures
do not make much use of the protein data shown in these
typical CNN and GCN architectures as presented in the results
and discussion section.

■ METHODS
Data Sets. We used two kinase data sets, Davis11 and

Kinase inhibitor bioactivity (KIBA),10 which are common
benchmark data sets for the evaluation of how well DL models
perform at binding affinity prediction tasks. Davis comprises
selectivity assays of 442 kinases and 68 inhibitors, with
measurements for the inhibitor’s dissociation constants. These
values were transformed into logarithmic space, consistent with
prior studies.23,24 Higher pKd values mean higher affinity. From
Figure 2B, it can be seen that there is a skew toward
nonbinders in this data set.
The other data set, KIBA, amalgamates various sources of

bioactivity data into a single KIBA score, optimizing
consistency across different measures (Ki, Kd, and IC50), with
lower scores implying a stronger binding affinity. The KIBA
data set was originally composed of 467 targets and 52,498
small molecules; however, He et al.35 filtered it to contain only
small molecules and targets with at least 10 observations
yielding a total of 229 unique proteins and 2111 unique small
molecules. This filtered data set was used to benchmark earlier
BA prediction methods.22−24 We filtered both the Davis and
KIBA data sets further, to only include kinases with sequence
lengths less than or equal to 1024 residues, as some of the
protein-encoding techniques we used are limited to sequence
sizes of up to 1024. Figure 2 summarizes the distribution and
properties of both the Davis and KIBA data sets. Similarly to
previous studies,22−24 we randomly divided each data set into
six roughly equal parts, using 5/6 for training and validation,
and the remaining data for testing.

From Features to Encodings for Ligands and
Proteins. To assess the performance of the BA learning
task, we tested different encodings for ligands and proteins. We
used graph-based approaches for ligands, and for proteins we
used 1D features and 2D graph-based encodings, which are
outlined in detail below.
Protein Representations for Generating 1D Encodings.

We tested two protein representations to study the effect of 1D
encodings, Kinase−Ligand Interaction Fingerprints and
Structures (KLIFS) and Evolutionary Scale Modeling (ESM-
1b).
ESM-1b32 is a protein language model based on a

Transformer-3436 architecture trained on more than 220
million (unaligned) sequences from UniProt37 through masked
language modeling objective. During training, the transformer
model is presented with protein sequences where a subset of
their residues are masked, either by a random permutation to a
different amino acid, by leaving them unmodified, or through a
fraction of residues being masked. The objective of the model
is to predict the values of the masked residues by considering
the context of all unmasked residues in the input. We
implemented the ESM-1b32 model using the fair-esm Python
package, and the representations were obtained using the
esm1b_t33_650M_UR50S() model.

KLIFS provides information on how kinase inhibitors
interact with their targets.33 It provides a consistent alignment
of 85 kinase ligand binding site residues that enables the
identification of family-specific interaction features and the
classification of ligands according to their binding modes. We
leverage the 85 kinase ligand binding site residues for each
kinase in the data sets using either Gene Name or UniprotID
query. The 85 residues obtained for each kinase are then one-
hot encoded; each residue is encoded to one of the 20 amino
acids or a gap. The feature vector obtained from either KLIFS
or the ESM-1b model is used as input to the convolutional
neural network (CNN) module used for 1D encodings (see
Figure 1A).

Figure 2. Summary statistics of KIBA10 and Davis11 data sets. KIBA
has 188 proteins, 2111 ligands, and 95,577 binding interactions, while
Davis contains 333 proteins, 68 ligands, and 22,644 binding
interactions. A: Distribution of KIBA score across the entire data
set. Lower KIBA score denotes higher binding affinity (≤3). B:
Distribution of pKd scores across the Davis data set. Higher pKd
indicates a higher binding affinity with (>7) usually seen as a binder.
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Contact Maps for Protein Graph Generation and 2D
Encodings. Protein’s 2D encodings are generated by means of
a protein contact map. A protein contact map is a graph
representation of a protein with an adjacency matrix containing
information on which amino acids in the protein chain are in
contact or not.38,39 Protein graphs Gp = (Np,Mp) are generated
from the contact maps using input protein sequence with Lp
residues. A pair of residues is said to be in contact or linked
whenever the Euclidean distance (di,j) between their Cα atoms
is less than or equal to a threshold dc. These connections can
be determined from a 3D structure of a protein or predicted by
means of other computational methods.
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Eq 1 summarizes the entries of the adjacency matrix Mp of
the protein. In addition, each node in the adjacency matrix has
certain node features which are represented by a matrix

×N L
p

54p . The 54-dimensional feature vector for each
residue node is computed, for each of the Lp amino acids with
a summary of computed features presented in Table S1.
While the node features in the protein graph are kept

constant, the contact map, i.e., the underlying adjacency
matrix, is computed using four different ways to evaluate this.
The first contact map prediction method used to obtain a
protein graph is Pconsc4.26 It is a supervised DL method with
a U-net architecture40 trained on a curated data set with 2791
proteins from PDB and benchmarked on two data sets without
homology to the training set.26 It uses a 72-dimensional feature
vector computed from multiple sequence alignment as input.
The output of Pconsc4 is the probability of whether there is a
contact between two pairs of amino acids, then a threshold of
0.5 is set to obtain the contact map, as proposed in the original
paper.26 The final contact map has a shape of (Lp × Lp), where
Lp is the number of nodes (residues or amino acids). This
method was originally used by Jiang et al.23 in their DL
framework for binding affinity prediction.
The next method for obtaining a contact map is using data

from an AlphaFold2 structural34 model. AlphaFold2 predicts
the 3D coordinates of all heavy atoms for a given protein using
the amino acid sequence and aligned sequences of homologues
as inputs. Here, we used the AlphaFold2 protein structure
database41 to get the 3D structures for each of the proteins
used in the KIBA and Davis data sets. We downloaded the 3D
structures in PDB format and used MDAnalysis version 2.0.042

and NetworkX version 2.8.443 to compute the contact map
from the 3D structure. The pairwise Cα distances were
calculated for each given structure, and two residues were said
to be in contact if their distance was less than 8 Å.38,39

We also used ESM-1b,32 as discussed earlier, for extracting
1D protein encodings to obtain a contact map. The ESM-1b
model predicts the contacts between residue pairs from the
input protein sequence only. It learns the tertiary structure of a
protein sequence in its attention maps during the unsupervised
training on UniProt37 data. The contact map predictions were
made using the esm1b_t33_650M_UR50S() model by calling
the model.predict_contacts() method using the default
threshold. At the time of our data collection for this study,
ESM-1b was the most recent model available. However, it is
worth mentioning that it has since been superseded by the
release of the ESM-2.44

Randomly generated contact maps are used as a control
method for studying the effect various contact map methods
will have on protein graph encodings and, in turn, the binding
affinity prediction. To generate random contact maps, we first
generate a random protein sequence with randomly selected
amino acid residues of the same length as the input protein
sequence. The random sequence string is then used to get
residue−residue contacts using the ESM-1b32 model in a
similar way as described above. Using the contact information
from each of discussed methods, we then compute the
adjacency matrix Mp to build the protein graph.
Ligand Encodings and Their Perturbations. The ligands

are represented as graphs derived from a linearized version of
their chemical structure represented as SMILES strings. Ligand
encodings are then obtained from these graph representations.
Ligand graphs Gl = (Nl, Ml) are generated from the input
SMILES string with Ll atoms, where

×M L L
l

l l is an
adjacency matrix with information about the chemical bonds
present between any given pair of atoms. Self-loops are added
to the graph construction, i.e., the diagonal of the adjacency
matrix is set to one to improve the feature performance of the
molecule.22,23 By adding self-loops, each node can incorporate
its own features during the convolution operation, ensuring
that its own information is retained and not solely influenced
by its neighbors. This is particularly crucial for nodes with
fewer connections, ensuring they do not lose their inherent
feature information during the convolution process.22,23 Each
ligand node in the graph is denoted by a 78-dimensional
feature vector similar to Jiang et al.23 capturing the one-hot
encoding of the atom type, degree of the atom, total number of
hydrogens bound to the atom, number of implicit hydrogens
bound to the atom, and whether the atom is aromatic or not.
We processed the SMILES string with the RDKit version
2020.09.545 library using Chem.MolFromSmiles() to get the
atom and bond details for building the ligand graph.
To look at the effects of the ligand encodings on the

downstream task, we designed three different ways to perturb
the ligand graphs. The first randomization technique, which we
call Point randomization, generates a new SMILES string with
minor changes to the original one, thus altering the ligand
graph slightly. This involves identifying specific atoms (such as
Cl, F, Br, and (=O)) and making selective changes to up to
four atoms, such as substituting halogens or eliminating a (=O)
atom. If these enumerated atoms are absent, a Cl atom is
prefixed. This checks the model’s sensitivity to minor ligand
structure changes. Detailed insights on point randomization,
along with Algorithm 1, are in the SI. The second technique,
Node feature randomization, assesses the impact of node
features in the model’s predictions. We randomly permute the
node feature values across the graph, thus disrupting the nodes’
identities while preserving the graph’s structure. The degree of
performance change following this randomization will indicate
the model’s dependency on node features versus the graph
structure for its predictions. The third method, Random
sampling, represents an extreme level of randomization, where
the original ligand graph is substituted with a randomly
selected ligand graph from the same data set. This approach
enables us to evaluate whether our DL model relies on ligand
features for binding affinity prediction. By training the model
with a randomly selected ligand, we can ensure that we are not
generating chemically implausible ligands.

Deep Learning Architecture. To combine information
from our ligand encodings and protein encodings in a deep
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learning architecture, we borrow ideas from the architecture
proposed by Jiang et al.23 We use a module for protein
encodings and one for ligand encodings. For the 1D protein
encodings, we use a three-layer CNN model (Figure S1). For
the 2D graph, approaches used for both ligand and protein a
GNN model with three graph convolutional network (GCN)
layers similar to Jiang et al.23 are used (Figure S2). The GCN
model learns the representation for a given input graph G =
(N, M), where ×N qv is the matrix containing v nodes and
each node is represented by a q dimensional feature vector.

×M v v is the adjacency matrix that provides the structural
information on the graph. The features are extracted from the
graph via GCN layers, where each layer will perform a
convolution operation by following the propagation rule46

defined below

=
=+

H N

H D MD H W( )l l l

0

1 1/2 1/2
(2)

Here, Hl and Wl denote the lth GCN layer outputs and its
corresponding learnable parameters, respectively. The adja-
cency matrix, M̃, with self-loops in each node, i.e., M̃= M + I,
where I is the identity matrix and D̃ is the diagonal node
degree matrix calculated from M̃, =D Mj ij. The design of

the D MD1/2 1/2 term is intended to add a self-connection to
each node and keep the scale of the feature vectors. σ(.)
represents a nonlinear activation function, Rectified Linear
Unit (ReLU).

Experimental Setup for Model Training and Analysis.
The detailed DL architecture is outlined in the SI. Figure S1
summarizes the CNN architecture used for the 1D protein and
ligand encodings with the 1D protein encoding making use of
the highlighted CNN module. Figure S2 contains a summary
of the architecture used for the GCN of the 2D protein−ligand
encodings. These protein graphs Gp and ligand graph Gl
derived encodings are obtained using the GCN module.
Both the CNN and GCN modules are implemented with
PyTorch and PyTorch geometric. We use the Mean Squared
Error (MSE) loss function to train the DL model. Experiments
testing combinations of ligand and protein encodings in 1D
and 2D are summarized in Table S2. Each experiment trains
the DL model for 2000 epochs with batch size 128 and
learning rate β = 0.001 using the Adam optimizer, saving the
top-performing model from the validation set. To ensure the
robustness of our experiments, we randomly selected three
deep learning models trained on three different folds from the
training split. These models were then used for bootstrap
resampling on a randomly selected sample size of 1500 data
points from the test set. The mean predictions of the trained
models for each bootstrap iteration are used to compute the
evaluation metrics and their associated errors. We use
Concordance Index (CI), Root Mean Squared Error
(RMSE), Pearson correlation, and Spearman rank correlation
to assess the model’s performance. All code and models are
accessible at https://github.com/meyresearch/DL_protein_
ligand_affinity.

■ RESULTS AND DISCUSSION
Different Protein Contact Map Prediction Methods

Provide Different Protein Graphs for Protein Encod-
ings. We computed protein contact maps (PCM) for the
KIBA and Davis data sets, as outlined in the methods section

using structural data from AlphaFold2, the sequence-based
method ESM-1b, and the homology modeling tool Pconsc4.
To obtain a baseline idea of how well these methods correlate
to experimentally determined structure-derived PCMs, we
manually curated 50 protein structures with structural data
available in the RCSB protein data bank (PDB) spanning
across the kinase data sets KIBA and Davis. These structures
were randomly selected based on their sequence length
matching the corresponding kinase in the Davis or KIBA
data set, ensuring a representative and unbiased sample. We
used either Uniprot ID or Gene ID to identify the structures
from the PDB. Contact maps from PDB data were computed
in the same way as AlphaFold2 PCMs, but used as a reference.
To evaluate the performance of contact map prediction
methods, we used the F1 score, Matthews’ correlation
coefficient (MCC),47 and precision metrics. MCC is a
balanced metric that considers the distribution of true
positives, false positives, true negatives, and false negatives in
a binary classification problem, making it a suitable metric for
evaluating models in cases of class imbalance; we provide more
details about the metric in the SI. Figure 3A shows an example
of a PCM obtained from PTK-6 with Uniprot ID: Q13882 and
PDB ID 5D7 V with 8 Å threshold and highlight the true
contacts (turquoise squares), falsely predicted contacts (pink
circles), and lost contacts (orange crosses), that is, those that
were present in the 3D X-ray structure contact map but not
present in the predicted one. For more examples, see the SI.
Figure 3B shows violin plots that compare PCM generation

methods and their performance according to MCC, F1, and
Precision. The contact map predictions from AlphaFold2
structures had the highest mean MCC and standard deviation
of 0.54 ± 0.21 and F1-score of 0.55 ± 0.22, while the ESM-1b
method had the lowest average MCC (0.07 ± 0.04) and F1-
score (0.09 ± 0.04). The contact map prediction results of
Pconsc4 (MCC: 0.51 ± 0.16, F1-score: 0.51 ± 0.17) are
comparable to that of the AlphaFold2; however, the mean
precision of Pconsc4 (0.59 ± 0.25) method is slightly better
than AlphaFold2 (0.55 ± 0.22) contact maps on the curated
PDB data set. Using the Wilcoxon signed-rank test, we
evaluated the performance of the contact map prediction
methods on the 50 experimentally determined structures. In
the Wilcoxon signed-rank test, the null hypothesis is that there
is no significant difference between the performance of the two
models. Generally, a p-value less than or equal to the
significance level of 0.01 is considered statistically significant,
leading to the rejection of the null hypothesis. On comparing
the method predictions on MCC, F1-score and precision for
each pair of methods we observed a small p-value (p < 0.01),
indicating strong evidence against the null hypothesis. Thus,
there is a significant difference between each pair of the contact
map prediction methods used in this study, and the contact
map predictions obtained from each method are not the same.
ESM-1b appears to be the least reliable and accurate method
for predicting contact maps, whereas AlphaFold2 and Pconsc4
exhibit almost biomodal distributions for MCC and F1-score.
To understand the reliability of protein structures used to
obtain AlphaFold2 contact maps, we computed the average
confidence score of AlphaFold2 structures per residue in the
Davis and KIBA data sets. The average confidence score per
residue for KIBA was 78.2 ± 21.52, while for Davis, the score
was slightly higher at 88.82 ± 22.35. Removing low confidence
score (<70) AlphaFold2 structures from the set of 50 hand-
curated X-ray structures does not remove the bimodal
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distribution in MCC, F1, and Precision for AlphaFold2 and
Pconsc4 and other underlying factors beyond the scope of this
paper give rise to this.

Protein Encodings Based on Significantly Different
Protein Graphs Do Not Have Much Effect on Binding
Affinity Prediction. Keeping the DL framework fixed, as
described in the methods and shown in Figure 1C, we only test
the four different contact map generation methods. With four
different ways to generate protein graphs established, we want
to assess if the protein graph structure has any impact on the
downstream binding affinity prediction task when we use the
PCM in our protein encoding. We will refer to these as 2D
encodings as we are generating graphs with nodes and edges
and interpreting them as 2D structures. The ligand encodings
are untouched and based on the DL-framework from Jiang et
al.23 The downstream task of estimating binding affinities is
evaluated on both the KIBA and Davis data sets.

Figure 4A (KIBA) and 4B (Davis) summarize the findings of
changing the PCM generation methods. From Figure 4A and
4B, we can observe that there is not much change in the
performance of the DL model with different protein encodings
across all four evaluation metrics, i.e., CI, Pearson correlation
coefficient, RMSE, and Spearman rank correlation on the test
set. On the KIBA data set (Figure 4A), ESM-1b had the lowest
RMSE on the test set, with 0.468 ± 0.02, followed by Pconsc4
with 0.475 ± 0.02, and Random and AlphaFold2 with 0.480 ±
0.03. Pearson’s correlation between experimental and
predicted binding affinity score for ESM-1b and Pconsc4 was
0.82 ± 0.02, while Random and AlphaFold2 had 0.81 ± 0.02.
The experiments on the Davis data set in Figure 4B show that
the random encoding (CI: 0.86 ± 0.01, Pearson: 0.79 ± 0.02,
RMSE: 0.51 ± 0.02) has slightly lower performance than
Pconsc4 (CI: 0.89 ± 0.01, Pearson: 0.82 ± 0.01, RMSE: 0.48
± 0.02), ESM-1b (CI: 0.89 ± 0.01, Pearson: 0.82 ± 0.01,
RMSE: 0.47 ± 0.02), and AlphaFold2 (CI: 0.88 ± 0.01,
Pearson: 0.82 ± 0.02, RMSE: 0.49 ± 0.02), while there is no
change among the rest of the methods. Overall, we saw that
the performance of Random encoding appears to be
comparable to other PCM methods on the KIBA data set
(Figure 4A). However, for the Davis data set, we saw a slight
drop in performance with the random encoding.
Using the Wilcoxon signed-rank test, we evaluated the

performance of the trained DL models on the bootstrapped
test set. The Wilcoxon signed-rank test evaluates whether
there’s a meaningful difference between two models’ perform-
ances, and a p-value of 0.01 or less generally suggests this
difference is statistically significant, refuting the original
assumption of no difference. The KIBA data set shows no
significant difference (p > 0.01) in the performance of
AlphaFold2, ESM-1b, Pconsc4, and Random models in terms
of Pearson, Spearman, and RMSE metrics. The overall
performance of all metrics is better on the Davis data set,
with no significant difference (p > 0.01) between AlphaFold2
and Pconsc4. However, ESM-1b has a significantly better
performance on all metrics (p < 0.01) on the Davis data set.
We also observe a significant drop in performance with
random encodings on the Davis data set. This performance
drop is higher than for KIBA as both these data sets have
different proportions of proteins and ligands (Davis: 333
kinases and 68 ligands, KIBA: 188 kinases and 2111 ligands).
Next, we looked at the overall correlation of either KIBA

score or pKd predictions for each molecule in the test set. We
arbitrarily picked Pconsc4 as a reference to compare the
predictions with various encoding methods (Figure S5). On
the KIBA data set, all the PCM methods compared, exhibited
an R2 of 0.94 ± 0.04. Meanwhile, the R2 values spanned from
0.87 to 0.95 for the Davis data set. From Figure S5, we
observed each pair of methods exhibiting a strong correlation
in their binding affinity predictions. Figure S6 shows the
correlation between experimental and predicted binding
affinities along with the kernel density estimate (KDE) of
the prediction distributions for all four 2D encoding methods.
For the KIBA data set, the R2 for all the methods is close to
0.71 ± 0.01, while for Davis, the R2 for ESM-1b, Pconsc4, and
AlphaFold2 is 0.72 ± 0.01 and the R2 for random is 0.69 ±
0.02. We used the Jensen−Shannon (JS) divergence to
compare the prediction distributions of each pair of methods
for both KIBA and Davis data sets. JS divergence serves as a
symmetric measure, quantifying the similarity between two
probability distributions. The values of JS divergence are

Figure 3. Contact maps obtained from each contact map prediction
algorithm (ESM-1b, AlphaFold2, and Pconsc4) are different and
provide significantly different protein graphs to the protein encodings.
A: Contact map analysis for PTK-6 using PDB ID 5D7 V as a
reference, top left AlphFold2, top right Pconsc4, bottom left ESM-1b,
and bottom right a random contact map. True contacts are displayed
in turquoise squares, lost contacts are shown in orange crosses, and
falsely predicted contacts in pink circles. B: Assessing contact map
methods on a curated data set of KIBA and Davis protein structures
shows that the AlphaFold2 contact maps perform better on MCC,
and F1 score metrics, while the Pconsc4 contact map prediction
method has higher mean precision. ESM-1b contact predictions are
the least reliable.
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bounded between 0 and 1, where 0 signifies identical
distributions and 1 denotes entirely distinct distributions. For
the KIBA data set, the mean JS divergence across all method
pairs was 0.0008, while for the Davis data set, it was 0.0031.
While there is a difference in these values, both are relatively
close to 0, indicating that the prediction distributions from
each method are notably similar. However, given the scale and
nature of our data sets, we consider these values as indicative of
comparable prediction distributions. This observation under-
scores that there is not a substantial variation in model
predictions when using encodings generated from markedly
different contact maps. In a broader perspective, our results
suggest consistent performance across methods such as
AlphaFold2, Pconsc4, and ESM-1b on both data sets, while
the DL model trained with random contact maps showed a
slight drop in performance on the Davis data set.

Encodings from Protein Language Models Outper-
form Handcrafted Encodings in Predicting Binding
Affinity and Perform Similarly to 2D Protein Encodings.
Given that different contact maps, including random maps,
show little impact on the accuracy of the binding affinity

prediction, we next use 1D encoding methods to investigate
the importance of structural details in the DL model’s
prediction capabilities. To this end, we use 1D encodings
obtained from ESM-1b, handcrafted sequences that identify
binding regions explicitly as contained in KLIFS sequences,33

and a control encoding generated from a random sequence of
the same length. The results obtained from these three
different 1D encodings are presented in Figure 4C and 4D.
Figure S7 shows a Euclidean distance heatmap of the ESM-1b
embeddings capturing variance among the proteins in both
KIBA and Davis data sets.
Figure 4C and 4D show that the ESM-1b encodings-based

model performs better than the one-hot encoding using KLIFS
sequences for both KIBA and Davis data sets. For the random
sequence control encoding, the performance is comparable to
those of ESM-1b and KLIFS. For KIBA, the ESM-1b-based
encoding (CI: 0.84 ± 0.01, Pearson: 0.81 ± 0.01, RMSE: 0.48
± 0.02) is performing better than KLIFS-based one-hot
encodings (CI: 0.81 ± 0.01, Pearson: 0.77 ± 0.01, RMSE: 0.51
± 0.02). The Wilcoxon signed-rank test on both these
encodings on the KIBA data set shows that the change in

Figure 4. Protein encodings (2D) with structural information from contact maps do not have much effect on binding affinity prediction, and 1D
encodings from protein language models (PLM) perform similarly to contact maps enabled encodings. A, B: Boxplots for different performance
measures (CI, Pearson correlation, Spearman Rank, and root-mean-square error) of binding affinity predictions for the KIBA data set (A) and
Davis data set (B) for four different protein contact map methods. This shows that the structural information from protein contact maps encoded
into a graph is not making any significant contribution to DL model performance. C, D: Boxplots for three different 1D encoding methods and
their performance metrics (CI, Pearson correlation, Spearman Rank, and root-mean-square error), the PLM encodings of the ESM-1b model
perform better than one-hot encodings from KLIFS handcrafted sequences on both the data sets and are comparable to random encodings. Overall,
the performance of 1D encodings is comparable to the encodings that include information from protein graphs.
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performance is significant (p < 0.01) across all the metrics.
From Figure 4D, the performance of both ESM-1b (CI: 0.88 ±
0.01, Pearson: 0.81 ± 0.01, RMSE: 0.49 ± 0.02) and KLIFS
(CI: 0.87 ± 0.01, Pearson: 0.81 ± 0.01, RMSE: 0.49 ± 0.02)
for the Davis data set is comparable. The Wilcoxon test shows
that the change in performance is significant on CI and
Spearman metrics with p < 0.01, while on Pearson and RMSE,
the change is not significant (p > 0.01). We can see that both
the rank correlation metrics CI and Spearman have seen a
significant performance change between PLM encodings and
manually curated sequence-based encodings. Further, from our
1D encoding experiments, we can see that 1D ESM-1b
encodings perform similarly to the 2D encodings on both
KIBA and Davis data sets (Figure 4A and 4B) with no
significant change p > 0.01 in performance with 2D ESM-1b
and Pconsc4 encodings. This shows that adding structural
information in the form of a protein graph based on a contact
map did not improve the overall performance of the DL model
significantly.

The Deep Learning Model Relies on Good Ligand
Encodings for Learning Binding Affinities. Now we make
changes to the ligand encodings as laid out in the methods
section to systematically assess how ligand encodings
contribute to the overall learning task. From Figure 5A and
5B, we can see that the model’s performance on the test set
that the ligand encodings greatly impact the binding
predictions on both data sets. On both KIBA and Davis data
sets, the point randomized encoding had the lowest drop in
performance as compared to random node and random
sampling perturbation methods. For point randomization
methods, there is less than 1% drop across all metrics on
KIBA, whereas on Davis there is 3.65% ± 1% on CI and 8.11%
± 2% on Pearson metrics. However, the Wilcoxon test for
point randomization perturbation as compared to the original
ligand encoding has p < 0.01 on both data sets, denoting the
change to be significant. In randomizing node feature
perturbation, there is a drastic drop in performance on both
data sets. The performance on KIBA dropped by 17.18% ± 2%
on CI, 45.82% ± 4% on Pearson, and the RMSE increased by
86.03% ± 0.6%. For Davis, the changes are even more drastic
with 34.78% ± 1% on CI, 73.09% ± 3% on Pearson, and the
RMSE increased by 90.07% ± 4%. The performance of
random sampling perturbation has a similar stark effect as node
feature randomization for both KIBA (CI: 27.15% ± 1%,
Pearson: 82% ± 2%) and Davis (CI: 37.96% ± 1%, Pearson:
80.81% ± 3%). Both random node and random sample
perturbations have a significant change (p < 0.01) in binding
affinity performance as compared to the original ligand
encoding. We can observe that the performance for Davis
dropped more than for KIBA; this could be due to the
difference in data set distributions, as the number of ligands in
Davis (68) is much smaller than for KIBA (2111).
In the SI, we also highlight what effect the changes on ligand

encodings have in terms of actually predicting binding affinities
with respect to experimentally observed values. The findings
are summarized in Figure S8. Original ligand encodings
obtained R2 values on the test set: 0.71 ± 0.01 for KIBA and
0.72 ± 0.01 for Davis. Point randomizations have a more
distinct effect for Davis with a drop of R2 = 0.64 ± 0.01,
compared to KIBA R2 = 0.70 ± 0.01. One possible explanation
for this is the smaller ligand data set size for Davis, and another
is the KIBA score choice itself, which will be discussed in more
detail below. For the random node encodings, R2 = 0.14 ± 0.00

for KIBA and R2 = 0.01 ± 0.03 for Davis, and similarly for the
randomly sampled ligand encodings, R2 = 0.01 ± 0.046 for
KIBA and R2 = 0.02 ± 0.13 for Davis. Introducing the
randomizations in the ligand encodings, the deep learning
model can no longer perform the learning task, and the

Figure 5. Changes to ligand encodings show a significant change in
binding affinity performance. Comparative analysis of the DL model
performance in binding prediction testing four different ligand
encodings shows that the DL model relies on ligand encodings for
both KIBA (A) and Davis (B) data sets. “Original” encoding is the
ligand graph generated from the original SMILES string without any
changes. “Point Random” encoding is a graph obtained after
selectively making changes up to four atoms to the input SMILES
string by either substituting one halogen atom with another or
removing a (=O) atom, and “Random Node” is the encoding
obtained by randomizing only the node features of the input ligand
graph. Finally, “Random” refers to the encoding obtained from a
graph that is randomly sampled from the data set used in the study.
The DL model with randomly sampled and randomized node feature
encodings are not learning to estimate BA during training,
demonstrating the model’s reliance on ligand information.
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resulting model is unusable as a potential model for binding
affinity predictions for kinases. An obvious conclusion is that
the presented architecture predominantly learns from ligand
encodings, and protein features play hardly any role.

Combining Protein and Ligand Encodings in Differ-
ent Ways Has No Significant Effect on the Model’s
Predictability. Lastly, we look at how ligand and protein
encodings can be combined in the DL framework. Jiang et al.23

used concatenation operations to combine protein and ligand
encodings with the combined vector being passed along the
fully connected layers to predict binding affinity.22−24 Other
combination methods are possible: the element-wise product
of protein and ligand encodings and the concatenated vector
obtained by combining both element-wise product and
concatenation operations. Concatenation allows the DL
model to learn complex interactions between the protein and
ligand features; here, the model will have access to all the
features of the protein and ligand. On the other hand, the
element-wise product emphasizes the DL model to learn
features important for both protein and ligand. Here, we
provide the model with a feature space that is expected to have
the most informative aspects of the protein and ligand
encodings. When the protein and ligand encoding is
concatenated with the product encoding, the model will have
access to a feature space that is larger and richer than that in
either approach alone.
From Figure 6A (KIBA) and Figure 6B (Davis), we can see

no significant improvement in the performance of the DL
model on the binding affinity prediction task by both element-
wise product of protein and ligand encodings and the
concatenated vector obtained by combining both element-
wise product and concatenation operations. On the Davis data
set, there is a slight drop in performance with the element-wise
product (CI: 0.88 ± 0.01, Pearson: 0.81 ± 0.01, Spearman:
0.67 ± 0.01) as compared to both the concatenation (CI: 0.89
± 0.01, Pearson: 0.82 ± 0.01, Spearman: 0.69 ± 0.01) and
fusion encoding of concatenation and element-wise product
(CI: 0.89 ± 0.01, Pearson: 0.82 ± 0.01, Spearman: 0.69 ±
0.01). From the Wilcoxon test, the drop by incorporating the
element-wise product in the place of concatenation is
significant (p < 0.01). In contrast, the improvement with
fusion concatenation and the element-wise product is not
statistically significant (p > 0.01). From experiments on the
KIBA data set, the element-wise product (CI: 0.85 ± 0.01,
Pearson: 0.81 ± 0.02) encoding performed almost the same as
the concatenation (CI: 0.85 ± 0.01, Pearson: 0.81 ± 0.02) and
fusion encoding (CI: 0.85 ± 0.01, Pearson: 0.82 ± 0.02). The
performance for the KIBA data set for both methods shows no
statistically significant change (p > 0.01). The DL model is not
learning anything new from the element-wise product and the
fusion of concatenation and product feature spaces.

■ DISCUSSIONS AND CONCLUSIONS
It is often most enticing for a new study to look at binding
affinity predictions to introduce a new algorithm or machine
learning model, which is then often superficially compared in
performance (accuracy in terms of RMSE or correlation) to
previous approaches. What is often neglected is looking at
good comparison tools for assessing if a new model is
statistically actually better than a previous model. What is often
forgotten is that the training process is not deterministic,
meaning we just pick the best-performing model after training
but do not assess its variability. Here, we introduced robust

significance testing and error analysis using Wilcoxon’s signed
rank test to make sure we can make statistically significant
statements when comparing our differently trained models on
the same deep learning framework. We also included a robust
bootstrapping error analysis often neglected when new models
are introduced. All of this allowed us to carry out a detailed
investigation in terms of how different parts of a deep learning
model actually contribute to the overall performance of the
final downstream tasks, i.e., the prediction of a binding affinity.
In this paper, we systematically investigated the contributions
of ligand and protein encodings to the downstream tasks of
binding affinity predictions using 1D type of data and 2D type
of data. Our 1D data encodings come from protein language

Figure 6. Performance of encoding combining techniques on both
KIBA (A) and Davis (B) data sets show minimal change. “Concat”
encoding is obtained by concatenating the protein and ligand
encodings obtained, while “Product” encoding is from the element-
wise product of protein and ligand encoding. “Concat + Product” is
formed by concatenating the element-wise product encoding and the
concatenated protein and ligand encoding. Binding affinity prediction
is minimally affected by the element-wise product and the
concatenated vector obtained by combining both element-wise
product and concatenation operations.
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models or hand-curated KLIFS data for proteins using
convolutional neural network-based DL architectures. For the
2D data, we used graph-based approaches for both ligands,
where SMILES strings get converted to ligand graphs and
protein sequences get converted to a protein contact map
either from a protein structure or through a protein language
model. The deep learning CNN and GCN architectures used
were not novel; however, we gained new insights into how
protein and ligand embeddings contribute systematically to the
learning of binding affinities for commonly used data sets used
in the literature (KIBA and Davis). We successfully show that
protein encodings, as often used in the literature,48 have little
to no contribution to the downstream learning tasks, and all
correlation learned between structure and binding affinity is
through ligand encodings. Furthermore, augmenting data sets
from a 1D language model to a 2D graph model does not make
the learning process significantly better. While we highlight the
importance of understanding the role of encodings in DL
models and provide insights into what the current DL models
are learning in predicting protein−ligand binding affinity, we
recognize other limitations associated with these DL methods.
Most of the current DL methods are trained and tested on
small-size kinase data sets with skewed binding interactions
data (Figure 2). Testing DL frameworks only on kinase data
sets is an obvious choice because of the amount of available
data. However, care should be taken with the KIBA data set. It
is tempting to augment a data set to include experimental data
from multiple experimental assays to include IC50, Ki, and Kd.
To broaden the data set, the KIBA score was designed to
account for multiple sources of experimental measurements.10

Unfortunately, by combining information from different assays
and measurement types, the resulting uncertainty introduced is
not accounted for in the KIBA score. This means evaluating
the accuracy on the downstream task becomes inaccurate, as
there is no notion of reliability of a single KIBA score
incorporated into the model. As Killiokoski et al.49 pointed
out, IC50s can be augmented with Ki, but care should be taken
when looking at SAR/QSAR models in terms of the maximally
achievable performance due to the introduced noise.
More generally, the kinase data sets are a good starting point

for model development as they are publicly available and have
sufficient volume of data to train the DL, making them an
attractive choice for initial model development, it is critical to
understand their inherent limitations. Specifically, although
they serve as a baseline model, these data sets alone will not
provide the breadth required to develop a globally applicable
binding affinity prediction algorithm across diverse protein
families and ligand. Future work will require data sets beyond
BindingDB,50 improvements around data representation, and
architctural improvements that allow learning of joint protein
and ligand interactions.
We have seen that the DL models do not learn information

that captures the protein and ligand interaction features but are
biased toward learning from the ligand features. The current
approaches to encode proteins from sequences and contact
maps in the form of 1D and 2D encodings with CNN or GNN
architectures are not sufficient to capture protein features to
build a robust binding affinity prediction tool, and future work
in this direction is required. The most obvious starting point is
making use of 3D protein−ligand interaction features from 3D
complex structures, for which there already is a body of
work.51,52 However, Volkov et al.48 highlighted challenges with
current complex-based models (3D), namely, that they do not

necessarily learn the physics of protein−ligand binding. They
found that explicit description of protein−ligand interactions
from complexes provides no clear advantage compared to the
corresponding interaction-agostic models based solely on
ligand or protein descriptors. Furthermore, Volkov et al.48

discussed hidden protein and ligand biases in the PDBbind9

data set for training complex-based models showing that these
models have partly memorized the input data and did not learn
the features that correspond to protein−ligand interactions.
One avenue to explore in the future is to jointly learn features
for making predictions; in this way, the DL model uses the
joint features corresponding to protein−ligand interaction
properties. This could be done, e.g., by including physics-based
3D snapshots in training the DL models to predict the binding
affinity, similar to what has been explored to active learning
approaches incorporating molecular dynamics-based binding
affinity predictions.53
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