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North Carolina macular dystrophy (NCMD/MCDR1, 
OMIM 136550) is an inherited autosomal dominant retinal 
disease first described in the 1970s as “dominant macular 
degeneration and aminoaciduria” by Lefler, Wadsworth, and 
Sisbury [1]. This disorder has been characterized by macular 
dystrophy since birth. The clinical phenotype varies within 
the same family; however, the associated gene exhibits 
complete penetrance. Fundus findings in NCMD vary, 
ranging from a small patchy drusen at the fovea (Grade 1) to 
a large confluent colobomatous concave macular lesion with 

a thick, white fibrotic rim (Grade 3). The visual acuity in 
NCMD correlates with the size of the macular lesion and the 
structural grading of NCMD. Nonetheless, some patients have 
relatively good vision despite severe macular malformations.

The genetic loci in NCMD were initially mapped to 
Chromosome 6 by Small et al. [2–4], and the causative 
variants were identified 15 years after the discovery of the 
genetic loci [5]. The causative variants were in an intragenic 
region of Chromosome 6, approximately 13,000 base pairs 
upstream from the neighboring gene. Currently, 16 NCMD-
associated genetic variants have been identified (Appendix 
1). Eleven single-nucleotide variants (SNVs) and five tandem 
duplications were identified as causative variants of NCMD 
affecting the expression of PRDM13 (MCDR1 locus) and 
IRX1 (MCDR3 locus). The variants upstream of PDRM13 
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affect the expression of its retinal transcription factor. Most 
reported variants have been discovered in various ethnicities, 
including those from Europe, North America, and Brazil. 
Although V3 mutation and tandem duplication have been 
reported in Asian families [6,7], the genetic architecture 
of NCMD in the East Asian population remains relatively 
unknown. Herein, we investigated the molecular causes of 
NCMD in Korea and the functional annotation of possible 
pathogenic variants upstream of PRDM13 to understand the 
genetic architectures of molecular causes of NCMD in Korea.

METHODS

Clinical assessment and phenotyping: Two Korean fami-
lies diagnosed with NCMD were recruited from Gangnam 
Severance Hospital (Seoul, South Korea) and Seoul National 
University Bundang Hospital. Clinical assessments included 
visual acuity testing, dilated fundus examination, wide-field 
fundus imaging using the Silverstone system (Optos PLC, 
Dunfermline, Scotland, UK), fundus autof luorescence 
imaging, and Spectralis optical coherence tomography (OCT, 
Heidelberg Engineering, Heidelberg, Germany). Informed 
written consent was obtained from all patients. This study 
was approved by the institutional review board of Gangnam 
Severance Hospital (3–2020–0063) and adhered to the tenets 
of the Declaration of Helsinki.

Genome sequencing (GS) and segregation analysis: 
Following exome sequencing or targeted-panel next-gener-
ation sequencing, two families with undiagnosed NCMD-
affected index individuals were subjected to GS. Briefly, 
samples were prepared according to the Illumina TruSeq 
DNA PCR-free library preparation (Illumina, San Diego, 
CA). The libraries were sequenced on the Illumina NovaSeq 
6000 platform using 150-bp paired-end reads. Reads were 
mapped to the human genome (hg38) using a Dragen mapper 
(v.1.3.0), and a Haplotypecaller (GATK 4.3.0.0) was used to 
identify SNVs and short indels [8]. Variants were annotated 
using ANNOVAR-based VARaft (v.2.1.2) and VEP-based 
seqr (v1.0-x) [9,10]. To identify SVs and large indels, ClinSV 
using CNVnator and lumpy software was employed [11]. 
Mobile element insertion was assessed using the Mobile 
Element Locator Tool (MELT) algorithm [12]. DNA samples 
from other available family members were screened using 
Sanger sequencing (BigDye v3.1) for the presence of candi-
date variants identified using GS.

Variant filtering and annotation: The genomic regions asso-
ciated with NCMD, encompassing PRDM13, IRX1, and its 
upstream regions, were selected. Subsequently, SNVs and 
small indels were filtered based on the gnomAD v.3.1.2 minor 
allele frequency (0.5%) and zygosity (heterozygous). The 

filtered variants were re-assessed using the NHLBI Trans-
Omics for Precision Medicine variant database (TOPMed, 
freeze 8); the Korean Reference Genome Database (KRGDB), 
which includes genome sequencing data from 1,722 Koreans 
[13]; and GEM-J WGA, which includes whole-genome 
sequencing data from 7,609 Japanese, to identify the popu-
lation-specific minor allele frequency of population-specific 
variants [14]. The SVs in these genomic regions were evalu-
ated using the Database of Genomic Variants (DGV). Other 
coding variants of 290 known retinal disease–associated 
genes were assessed to identify likely pathogenic or patho-
genic variants. The GS workflow is presented in Appendix 2. 
Candidate variants were investigated for their potential effects 
on gene regulation and cross-species conservation using the 
UCSC Genome Browser (Santa Cruz University, Santa Cruz, 
CA). To identify the epigenetic signature, publicly available 
ATAC-seq in human and retinal organoids was also analyzed 
[15].

RESULTS

Clinical phenotypes of affected patients: Six individuals (four 
from Family A and three from Family B) were examined, and 
the genomes of the two probands were sequenced using GS. 
Although data on Family A were reported [13], mutational 
analysis was not conducted at the time. Fundus photography 
of the affected family members revealed wide inter-individual 
variations in grades 1–3 of NCMD lesions with or without 
subretinal fibrosis. Twenty years after the first report, the 
proband of Family A (Patient II-5, 35-year-old female) had 
a best-corrected visual acuity (BCVA) of 20/25 and 20/200 
in the right and left eyes, respectively. Fundus photography 
revealed drusenoid deposits with small retinal excavation 
and retinal pigment epithelium (RPE) disruption at the fovea 
in the right eye and large confluent drusen and disciform 
scars in the macula of the left eye (Figure 1A–E). The clinical 
features were typical of Grade 2 NCMD in both eyes. An 
examination of the anterior segment revealed no significant 
findings.

In Family B, Patient II-5 was a male who was 16 years old 
at the time of diagnosis. His BCVA was 20/20 in both eyes. A 
fundus examination revealed multiple drusen-like deposits on 
the maculae of both eyes. OCT displayed disrupted outer and 
inner segmented photoreceptor layers and small deposits in 
the ellipsoid zone on the fovea despite an intact RPE layer on 
the fovea, which was consistent with Grade 1 NCMD in both 
eyes (Figure 1F–J). Fundus autofluorescence (AF) revealed 
multiple speckled hyperAF lesions at the macula in both eyes 
that reflected the disruption of the photoreceptor layer on 
OCT. No definite drusen-like lesions were observed in the 
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peripheral retina (Appendix 3). The 10–2 central visual field 
test illustrated no definite scotoma in both eyes.

Patient II-6, the younger brother of Patient II-5, was 
a 14-year-old boy. His BCVA was 20/20 in both eyes, and 
a fundus examination revealed multiple small drusenoid 
deposits in the fovea, similar to those in Patient II-5. OCT 
revealed a disrupted photoreceptor layer in the right eye and 
mild RPE layer disruption in the left eye. No definite drusen-
like lesions were observed in the peripheral retina (Appendix 
4). The central visual field remained intact.

Patient I-4 was a 50-year-old male with a phenotype 
similar to that of his sons (Appendix 5). Relatively more 
drusen were observed on the peripheral retina, revealing 
hyperautofluorescent dot lesions (Appendix 5). His visual 
acuity was 20/20 in both eyes. Additionally, no definite visual 
field defect was noted on the 10–2 visual field test (Table 1).

Identification of causative variant in genome sequencing: GS 
helped identify two rare novel SNVs upstream of PRDM13 
in these two families. Moreover, no copy number varia-
tions, structural variants, or mobile element insertions were 
detected in the neighboring PRDM13 or IRX genes. No rare 
pathogenic coding variants of the known inherited retinal 
dystrophy genes exist. These two novel variants, named V17 
and V18, were in NCMD mutational hotspot 2 (PRDM13_cis-
regulatory elements; Figure 2A), which was reported as an 
enhancer interacting with the promoter of PRDM13 [16]. The 
publicly available single nucleus ATAC analysis revealed that 
this region is enriched in early retinal progenitor cells of both 
the human retina and organoid (Appendix 6) [15].

The chr6:g.99,598,914T>C (V17) variant was identified 
in Patient II-5 (Family A) after filtering the common variant 

(MAF <0.5%). However, it was not present in gnomAD v.3.1.2 
and TOPMed databases. This variant was also absent from 
the East Asian genomic databases KRGDB or TOGOVAR. 
V17 was 7 bp downstream of the previously reported V10 
variant. Segregation analysis identified this variant in three 
other affected individuals (patients I-2, II-4, and II-6). This 
variant is not present in the unaffected mother (Family A, 
I-3, Figure 1A). In Family B, chr6:g.99,598,926G>A (V18) 
was identified in Patient II-5, and this variant was not present 
in population genetic databases such as gnomAD, TOPMed, 
KRGDB, and TogoVar. Segregation analysis revealed that this 
variant was present in two other affected family members 
(Family B, patients I-4 and II-6, Figure 1F).

We used the FABIAN variant to predict the effect of 
DNA variants on transcription factor binding [17]. This 
analysis suggested that the V17 variant causes the loss of 
the transcription factor binding, such as POU2F1–3 and 
POU3F1–2, belonging to the Pit-Oct-Unc (POU) family. The 
V18 variant disrupts the binding of the SIX2 transcription 
factor (Appendix 7 and Appendix 8).

Clinical interpretation of the pathogenicity of variants: We 
assessed the pathogenicity of the variants using guidelines 
recommended for non-coding regions [18]. We obtained 
evidence supporting the pathogenicity of both variants. These 
two variants were in mutational hotspots without benign vari-
ations (PM1) and were absent from the population databases 
(PM2). The variant is co-segregated with multiple affected 
family members in a gene known to cause the disease (PP1). 
The phenotype of a patient is highly specific to monogenic 
diseases (PP4). According to these guidelines, these two puta-
tive candidate variants were classified as likely pathogenic.

Figure 1. Pedigrees and clinical features in patients with North Carolina macular dystrophy. A: Pedigree of Family A. B–E: Fundus photo-
graph and optical coherence tomography (OCT) of the 35-year-old female (Family A, Patient II-5). Mild retinal excavation with ellipsoid and 
retinal pigment epithelium defects was noted in the right eye. Larger elevated confluent drusen and disciform scars with pigment clumping 
were noted in the left eye. F: Pedigree of Family B. G–J: Fundus photograph and OCT of the 16-year-old male (Family B, Patient II–5). 
Multiple drusen-like deposits on the maculae of both eyes denote Grade 1 North Carolina macular dystrophy (I, J).
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DISCUSSION

In this study, we identified two novel non-coding SNVs in 
two unrelated East Asian families with NCMD. These novel 
variants were absent from the population genetic database. 
These variants were located within a previously identified 
mutational hotspot-2 (PRDM13_cCRE5). Publicly available 
ATAC-seq, DNA-seq, and methylation studies also indicated 
that these variants are in the cis-regulatory element [16]. 
Furthermore, the nucleotides of these positions are highly 
conserved in 28 mammalian species. Notably, despite the 
proximity of the two variants, the severity of the disease of the 
two variants differed substantially. Variant V17 causes Grade 
2 NCMD with some intra-eye and intra-familial variability, 
whereas variant V18 causes Grade 1 NCMD with normal 

visual acuity. Collectively, our findings suggest that these 
novel variants are associated with PRDM13 dysregulation.

The newly discovered novel variants, V17 and V18, were 
between V10 and V11 on mutational hotspot 2. Markedly, 
these variants are in DNase I hypersensitive sites (DHS), 
which are open and active at the developmental stage of the 
retina, primarily in the early developmental stages of retinal 
progenitor cells. Green et al. used the activity-by-contact 
(ABC) model to predict the effects of enhancers on the regu-
lation of target genes using epigenomic data from human 
embryonic stem cells [19]. V10 was identified as functional 
in the development of both macular and retinal tissues. V17 
and V18 fall within the same enhancer region. Hence, they 
may affect the development of macular and retinal tissues.

Figure 2. Previously reported variants and conservation map of novel variants in PRDM13. A: Schematic of the two identified novel variants 
associated with North Carolina macular dystrophy at the 6q15 locus in the UCSC genome browser. V17 (GRCh38/hg38 chr6:99,598,914T>C 
in Family A) and V18 (GRCh38/hg38 chr6:99,598,926G>A) were located between V10 and V11 (mutational hotspot-2). B: Conservation map 
for V17 and V18 in 28 mammals. Both variants are well conserved within primates and mammals.



63

Molecular Vision 2024; 30:58-66 <http://www.molvis.org/molvis/v30/58> © 2024 Molecular Vision 

During human embryonic development, mutational 
hotspot-2 (PRDM13_cCRE5) was identified as an active 
cCRE on Day 103, when the retinal progenitor cells of the 
macula stop mitosis and differentiate to their photoreceptor 
fate [16]. Variants in PRDM13 regulatory regions could 
mainly affect macular development. The dysregulation 
of PRDM13, and possibly overexpression, likely leads to 
developmental macular dystrophy. Recently, biallelic loss-of-
function PRDM13 variants have been reported to cause fatal 
perinatal brainstem dysfunction with cerebellar hypoplasia 
[20,21]. Further studies are required to elucidate the role of 
PRDM13 in foveal development.

Moreover, mutational hotspot-2 could be a crucial region 
for determining the spectrum of phenotypes. Variants in 
mutational hotspot-1 revealed typical NCMD, whereas vari-
ants in mutational hotspot-2 demonstrated wide phenotypic 
variability among NCMD, progressive bifocal chorioretinal 
atrophy (PBCRA), and congenital posterior polar chorio-
retinal hypoplasia (CPPCRH; Appendix 9). The genetic 
loci causing PBCRA were initially mapped to the region 
(6q14–16.2) that overlapped with the MCDR1 locus [22]. 
Individuals affected with PBCRA had poor visual acuity in 
early infancy, nystagmus, and myopia with slowly progres-
sive atrophic macular lesions. In patients with PBCRA, an 
electroretinogram (ERG) revealed generalized rod and cone 
photoreceptor dysfunction [23,24]. Typical patients with 
NCMD exhibit relatively better visual acuity during their 
lifetimes than those with PBCRA. However, the two diseases 
share similar phenotypic features in the fundus findings, 
suggesting a common underlying etiology. Subsequently, 
NCMD and PBCRA have the same genetic causalities in the 
non-coding regions of PRDM13, which leads to the dysregula-
tion of PRDM13 expression [25]. The V1–V3, V12, and V16 in 
mutational hotspot-1 and tandem duplications encompassing 
PRDM13 presented with typical NCMD, not PBCRA [5,26]. 
In mutational hotspot-2, V11 indicated PBCRA characterized 
by the slow progression of atrophic lesions at the macula 
in early life [25]. Individuals affected with V10 exhibited 
typical features of NCMD, although 3-year-old child with 
V10 variant presented more severe macular atrophy with the 
progression of the macular lesion [25]. This was defined as 
an autosomal dominant disease in 11 affected patients of a 
single Egyptian family and was renamed CPPCRH by Small 
et al. [27]. V15 revealed typical NCMD without severe visual 
impairment [28]. The affected individuals in our study (V17, 
V18) demonstrated clinical features closer to typical NCMD. 
This phenotypic variability also suggests that variants in 
mutational hotspot-2 contribute to either NCMD or PBCRA.

The interpretation of non-coding variants is challenging 
because they act via variable mechanisms. The variants in 
non-coding regions may regulate gene expression by altering 
transcription factor binding, creating new topologically 
associated domains, generating or disrupting upstream open 
reading frames, or forming strong G-quadruplex structures 
to prevent transcription initiation. Furthermore, they often 
have gene-specific effects depending on the spatiotemporal 
activities of other cCREs. For example, the zinc finger 
protein CCCTC-binding factor (CTCF) plays a role in the 
regulation of genome and chromatin structures. However, 
disrupting the CTCF-associated domain demonstrated 
significant pathogenicity, resulting in limb malformation 
[29], whereas it did not in cancer cells [30]. Therefore, 
guidelines for interpreting non-coding variants recommend 
that variants in candidate CREs should be validated using 
functional experiments demonstrating the direct effect of the 
CRE in relevant tissues on appropriate developmental stages. 
Although we could not perform functional validation, the 
variants were on PRDM13_cCRE5, an established causative 
variant affecting PRDM13 expression [16]. In-vivo enhancer 
assays in Xenopus displayed eye- and brain-specific activity 
for PRDM13_cCRE5 during embryogenic development. 
Therefore, we speculated that these novel variants likely act 
as possible pathogenic variants of NCMD.

The analysis with a FABIAN variant revealed that tran-
scription factor-binding motifs (POU family and SIX2), which 
are essential for retinal development, were altered [31,32]. 
This corroborates previous results [15,16,19]. However, the 
alteration of transcription factor-binding motifs differed 
between variants in NCMD; therefore, no single transcription 
factor was attributed to NCMD pathogenesis. Therefore, the 
precise mechanisms by which these genomic regions regulate 
gene expression warrant further investigation.

Our study has some limitations. We could not validate 
variants using well-established functional experiments. 
However, we analyzed the variants using FABIAN-variant 
and ATAC-seq data, which supported the potential pathoge-
nicity of these variants. Second, we could not determine the 
precise epigenetic mechanism underlying V17. Despite the 
detection of the same variant in the four family members, 
there was phenotypic variability. Therefore, further studies 
are needed to investigate the mechanism responsible for the 
variable expressivity in NCMD. Despite these limitations, 
our robust bioinformatics analysis excluded other possible 
causative variants in families with NCMD. Last, although 
progression is rare in typical NCMD or considerably slow in 
PBCRA, the long-term analysis of retinal structural changes 
and visual acuity was lacking in our study.
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Recently, an increasing number of coding and non-
coding SNVs resulting in inherited retinal diseases have 
been identified [33–36]. Most reported non-coding SNVs 
affect aberrant splicing, whereas only a few non-coding cis-
regulatory variants have been identified in inherited retinal 
diseases (IRD) [34,35]. NCMD can be considered a model 
for investigating non-coding regulatory variants in IRD. 
Further studies of patient-derived cells may help elucidate 
the underlying mechanisms of this cis-regulatory disease. 
Additionally, the identification of these cis-regulatory vari-
ants raises the need to extend the areas captured by targeted 
panels by including known disease-causing pathogenic regu-
latory promoters, enhancers, or non-coding exons in addition 
to coding exons.
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