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Abstract

Pretraining has proven to be a powerful technique in natural language processing (NLP), 

exhibiting remarkable success in various NLP downstream tasks. However, in the medical domain, 

existing pretrained models on electronic health records (EHR) fail to capture the hierarchical 

nature of EHR data, limiting their generalization capability across diverse downstream tasks 

using a single pretrained model. To tackle this challenge, this paper introduces a novel, general, 

and unified pretraining framework called MEDHMP1, specifically designed for hierarchically 

multimodal EHR data. The effectiveness of the proposed MEDHMP is demonstrated through 

experimental results on eight downstream tasks spanning three levels. Comparisons against 

eighteen baselines further highlight the efficacy of our approach.

1 Introduction

Pretraining is a widely adopted technique in natural language processing (NLP). It entails 

training a model on a large dataset using unsupervised learning before fine-tuning it on 

a specific downstream task using a smaller labeled dataset. Pretrained models like BERT 

(Devlin et al., 2018) and GPT (Radford et al., 2018) have demonstrated remarkable success 

across a range of NLP tasks, contributing to significant advancements in various NLP 

benchmarks.

In the medical domain, with the increasing availability of electronic health records (EHR), 

researchers have attempted to pre-train domain-specific models to improve the performance 

of various predictive tasks further (Qiu et al., 2023). For instance, ClinicalBERT (Huang 

et al., 2019) and ClinicalT5 (Lehman and Johnson, 2023) are pretrained on clinical notes, 

and Med2Vec (Choi et al., 2016a) and MIME (Choi et al., 2018) on medical codes. These 

models pretrained on a single type of data are too specific, significantly limiting their 

transferability. Although some pretraining models (Li et al., 2022a, 2020; Meng et al., 2021) 

are proposed to use multimodal EHR data2, they ignore the heterogeneous and hierarchical 

characteristics of such data.

1Source codes are available at https://github.com/XiaochenWang-PSU/MedHMP.

xcwang@psu.edu . 
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The EHR data, as depicted in Figure 1, exhibit a hierarchical structure. At the patient level, 

the EHR systems record demographic information and capture multiple admissions/visits 

in a timeordered manner. Each admission represents a specific hospitalization period and 

contains multiple stay records, International Classification of Diseases (ICD) codes for 

billing, drug codes, and a corresponding clinical note. Each stay record includes hourly 

clinical monitoring readings like heart rate, arterial blood pressure, and respiratory rate.

In addition to the intricate hierarchy of EHR data, the prediction tasks vary across 
levels. As we move from the top to the bottom levels, the prediction tasks become 

more time-sensitive. Patient-level data are usually used to predict the risk of a patient 

suffering from potential diseases after six months or one year, i.e., the health risk prediction 

task. Admission-level data are employed for relatively shorter-term predictions, such as 

readmission within 30 days. Stay-level data are typically utilized for hourly predictions, such 

as forecasting acute respiratory failure (ARF) within a few hours.

Designing an ideal “one-in-all” medical pretraining model that can effectively incorporate 

multi-modal, heterogeneous, and hierarchical EHR data as inputs, while performing self-

supervised learning across different levels, is a complex undertaking. This complexity arises 

due to the varying data types encountered at different levels. At the stay level, the data 

primarily consist of time-ordered numerical clinical variables. However, at the admission 

level, the data not only encompass sequential numerical features from stays but also include 

sets of discrete ICD and drug codes, as well as unstructured clinical notes. As a result, it 

becomes challenging to devise appropriate pretraining tasks capable of effectively extracting 

knowledge from the intricate EHR data.

In this paper, we present a novel Hierarchical Multimodal Pretraining framework (called 

MEDHMP) to tackle the aforementioned challenges in the Medical domain. MEDHMP 

simultaneously incorporates five modalities as inputs, including patient demographics, 

temporal clinical features for stays, ICD codes, drug codes, and clinical notes. To effectively 

pretrain MEDHMP, we adopt a “bottom-to-up” approach and introduce level-specific self-

supervised learning tasks. At the stay level, we propose reconstructing the numerical time-

ordered clinical features. We devise two pretraining strategies for the admission level. The 

first focuses on modeling intra-modality relations by predicting a set of masked ICD and 

drug codes. The second involves modeling inter-modality relations through modality-level 

contrastive learning. To train the complete MEDHMP model, we utilize a two-stage training 

strategy from stay to admission levels3.

We utilize two publicly available medical datasets for pretraining the proposed MEDHMP 

and evaluate its performance on three levels of downstream tasks. These tasks include ARF, 

shock and mortality predictions at the stay level, readmission prediction at the admission 

level, and health risk prediction at the patient level. Through our experiments, we validate 

2Most of the multimodal pretraining models use medical images and other modalities, such as (Hervella et al., 2021). However, it is 
impossible to link EHR data and medical images in practice due to data privacy issues.
3It is important to note that we have not incorporated patient-level pertaining in MEDHMP. This decision is based on the 
understanding that the relations among admissions in EHR data are not as strong as consecutive words in texts. Arbitrary modeling of 
such relations may impede the learning of stay and admission levels.
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the effectiveness of the proposed MEDHMP by comparing it with state-of-the-art baselines. 

The results obtained clearly indicate the valuable contribution of MEDHMP in the medical 

domain and highlight its superior performance enhancements in these predictive downstream 

tasks.

2 Methodology

As highlighted in Section 1, EHR data exhibit considerable complexity and heterogeneity. 

To tackle this issue, we introduce MEDHMP as a solution that leverages pretraining 

strategies across multiple modalities and different levels within the EHR hierarchy to 

achieve unification. In the following sections, we present the design details of the proposed 

MEDHMP.

2.1 Model Input

As shown in Figure 1, each patient data consist of multiple time-ordered hospital 

admissions, i.e., P = A1, A2, ⋯, AN , where Ai i ∈ 1, n  is the i-th admission, and N is 

the number of admissions. Note that for different patients, N may be different. Each 

patient also has a set of demographic features denoted as D. Each admission Ai consists 

of multiple time-ordered staylevel data denoted as Si, a set of ICD codes denoted as Ci, a 

piece of clinical notes denoted as ℒi, and a set of drug codes Gi, i.e., Ai = Si, Ci, ℒi, Gi . 

The stay-level data Si contains a sequence of hourly-recorded monitoring stays, i.e., 

Si = Si
1, Si

2, ⋯, Si
Mi , where Si

j represents the feature matrix of the j-th stay, and Mi denotes 

the number of stays within each admission.

2.2 Stay-level Self-supervised Pretraining

We conduct the self-supervised pretraining in a bottom-to-top way and start from the stay 

level. When pretraining the stay-level data, we only use Si and D since the diagnosis codes 

Ci, drug codes Gi and clinical notes ℒi are recorded at the end of the i-th admission. 

However, demographic information is highly related to a patient’s clinical monitoring 

features in general. Due to the monitoring features being recorded with numerical values, we 

propose to use a reconstruction strategy as the stay-level pretraining task, as illustrated in 

Figure 2.

2.2.1 Stay-level Feature Encoding—Each stay Si
j ∈ Si consists of a set of time-

ordered hourly clinical features, i.e., Si
j = mi, 1

j , mi, 2
j , ⋯, mi, T

j , where mi, t
j ∈ ℝdf is the recorded 

feature vector at the t-th hour, T  is the number of monitoring hours, and df denotes the 

number of time-series clinical features. To model the temporal characteristic of Si
j, we 

directly apply long-short term memory (LSTM) network (Hochreiter and Schmidhuber, 

1997) and treat the output cell state hi
j as the representation of the j-th stay, i.e.,

hi
j = LSTMenc mi, 1

j , mi, 2
j , ⋯, mi, T

j ,

(1)

where LSTMenc is the encoding LSTM network.
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2.2.2 Clinical Feature Reconstruction—A naive approach to reconstructing the input 

stay-level feature Si
j is simply applying an LSTM decoder as (Srivastava et al., 2015) does. 

However, this straightforward approach may not work for the clinical data. The reason 

is that the clinical feature vector mi, k
j ∈ Si

j is extremely sparse due to the impossibility of 

monitoring all the vital signs and conducting all examinations for a patient. To accurately 

reconstruct such a sparse matrix, we need to use the demographic information D as the 

guidance because some examinations are highly related to age or gender, which also makes 

us achieve the goal of multi-modal pretraining.

Specifically, we first embed the demographic information D into a dense vector 

representation, i.e., d = MLPd D , where MLPd denotes the multilayer perceptron activated 

by the ReLU function. To fuse the demographic representation and the stay representation, 

we propose to use a transformer block in which self-attention is performed for modality 

fusion, followed by residual calculation, normalization, and a pooling operation compressing 

the latent representation to the unified dimension size. We obtain the bimodal representation 

bi
j as follows:

bi
j = Softmax Wℎ

Q hi
j, d ⋅ Wℎ

K hi
j, d

dr
⋅ Wℎ

V hi
j, d ,

bi
j = MaxPooling LayerNorm hi

j, d + bi
j ,

(2)

where ⋅ , ⋅  means the operation of stacking, Wℎ
Q, Wℎ

K, Wℎ
V ∈ ℝdr × dr are trainable 

parameters, and dr is the unified size of representation.

Using the fused representation bi
j, MEDHMP then reconstructs the input clinical feature 

matrix Si
j. Since the clinical features are time-series data, we take bi

j as the initial hidden state 

of the LSTM decoder LSTMdec to sequentially reconstruct the corresponding clinical feature 

mi, k
j = LSTMdec bi

j .

2.2.3 Stay-level Pretraining Loss—After obtaining the reconstructed clinical features 

mi, 1
j , mi, 2

j , ⋯, mi, T
j , we then apply the mean squared error (MSE) as the pretraining loss to 

train the parameters in the stay-level as follows:

ℒstay = 1
N*M*T ∑

i = 1

N
∑

j = 1

M
∑

t = 1

T
mi, t

j − mi, t
j

2
2 .

(3)

2.3 Admission-level Pretraining

The stay-level pretraining allows MEDHMP to acquire the sufficient capability of 

representing stays, laying the groundwork for the pretraining at the admission level. Next, 

we introduce the details of pretraining at this level.
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2.3.1 Admission-level Feature Encoding—As introduced in Section 2.1, each 

admission Ai = Si, Ci, ℒi, Gi . To conduct the self-supervised pretraining, the first step is 

to encode each input to a latent representation.

In Section 2.2, we can obtain the representation of each hourly feature bi
j using Eq. (2). 

Thus, we can further have the stay-level overall representation si by aggregating all hourly 

representations of Si via a linear transformation as follows:

si = Ws
⊤ bi

1; bi
2; ⋯; bi

M + bs,

(4)

where ⋅ ; ⋅  is the concatenation operation. Ws ∈ ℝdr × M * dr and bs ∈ ℝdr are parameters.

For ICD codes Ci and drug codes Gi, they will be converted to binary vectors and then 

map them to latent representations via MLP layers, which is similar to the mapping of the 

demographic information, as follows:

ci = MLPc Ci , gi = MLPg Gi .

(5)

For the unstructured clinical notes ℒi, we directly use a pretrained domain-specific encoder 

(Lehman and Johnson, 2023) to generate its representation li.

Using the learned representations, we can conduct admission-level pretraining. Due to the 

unique characteristics of multimodal EHR data, we will focus on two kinds of pretraining 

tasks: mask code prediction for intra-modalities and contrastive learning for inter-modalities, 

as shown in Figure 3.

2.3.2 Intra-modality Mask Code Prediction—In the natural language processing 

(NLP) domain, mask language modeling (MLM) (Devlin et al., 2018) is a prevalent 

pretraining task encouraging the model to capture correlations between tokens. However, 

the EHR data within an admission Ai are significantly different from text data, where the 

ICD and drug codes are sets instead of sequences. Moreover, the codes are distinct. In other 

words, no identical codes appear in Ci and Gi. Thus, it is essential to design a new loss 

function to predict the masked codes.

Let ci
m ∈ ℝ C  and gi

m ∈ ℝ G  denote the mask indicator vectors, where C  and G  denote 

the distinct number of ICD codes and drug codes, respectively. If the j-th ICD code is 

masked, then ci
m j = 1; otherwise, ci

m j = 0. Let ci
′ and gi

′ denote the embeddings learned 

for the remaining codes. To predict the masked codes, we need to obtain the admission 

representation. Toward this end, we first stack all the learned embeddings as follows:

fi = si, ci
′, gi

′, li .

(6)
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Then another transformer encoder block is used to obtain the cross-modal admission 

representation as follows:

ai = Softmax Wa
Qfi ⋅ Wa

Kfi

dr
⋅ Wa

V fi,
ai = MaxPooling LayerNorm fi + ai ,

(7)

where Wa
Q, Wa

K, and Wa
V ∈ ℝdr × dr are trainable parameters.

We can predict the masked codes using the learned admission representation ai using Eq. (7) 

as follows:

pi
c = Sigmoid MLPmc ai ,

pi
g = Sigmoid MLPmg ai ,

(8)

where the predicted probability vectors pi
c ∈ ℝ C  and pi

g ∈ ℝ G .

Finally, the MSE loss serves as the objective function of the masked code prediction (MCP) 

task for the intra-modality modeling as follows:

ℒMCP = 1
N i = 1

N
∥ pi

c − ci
m ∥2

2

+∥ pi
g − gi

m ∥2
2 ,

(9)

where ⊙ is the element-wise multiplication.

2.3.3 Inter-modality Contrastive Learning—The intra-modality modeling aims to 

learn feature relations within a single modality using other modalities’ information. On 

top of it, we also consider inter-modality relations. Intuitively, the four representations 

si, ci, gi, li  within Ai share similar information. If a certain modality ri ∈ si, ci, gi, li  is 

masked, the similarity between ri and the aggregated representation ai ∖ ri learned from 

the remaining ones should be still larger than that between ri and another admission’s 

representation aj ∖ rj within the same batch, where j ≠ i.

Based on this intuition, we propose to use the noise contrastive estimation (NCE) loss as the 

inter-modality modeling objective as follows:

ℒCL = 1
3N ∑

i = 1

N
∑

ri ∈ ci, gi, li

u ri ,

u ri = − log esim ri, ai ∖ ri /τ
∑j = 1, j ≠ i

B esim ri, aj ∖ rj /τ ,
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(10)

where sim ⋅ , ⋅  denotes the cosine similarity, B is the batch size, and τ is the temperature 

hyperparameter. ai ∖ ri is obtained using Eqs. (6) and (7) by removing the masked modality 

ri. Note that in our design, si is a trained representation by optimizing the stay-level objective 

via Eq. (3). However, the other three modality representations are learned from scratch or the 

pretrained initialization. To avoid overfitting si, we do not mask the stay-level representation 

si in Eq. (10).

2.3.4 Admission-level Pretraining Loss—The final loss function in the admission-

level pre-training is represented as follows:

ℒadmission = ℒMCP + λℒCL,

(11)

where λ is a hyperparameter to balance the losses between the intra-modality mask code 

prediction task and the inter-modality contrastive learning.

2.4 Training of MedHMP

We use a two-stage training strategy to train the proposed MEDHMP. In the first stage, we 

pre-train the stay-level task via Eq. (3) by convergence. In the second stage, we use the 

learned parameters in the first stage as initialization and then train the admission-level task 

via Eq. (11).

3 Experiments

In this section, we first introduce the data for pretraining and downstream tasks and then 

exhibit experimental results (mean values of five runs).

3.1 Data Extraction

We utilize two publicly available multimodal EHR datasets – MIMIC-III (Johnson et al., 

2016) and MIMIC-IV (Johnson et al., 2020) – to pretrain the proposed MEDHMP. We 

adopt FIDDLE (Tang et al., 2020) to extract the pretraining data and use different levels’ 

downstream tasks to evaluate the effectiveness of the proposed MEDHMP. For the stay-level 

evaluation, we predict whether the patient will suffer from acute respiratory failure (ARF)/

shock/mortality within 48 hours by extracting data from the MIMIC-III dataset4. For the 

admission-level evaluation, we rely on the same pipeline for extracting data from the 

MIMIC-III dataset to predict the 30-day readmission rate. For the patient-level evaluation, 

we conduct four health risk prediction tasks by extracting the heart failure data from 

MIMIC-III following (Choi et al., 2016b) and the data of chronic obstructive pulmonary 

disease (COPD), amnesia, and heart failure from TriNetX5. The details of data extraction 

4 https://github.com/MLD3/FIDDLE-experiments/tree/master/mimic3_experiments 
5 https://trinetx.com/ 
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and statistics can be found in Appendix A. The implementation details of MEDHMP are in 

Appendix B.

3.2 Stay-level Evaluation

We conduct two experiments to validate the usefulness of the proposed MEDHMP at the stay 

level.

3.2.1 Stay-level Multimodal Evaluation—In this experiment, we take two modalities, 

i.e., demographics and clinical features, as the model inputs. The bimodal representation bi
j

learned by Eq. (2) is then fed into a fully connected layer followed by the sigmoid activation 

function to calculate the prediction. We use the cross entropy as the loss function to finetune 

MEDHMP.

We use F-LSTM (Tang et al., 2020), F-CNN (Tang et al., 2020), RAIM (Xu et al., 2018), 

and DCMN (Feng et al., 2019) as the baselines. The details of each baseline can be found 

in Appendix C. We utilize the Area Under the Receiver Operating Characteristic curve 

(AUROC) and the Area Under the Precision-Recall curve (AUPR) as evaluation metrics.

The experimental results are presented in Table 1, showcasing the superior performance of 

MEDHMP compared to the bimodal baselines in all three stay-level tasks. This indicates 

the proficiency of MEDHMP in effectively utilizing both clinical and demographic features. 

Remarkably, MEDHMP demonstrates a particularly strong advantage when handling tasks 

with smaller-sized datasets (See Table 8 for data scale). This observation suggests that 

MEDHMP greatly benefits from our effective pre-training procedure, enabling it to deliver 

impressive performance, especially in low-resource conditions.

Note that in the previous work (Yang and Wu, 2021), except for the demographics and 

clinical features, clinical notes are used to make predictions on the ARF task. We also 

conducted such experiments on the three tasks, and the results are listed in Appendix D. 

The experimental results still demonstrate the effectiveness of the proposed pretraining 

framework.

3.2.2 Stay-level Unimodal Evaluation—To validate the transferability of the 

proposed MEDHMP, we also conduct the following experiment by initializing the encoders 

of baselines using the pretrained MEDHMP. In this experiment, we only take the clinical 

features as models’ inputs. Two baselines are used: LSTM (Hochreiter and Schmidhuber, 

1997) and Transformer (Vaswani et al., 2017). We use the pretrained LSTM encoder LSTMenc

in Section 2.2.1 to replace the original linear encoders in LSTM and Transformer. Our 

encoder will be finetuned with the training of LSTM and Transformer.

The experimental results on the ARF task are shown in Figure 4. As mentioned in Section 

2.4, we train the LSTM encoder LSTMenc twice. “w. MEDHMPa” means that the baselines 

use a well-trained admission-level LSTMenc “w. MEDHMPs” indicates that the baselines use 

a stay-level trained LSTMenc “Original” denotes the original baselines. We can observe that 

using partially- or well-trained encoders helps improve performance. These results also 

confirm the necessity of the proposed two-stage training strategy.
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3.3 Admission-level Evaluation

We also adopt the readmission prediction task within 30 days to evaluate MEDHMP at 

the admission level. In this task, the model will task all modalities as the input, including 

demographics, clinical features, ICD codes, drug codes, and a corresponding clinical note 

for admission. In this experiment, we first learn the representations, i.e., si using Eq. (4), ci

and gi via Eq. (5), and li, to obtain the stacked embedding f i. We then apply Eq. (7) to obtain 

the admission embedding ai. Finally, a fully connected layer with the sigmoid function is 

used for prediction. We still use the cross-entropy loss as the optimization function.

We follow the existing work (Yang and Wu, 2021) and use its eight multimodal approaches 

as baselines, which adopt modality-specific encoders and perform modality aggregation 

via a gating mechanism. Different from the original model design, we perform a pooling 

operation on the latent representation of multiple clinical time series belonging to a specific 

admission, such that baselines can also take advantage of multiple stays. Details of these 

models can be found in Appendix D. We still use AUROC and AUPR as evaluation metrics.

Admission-level results are listed in Table 2, and we can observe that the proposed 

MEDHMP out-performs all baselines. Compared to the best baseline performance, the 

AUROC and AUPR scores of MEDHMP increase 7% and 29%, respectively. These results 

once again prove the effectiveness of the proposed pretraining model.

3.4 Patient-level Evaluation

Even though MEDHMP has not been pretrained on patient-level tasks, it is still capable of 

handling tasks at this level since its unimodal encoders acquire the ability to generate a 

high-quality representation of each admission, thus become feasible to be utilized to boost 

existing time series-targeting models. Health risk prediction, which utilizes a sequence of 

hospital admissions for illness forecasting, is applied as the task at the patient level.

In this experiment, the model will take a sequence of admission-level ICD codes as the 

input, which is still a unimodal evaluation. We use the following approaches as baselines: 

LSTM (Hochreiter and Schmidhuber, 1997), Dipole (Ma et al., 2017), RETAIN (Choi et 

al., 2016b), AdaCare (Ma et al., 2020), and HiTANet (Luo et al., 2020). Details of these 

approaches can be found in Appendix E. Following previous health risk prediction work 

(Chen et al., 2021; Cui et al., 2022a), we use AUPR, F1, and Cohen’s Kappa as the 

evaluation metrics.

3.4.1 Performance Comparison—The experimental results are shown in Table 3, 

where the approach with the subscript “a” denotes the baseline using the pretrained 

MEDHMP to initialize the ICD code embedding ci via Eq. (5). We can find that introducing 

the pretrained unimodal encoder from MEDHMP achieves stable improvement across most 

of the baselines and tasks. These results demonstrate the flexibility and effectiveness of our 

proposed MEDHMP in diverse medical scenarios. The knowledge from our pretrained model 

can be easily adapted to any sub-modality setting.
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3.4.2 Influence of Training Size—Intuitively, pretraining could lead to improved 

initialization performance compared to models trained from scratch, thereby enhancing its 

suitability in low-resource settings such as zero-shot learning and few-shot learning. Inspired 

by these characteristics, we explore low-resource settings that simulate common real-world 

health-related scenarios. We replicate the experiments introduced in the previous section but 

vary the size of the training set from 1% to 100%.

Figure 5 shows the experimental results using the HiTANet model. We can observe that 

using the pretraining initialization, HiTANeta always achieves better performance. Even 

with 10% training data, it can achieve comparable performance with the plain HiTANet 

using 100% data. This promising result confirms that the proposed pretraining framework 

MEDHMP is useful and meaningful for medical tasks, especially when the training data are 

insufficient.

3.4.3 Convergence Analysis with Pretraining—In this experiment, we aim to 

explore whether using pretraining can speed up the convergence of model training. We 

use the basic LSTM model as the baseline and output the testing performance at each epoch. 

Figure 6 shows the results. We can observe that at each epoch, the F1 score of LSTMa

is higher than that of LSTM, indicating the benefit of using pretraining. Besides, LSTMa

achieves the best performance at the 5-th epoch, but the F1 score of the plain LSTM still 

vibrates. Thus, these results clearly demonstrate that using pretraining techniques can make 

the model converge faster with less time and achieve better performance.

4 Ablation Study

4.1 Hierarchical Pretraining

For the comprehensive analysis of the effect of stay-and admission-level pretraining, we 

perform ablation studies spanning downstream tasks at all three levels. Results of patient-

level, admission-level, and stay-level tasks are listed in Table 4, 5 and 6, respectively. The 

subscripts “a” (admission) and “s” (stay) in these tables indicate which pretrained model is 

used as the initialization of MEDHMP.

From the results of all three tables, we can observe that the combination of both stay- 

and admission-level pretraining manifests superior performance, further underlining the 

necessity of adopting hierarchical pretraining strategies. Besides, compared with the model 

without any pretraining techniques, merely using a part of the proposed pretraining strategy 

for initialization can improve the performance. These observations imply the correct 

rationale behind our design of hierarchical pretraining strategies.

4.2 Multimodal Modeling

To investigate how intra- and inter-modality modeling techniques benefit our admission-

level pretraining, we perform an ablation study on three tasks at the stay-level to examine 

the effectiveness of Mask Code Prediction (MCP) and Contrastive Learning (CL) losses. We 

compare MEDHMP pretrained with all loss terms, with MCP and stay-level loss, with CL 

and stay-level loss, and stay-level loss only, respectively. Results presented in Table 7 clearly 
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demonstrate the efficacy of each proposed loss term as well as the designed pretraining 

strategy. Besides, lacking each of them results in performance reduction, highlighting that 

combining intra- and inter-modality modeling is indispensable for boosting the model 

comprehensively.

5 Related Work

Predictive modeling using EHR data has attracted significant attention in recent years 

(Cui et al., 2022b; Ma et al., 2021; Xiao et al., 2018; Wang et al., 2022). To enhance 

predictive performance, pretraining techniques have been explored. In this section, we 

provide a concise overview of studies conducted on pretraining with both single-modal 

and multimodal EHR data.

5.1 Unimodal Pretraining with EHR Data

Several pretrained models have been proposed by utilizing single-modal EHR data. Building 

upon the success of Large Language Models (LLMs) (Devlin et al., 2018; Radford et al., 

2018) in NLP, researchers have endeavored to train medical-specific language models using 

clinical notes (Li et al., 2022b; Lehman and Johnson, 2023; Alsentzer et al., 2019; Peng 

et al., 2019) and PubMed data (Luo et al., 2022; Lee et al., 2020; Yuan et al., 2022; Jin et 

al., 2019; Warikoo et al., 2021). However, these models primarily rely on mask language 

modeling techniques for pretraining, thereby overlooking the distinctive characteristics of 

medical data.

Given the time-ordered nature of admissions, medical codes can be treated as a sequence. 

Some pertaining models have proposed to establish representations of medical codes 

(Rasmy et al., 2021; Li et al., 2020; Shang et al., 2019; Choi et al., 2016a, 2018). 

Nevertheless, these studies still adhere to the commonly used pretraining techniques in the 

NLP domain. Another line of work (Tipirneni and Reddy, 2022; Wickstrøm et al., 2022) is 

to conduct self-supervised learning on clinical features. However, these pretrained models 

can only be used for the downstream tasks at the stay level, limiting their transferability in 

many clinical application scenarios.

5.2 Multimodal Pretraining with EHR data

Most of the multimodal pretraining models in the medical domain are mainly using medical 

images (Qiu et al., 2023) with other types of modalities, such as text (Hervella et al., 

2021, 2022a,b; Khare et al., 2021) and tabular information (Hager et al., 2023). Only a few 

studies focus on pretraining on multimodal EHR data without leveraging medical images. 

The work (Li et al., 2022a, 2020) claims their success on multimodal pretraining utilizing 

numerical clinical features and diagnosis codes. In (Liu et al., 2022), the authors aim to 

model the interactions between clinical language and clinical codes. Besides, the authors 

in (Meng et al., 2021) use ICD codes, demographics, and topics learned from text data as 

the input and utilize the mask language modeling technique to pretrain the model. However, 

all existing pretrained work on EHR data still follows the routine of NLP pretraining but 

ignores the hierarchical nature of EHRs in their pretraining, resulting in the disadvantage 

that the pretrained models cannot tackle diverse downstream tasks at different levels.
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6 Conclusion

In this paper, we present a novel pretraining model called MEDHMP designed to address 

the hierarchical nature of multimodal electronic health record (EHR) data. Our approach 

involves pretraining MEDHMP at two levels: the stay level and the admission level. At 

the stay level, MEDHMP uses a reconstruction loss applied to the clinical features as 

the objective. At the admission level, we propose two losses. The first loss aims to 

model intra-modality relations by predicting masked medical codes. The second loss 

focuses on capturing inter-modality relations through modality-level contrastive learning. 

Through extensive multimodal evaluation on diverse downstream tasks at different levels, we 

demonstrate the significant effectiveness of MEDHMP. Furthermore, experimental results on 

unimodal evaluation highlight its applicability in low-resource clinical settings and its ability 

to accelerate convergence.

7 Limitations

Despite the advantages outlined in the preceding sections, it is important to note that 

MEDHMP does have its limitations. Owing to the adoption of a large batch size to 

enhance contrastive learning (see Appendix B for more details), it becomes computationally 

unfeasible to fine-tune the language model acting as the encoder for clinical notes 

during our admission-level pretraining. As a result, ClinicalT5 is held static to generate 

a fixed representation of the clinical note, which may circumscribe potential advancements. 

Additionally, as described in Appendix A, we only select admissions with ICD-9 diagnosis 

codes while excluding those with ICD-10 to prevent conflicts arising from differing coding 

standards. This selection process, however, implies that MEDHMP currently lacks the 

capacity to be applied in clinical scenarios where ICD-10 is the standard for diagnosis 

code.
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A: Data Processing

We utilize two publicly available multimodal EHR datasets – MIMIC-III (Johnson et 

al., 2016) and MIMIC-IV (Johnson et al., 2020) – to pretrain the proposed MEDHMP. 

Considering that MIMIC-III uses ICD-9 codes while MIMIC-IV incorporates both ICD-9 

and ICD-10 codes, we only select admissions with ICD-9 diagnosis codes to avoid potential 

conflicts between different coding standards. To prevent the label leakage issue during the 

testing stage, we remove all signals related to downstream tasks from the original data.

We adopt the EHR-oriented preprocessing pipeline, FIDDLE (Tang et al., 2020), for feature 

and label extraction at the stay level. We standardize the length of the clinical monitoring 

feature to T = 48 hours, which is the upper bound for clinical feature-related tasks mentioned 

in (Tang et al., 2020). We filter out the features with a frequency lower than 5% since 

extremely sparse features can significantly harm computing efficiency and be memory 
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burdensome. After data preprocessing, each hourly clinical feature mi, t
j  is represented as 

a 1,318-dimensional sparse vector, i.e., df = 1,318. The demographics for each patient are 

represented as a 73-dimensional sparse vector, i.e., the length of D is 73. The number of 

unique ICD codes C  is 7,686, and the number of unique drug codes G  is 1,701. Finally, we 

get 99,000 admissions with 100,563 stays for pretraining MEDHMP.

The three datasets extracted from TriNetX are supervised by clinicians. We employ the 

extraction method described in (Choi et al., 2016b) to identify case patients. Specifically, 

we identify the initial diagnosis date and utilize the patient’s historical data leading up to a 

six-month window, where the diagnosis date marks its end. This approach ensures that we 

prevent label leakage and successfully accomplish the objective of early prediction. Three 

control cases are chosen for each positive case based on matching criteria such as gender, 

age, race, and underlying diseases. For control patients, we use the last 50 visits in the 

database.

The statistics of data used for both pretraining and downstream tasks can be found in Table 

8.

B: Implementation and Configuration

All models were implemented using PyTorch 2.0.0 and Python 3.9.12. Preprocessing and 

experiments were conducted in the Ubuntu 20.04 system with 376 GB of RAM and two 

NVIDIA A100 GPUs.

Each experiment was repeated five times to eliminate randomness, and the mean of the 

evaluation metrics was reported in all experimental results.

For unimodal evaluations, we used the same set of hyperparameters, regardless of whether 

a pretrained encoder was used, to ensure a fair comparison. For multimodal evaluations, we 

either used the hyperparameters reported by the authors of the baselines or suggested in their 

release codes. For detailed hyperparameters not provided by these authors, we used the same 

hyperparameters as in our model for a fair comparison.

dr was set to 256 for our pretraining and evaluation in downstream tasks. For stay-level 

pretraining, our model was pretrained for 200 epochs with a learning rate of 5e − 4, a batch 

size of 128, and a weight decay of 1e-8. At the admission level, our model was pretrained 

for 300 epochs, with a learning rate of 2e − 5 and a weight decay of 1e − 8. Following 

previous works (Chen et al., 2022, 2020), which emphasized the necessity of adopting 

a large batch size in contrastive learning, we set the batch size to 4096 to enhance our 

inter-modality modeling. τ in contrastive learning loss was set to 0.1. The hyperparameter 

λ mentioned in Eq. (11) was set to 0.1 to balance the masked code prediction (MCP) and 

contrastive learning (CL) losses in the stay-level pretraining. The masking rate in the MCP 

task was set to 15%, following the design of (Devlin et al., 2018). The optimizer used 

throughout the pretraining stage was AdamW.

For downstream tasks, we selected the hyperparameters of our model using Grid Search. 

The batch size was chosen from the set [16, 32, 64], and the learning rate was searched 
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in the range from 2e − 5 to 5e − 3. The maximum number of epochs was set to 30, and the 

patience for early stopping and weight decay were configured to 5 and 1e-2, respectively, to 

avoid overfitting. We found that the SGD optimizer performed better during the fine-tuning 

procedure.

Table 8:

Data statistics.

Pretraining
Number of of stays 100,563

Number of admissions 99,000

Downstream

Level Dataset Predictive Task Total Positive Negative

Stay MIMIC-III

ARF witdin 48 hours 5,038 402 4,636

Shock witdin 48 hours 7,182 693 6,489

Mortality witdin 48 hours 11,695 1,581 10,114

Admission MIMIC-III Readmission witdin 30 days 33,179 1,444 31,735

Patient

MIMIC-III Heart Failure after six montds 7,522 2,820 4,702

TriNetX

COPD after six montds 29,256 7,314 21,942

Amnesia after six montds 11,928 2,982 8,946

Heart Failure after six montds 12,320 3,080 9,240

Table 9:

Baselines for the admission-level task.

Model Main Modality Auxiliary Modalities Clinical Feature Encoder

BertLstm Clinical Notes Clinical Features and Demographics LSTM

LstmBert Clinical Features Clinical Notes and Demographics LSTM

BertCnn Clinical Notes Clinical Features and Demographics CNN

CnnBert Clinical Features Clinical Notes and Demographics CNN

BertStar Clinical Notes Clinical Features and Demographics StarTransformer

StarBert Clinical Features Clinical Notes and Demographics StarTransformer

BertEncoder Clinical Notes Clinical Features and Demographics Transformer

EncoderBert Clinical Features Clinical Notes and Demographics Transformer

C: Stay-level Experiments

Besides unimodal baselines mentioned in Section 3.2.2, the following approaches serving as 

baselines in the multimodal evaluation at the stay level are listed below: (1) F-LSTM (Tang 

et al., 2020) is a classic Long Short-Term Memory (LSTM) model taking concatenation 

of clinical features and demographic information as input. (2) F-CNN (Tang et al., 2020) 

is a typical Convolutional Neural Network (CNN) architecture using the concatenation of 

clinical features and demographic information for prediction. (3) Raim (Xu et al., 2018) 

is an attention-based model specially designed for analyzing ICU monitoring data, which 

uses a combination of attention mechanisms and multimodal data integration. (4) DCMN 
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(Feng et al., 2019) combines two separate memory networks, one for processing clinical 

time series and one for processing static tables. Its dual-attention mechanism design allows 

the model to aggregate features effectively.

D: Stay-level Experiments with Clinical Notes

All the baselines utilized in the readmission prediction task are based on the previous 

work (Yang and Wu, 2021). In their study, the authors investigate various combinations 

of unimodal encoders and employ a gating mechanism for modality aggregation. In this 

approach, one modality is considered the main modality, and the embeddings from the other 

modalities are added as auxiliary modalities. Specific details regarding the composition of 

these baselines, including how the unimodal encoders are combined, can be found in Table 

9.

The experimental results are presented in Table 10. It is evident that relying solely on 

a single modality, such as clinical notes, is inadequate for achieving accurate predictions 

when compared to multimodal baselines. Among all the multimodal models, our proposed 

MEDHMP consistently outperforms the others in the majority of scenarios. These results 

highlight two key findings: (1) the significance of integrating multimodal information in 

health predictive modeling tasks and (2) the efficacy of the proposed pretraining technique.

Table 10:

Comparison results (%) of stay-level tasks using clinical notes.

Modalities Models
ARF Shock Mortality

AUROC AUPR AUROC AUPR AUROC AUPR

Clinical Notes

ClinicalT5 (Lehman and 
Johnson, 2023) 50.06 5.92 56.76 13.01 72.18 26.55

ClinicalBERT (Huang et al., 
2019) 51.75 7.60 44.28 9.89 58.17 16.42

Demographics
+ Clinical Features
+ Clincial Notes

BertLstm (Yang and Wu, 
2021) 64.90 9.03 70.22 23.32 80.80 45.59

LstmBert (Yang and Wu, 
2021) 61.74 9.79 66.31 22.56 78.31 42.31

BertCnn (Yang and Wu, 
2021) 67.04 9.49 64.34 21.13 81.12 44.01

CnnBert (Yang and Wu, 
2021) 63.38 10.31 66.40 22.46 77.25 36.43

BertStar (Yang and Wu, 
2021) 58.11 6.86 59.24 19.58 76.24 36.12

StarBert (Yang and Wu, 
2021) 51.96 5.73 58.89 16.92 76.19 34.87

BertEncoder (Yang and Wu, 
2021) 61.30 9.06 52.88 14.66 74.95 35.02

EncoderBert (Yang and Wu, 
2021) 62.65 7.44 61.39 18.66 74.35 33.68

MEDHMP (ours) 71.67 11.05 70.57 24.30 82.06 42.18
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E: Patient-level Experiments

Baselines regarding the patient-level task are listed below. (1) LSTM(Hochreiter and 

Schmidhuber, 1997) is a typical backbone model appearing in time series forecasting tasks. 

(2) HiTANet(Luo et al., 2020) adopts the time-aware attention mechanism design that 

enables itself to capture the dynamic disease progression pattern. (3) Dipole(Ma et al., 

2017) relies on the combination of bidirectional GRU and attention mechanism to analyze 

sequential visits of a patient. (4) AdaCare(Ma et al., 2020) applies the Convolutional Neural 

Network for feature extraction, followed by a GRU block for prediction. (5) Retain (Choi 

et al., 2016b) utilizes the reverse time attention mechanism to capture dependency between 

various visits of a patient.

F: Evaluation Metrics

Evaluation metrics used in our experiments are listed below:

• AUROC (Area Under the Receiver Operating Characteristic Curve) represents 

the likelihood that a classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative instance. It provides an aggregate 

measure of performance across all possible classification thresholds.

• AUPRC (Area Under the Precision-Recall Curve) measures the area beneath 

the Precision-Recall curve, a plot of the precision against recall for different 

threshold values.

• F1 Score is the harmonic mean of precision and recall, offering a balance 

between the two when their values diverge.

• Cohen’s Kappa is a statistic that measures inter-rater agreement for categorical 

items, accounting for the possibility of the agreement occurring by chance.

Table 11:

Results (%) on stay-level tasks.

Task Mortality

Metric AUROC AUPR

F-LSTM 82.30 45.01

F-CNN 76.37 35.11

RAIM 83.64 46.40

DCMN 83.57 46.96

MEDHMP 84.43 49.00

G: Experiments on EICU Database

To further validate the transferability of our proposed MEDHMP, we conduct experiments 

using data from additional medical databases, i.e., eICU6. Results can be found in Table 

6 https://eicu-crd.mit.edu/ 
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11. Our proposed MEDHMP shows superior performance consistent with experiments on the 

MIMIC-III database, implying its excellent capability of learning general medical features.
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Figure 1: 
An illustration of EHR hierarchy.
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Figure 2: 
Stay-level self-supervised pretraining.
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Figure 3: 
Admission-level self-supervised pretraining.

Wang et al. Page 22

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2024 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Unimodal evaluation on the ARF task.
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Figure 5: 
Performance change with different training data sizes using HiTANet on the TriNetX 

amnesia prediction task.
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Figure 6: 
Performance changes w.r.t. the number of epochs on the TriNetX heart failure prediction 

task.
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Table 1:

Results (%) on stay-level tasks.

Task ARF Shock Mortality

Metric AUROC AUPR AUROC AUPR AUROC AUPR

F-LSTM 69.67 10.57 70.28 23.09 81.55 48.62

F-CNN 69.61 10.68 69.27 23.51 80.71 42.29

RAIM 59.38 8.42 66.20 20.02 77.17 39.96

DCMN 68.98 10.07 68.68 21.72 80.05 42.93

MEDHMP 71.66 14.34 71.04 24.19 82.17 47.52
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Table 2:

Results (%) on the readmission task.

Model AUROC AUPR

BertLstm 63.35 7.24

LstmBert 60.67 6.84

BertCnn 63.07 7.19

CnnBert 61.59 7.04

BertStar 61.28 6.84

StarBert 60.67 6.84

BertEncoder 61.94 6.82

EncoderBert 60.57 7.00

MEDHMP 67.77 9.34
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Table 5:

Results (%) on the readmission task, where MEDHMP is initialized with bi-level pretraining, admission-level 

pretraining, stay-level pertaining, and without pretraining.

Model AUROC AUPR

MEDHMPa+s 67.77 9.34

MEDHMPa 65.75 9.08

MEDHMPs 64.87 8.60

MEDHMP 64.74 8.61
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Table 6:

Results (%) on the stay-level task, where MEDHMP is initialized with bi-level pretraining, stay-level 

pertaining, and without pretraining.

Task ARF Shock Mortality

Metric AUROC AUPR AUROC AUPR AUROC AUPR

MEDHMPa+s 71.66 14.34 71.04 24.19 82.17 47.52

MEDHMPs 64.65 10.59 67.94 22.50 79.67 42.66

MEDHMP 64.06 10.80 67.71 23.19 79.04 40.12
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Table 7:

Ablation results (%) regarding MCP and CL on the readmission task.

Task ARF Shock Mortality

Metric AUROC AUPR AUROC AUPR AUROC AUPR

MEDHMPa+s 71.66 14.34 71.04 24.19 82.17 47.52

MEDHMPmcp+s 64.91 12.35 68.61 25.29 81.32 47.50

MEDHMPcl+s 62.99 13.88 70.05 22.81 80.58 44.40

MEDHMPs 64.65 10.59 67.94 22.50 79.67 42.66
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