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Background. Numerous prognostic scores have been published to support risk stratification for patients with coronavirus 
disease 2019 (COVID-19).

Methods. We performed a systematic review to identify the scores for confirmed or clinically assumed COVID-19 cases. An in- 
depth assessment and risk of bias (ROB) analysis (Prediction model Risk Of Bias ASsessment Tool [PROBAST]) was conducted for 
scores fulfilling predefined criteria ([I] area under the curve [AUC)] ≥ 0.75; [II] a separate validation cohort present; [III] training 
data from a multicenter setting [≥2 centers]; [IV] point-scale scoring system).

Results. Out of 1522 studies extracted from MEDLINE/Web of Science (20/02/2023), we identified 242 scores for COVID-19 
outcome prognosis (mortality 109, severity 116, hospitalization 14, long-term sequelae 3). Most scores were developed using 
retrospective (75.2%) or single-center (57.1%) cohorts. Predictor analysis revealed the primary use of laboratory data and 
sociodemographic information in mortality and severity scores. Forty-nine scores were included in the in-depth analysis. The 
results indicated heterogeneous quality and predictor selection, with only five scores featuring low ROB. Among those, based on 
the number and heterogeneity of validation studies, only the 4C Mortality Score can be recommended for clinical application so far.

Conclusions. The application and translation of most existing COVID scores appear unreliable. Guided development and 
predictor selection would have improved the generalizability of the scores and may enhance pandemic preparedness in the future.
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The coronavirus disease 2019 (COVID-19) pandemic has created 
a state of emergency in health systems across the globe [1]. 
Hospitals were overcrowded with patients and decisions for their 
management had to be made quickly. At the same time resource 
constraints limit the treatment of all patients with adequate ther
apies. Even in 2023, when the pandemic transitioned into an en
demic state [2], the dynamically evolving variants of the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still 
cause severe disease in individuals, regardless of immunity, vac
cines, and therapeutic interventions [3, 4], especially when they 
are of elevated age or have comorbidities [5].

Especially during the first wave of the pandemic, scientists 
and clinicians rushed their efforts to support decision making, 
often trying to define thresholds of defined symptoms or scores. 
Such clinical prognostic scores are derived from models that es
timate an individual’s probability for a particular condition by 
combining and weighting predictive factors, mainly in an 
easy-to-apply manner (eg, additive point systems). Compared 
to a more complex, information-intense, and accurate (statisti
cal) outcome prediction model, a score is a clinical decision sup
port tool that facilitates fast applicability and unambiguous 
communication. Clinicians use such scores as “prediction rules” 
daily to reduce severe outcomes by modifying therapeutic con
siderations according to given risks [6, 7]. Although clinical 
judgments remain irreplaceable [5], a score’s validity, reliability, 
and trustworthiness depend on the quality criteria applied dur
ing development and adequate validation. Scores can be devel
oped for different scenarios (eg, predicting in-hospital 
mortality after admission or hospitalization at diagnosis) [7], 
making their application relevant in different settings.

Although numerous predictive models for COVID-19 were 
published [8–10], most are of heterogeneous methodological 
quality or remain unvalidated. The scores were not universally 
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implemented in everyday clinical care and treatment instruc
tions. The current Infectious Diseases Society of America 
(IDSA) guideline (05/2023) [11] does not recommend a specific 
tool for outcome prognosis. The World Health Organization’s 
(WHO) guideline on Therapeutics and COVID-19 (01/2023) 
[4] reported that reliable tools are needed, especially for using 
available medication. Although it mentioned the ISARIC’s 
(International Severe Acute Respiratory and emerging 
Infection Consortium) 4C Mortality Score (4C) [12], the 
“need for better evidence on prognosis” is emphasized [4]. 
The WHO’s Living Guidance for clinical management of 
COVID-19 (01/2023) also suggests “clinical judgment […] 
rather than currently available prediction models” [13]. In 
summary, evidence for prognostic scores is poor [8–10], and 
the translation into clinical practice remains elusive. At the 
same time, the need for reliable stratification tools is empha
sized in COVID-19 guidelines [4, 13].

In our systematic review, we focus on the critical appraisal of 
predictors and the transferability of clinical scores to support 
implementation in routine care. We aim to identify scores for 
daily clinical care, provide an effective overview for decision- 
makers, and pave the way for future pandemic preparedness.

METHODS

Systematic Review Question, Inclusion, and Exclusion Criteria

For this systematic review, we identified the COVID-19 prog
nostic clinical scores developed from the onset of the pandemic. 
We included original scores designed or modified for the man
agement of COVID-19 based on individual patient data from 
clinically assumed or confirmed COVID-19 cases. We did not 
preselect publications on specific patient care levels, timings 
of predictor measurement, predictor types, or targeted specific 
outcomes. We excluded regression or other prediction models 
unsuitable for scoring, predictors based on single observations, 
scores focusing on specific subpopulations (eg, comorbidities, 

pharmaceutical trials), and mathematical virus transmission 
simulations. In the first step, we extracted information from 
all identified studies (termed “all scores”) that fulfilled the pri
mary inclusion criteria (see Table 1). Second, we selected scores 
for an in-depth analysis (Level 2 [L2]) based on predefined cri
teria: (I) area under the curve (AUC) ≥ 0.75, (II) a separate val
idation cohort, (III) training data from a multicenter setting (≥ 
2 centers), and (IV) the result of the score mapped on a point 
scale (for details see Supplementary Text 1). Only scores fulfill
ing the L2 criteria were further evaluated for risk of bias (ROB). 
The other scores were assigned to Level 1 (L1).

Data Sources, Search Strategy, and Data Extraction

We searched MEDLINE and Web of Science on 14 April 2022 and 
20 February 2023 using a prespecified search strategy combining 
domains regarding “COVID-19”, “Prediction”, “Scoring” and 
“Validation metrics” (Supplementary Text 2). Our processing 
was based on the Preferred Reporting Items for Systematic reviews 
and Meta-Analyses (PRISMA) guidelines [14]. For the extracted 
information, see Supplementary Text 3. All literature processing 
tasks, including screening, data extraction, and ROB assessment 
were independently performed by two reviewers (K. A., R. G.). In 
case of disagreement, consensus was reached by discussion.

If not stated otherwise, the unit of analysis was one score per 
outcome and predictor set. We also provide an overview of ex
ternal validations identified by an ad hoc search in the same lit
erature retrieval with a reduced set of extraction items.

Extracted AUCs are presented with range or median and in
terquartile range (IQR); categorical information is reported in 
absolute numbers and percentages (n (%)). The sample size 
was evaluated using the (estimated) events per variable 
(EPV), with low EPVs indicating a higher risk for overfitting 
(see Supplementary Text 3) [15].

Outcomes and Categorization of Scores

Based on the identified literature, the following outcomes were 
present: fatal outcomes (in-hospital mortality, death within 
specified time intervals), disease severity (classified as compos
ite outcomes, eg, need for mechanical ventilation, intensive care 

Table 1. Inclusion and Exclusion Criteria for the Selection of Literature

Inclusion Criteria Exclusion Criteria

• Original publication of a new or 
modified score developed in the 
context of COVID-19

• In- and outpatients with clinically 
assumed or confirmed COVID-19 
(laboratory tests (polymerase 
chain reaction, serological test), or 
clinical assumption or diagnosis)

• Transparent and reproducible 
algorithm presented

• Combination of at least 2 
predictors

• Article written in English or 
German language

• Models built on specific 
subpopulations (eg, comorbidities, 
specific pharmaceutical 
interventions, pregnancy)

• Models without scoring character or 
pure presentation as web 
calculators or nomograms

• Models of single predictors,a 

genetic factors, or mental health 
outcomes (burnout, stress, 
resilience)

• (Quantitative) radiologic scores with 
image processinga

Abbreviation: COVID-19, coronavirus disease 2019.  
aA radiological score without further combination with other clinical predictors was 
considered a single predictor.

Table 2. Categories by Timing of Predictor Measurement and Outcome

No. Category

1 First/early contact with healthcare facility ➝ Fatal outcome

2 First/early contact with healthcare facility ➝ Deterioration (severity, ICU 
admission, need for mechanical ventilation, respiratory complication, 
specific organ failures, or fatal outcome as a composite endpoint, etc.)

3 Severe disease or ICU admission ➝ Deterioration or fatal outcome

4 First diagnosis and contact with outpatient healthcare facility ➝ 
Hospitalization

5 Acute infection ➝ PCC

Contact with healthcare facility also includes hospital or emergency department (ED) 
admission or the first diagnosis by SARS-CoV-2 testing. Abbreviations: ICU, intensive 
care unit; PCC, post-COVID-19 condition; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2.
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unit [ICU] admission, or death), hospitalization, and the 
post-COVID condition (PCC). We categorized the scores by 
the type of outcome and the timing of predictor measurement 
(Table 2).

Risk of Bias Assessment

Flaws in a study’s design, conduct, or analysis methods can cause 
systematic errors (bias) of effect estimates. The Prediction model 
Risk Of Bias Assessment Tool (PROBAST) specifies the adequacy 
of methods when developing a clinical prediction rule by assess
ing the ROB within its four subdomains: “participants,” “predic
tors,” “outcome,” and “analysis.” The ratings “low,” “unclear,” or 
“high” evaluate the validity of the study and condense to an over
all ROB. A “high” rating within at least 1 question or subdomain 
leads to an overall ROB of “high” [15].

RESULTS

The PRISMA flow chart (Figure 1) shows the literature evalua
tion procedure. Of 1522 studies extracted from the database, 242 
original COVID-19 scores met the primary inclusion criteria, 

and 49 met the L2 criteria (details for all scores in 
Supplementary Table 1 and L2 in Supplementary Table 2). 
Comparative summary statistics matching this section are pre
sented in Table 3.

Data Basis and General Study Characteristics (All Scores)

All studies were published between 2020 and 2023. Most scores 
were developed based on cohorts with <1000 participants 
(64.0%) in a retrospective (75.2%) and/or single-center 
(57.1%) design. Fifty-seven percent of the models were validated 
in a separate cohort, including random splits, temporal, or geo
graphical (external) validation. The median AUC was 0.83 
(IQR = [0.77, 0.90]).

The study populations included hospitalized cases without re
striction to specific conditions (65.3%), patients with severe dis
ease (15.3%), or patients admitted to the emergency department 
(ED) (10.3%). The major timing for prediction was admission 
to hospital or emergency department (ED) (79.8%). Predicted 
outcomes (all scores) were mortality (45.0%), severity (as compos
ite endpoints) (47.9%), hospitalization (5.8%), and PCC (1.2%).

Figure 1. PRISMA flow chart. *Not every study had a DOI or had multiple DOIs. Abbreviations: COVID-19, coronavirus disease 2019; DOI, digital object identifier; PRISMA, 
Preferred Reporting Items for Systematic reviews and Meta-Analyses.
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Table 3. Characteristics of the Included Scores

Characteristics

All
Level

N = 242 
n (%)e

Level 1d, N = 193 
n (%)e

Level 2, N = 49 
n (%)e

Category

1 First/early contact with healthcare facility ➝ Fatal outcome 100 (41.3) 79 (40.9) 21 (42.9)

2 First/early contact with healthcare facility ➝ Deterioration 112 (46.3) 94 (48.7) 18 (36.7)

3 Severe disease or ICU admission ➝ Deterioration or fatal outcome 13 (5.4) 12 (6.2) 1 (2.0)

4 First diagnosis and contact with outpatient healthcare facility ➝ 
Hospitalization

14 (5.8) 5 (2.6) 9 (18.4)

5 Acute infection ➝ PCC 3 (1.2) 3 (1.6) 0 (0.0)

Study design

Prospective 33 (13.6) 30 (15.5) 3 (6.1)

Retro- and prospective 12 (5.0) 3 (1.6) 9 (18.4)

Retrospective 182 (75.2) 150 (77.7) 32 (65.3)

Unknown 15 (6.2) 10 (5.2) 5 (10.2)

Multicenter design

≥ 2 centers 103 (42.9) 54 (28.3) 49 (100.0)

Samples size

Cumulative number of participants ≥1000 87 (36.0) 47 (24.4) 40 (81.6)

Estimated events per variablea (median, IQR) … … 15.6 (IQR = [6.6, 267.3])

Health sector

Hospitals/emergency department 216 (89.6) 182 (94.8) 34 (69.4)

In- or outpatient sites 16 (6.6) 3 (1.6) 13 (26.5)

Outpatient sites 7 (2.9) 5 (2.6) 2 (4.1)

Other 2 (0.8) 2 (1.0) 0 (0.0)

Population

Patients in the emergency department 25 (10.3) 18 (9.3) 7 (14.3)

Inpatients with severe disease 37 (15.3) 35 (18.1) 2 (4.1)

Inpatients without restriction to specific conditionsb 158 (65.3) 132 (68.4) 26 (53.1)

Inhabitants of one region 1 (0.4) 1 (0.5) 0 (0.0)

Out- and inpatients 11 (4.5) 2 (1.0) 9 (18.4)

Outpatients 10 (4.1) 5 (2.6) 5 (10.2)

Study/recruitment time

2020 … … 38 (77.6)

2020–2021 … … 4 (8.2)

2020–2022 … … 7 (14.3)

Country

China 45 (18.6) 39 (20.2) 6 (12.2)

Italy 25 (10.3) 24 (12.4) 1 (2.0)

United States 33 (13.6) 18 (9.3) 15 (30.6)

Other 139 (57.4) 112 (58.0) 27 (55.1)

Timing of predictor measurement

Admission to hospital or emergency department 190 (79.8) 159 (84.1) 31 (63.3)

Admission to ICU 7 (2.9) 6 (3.2) 1 (2.0)

SARS-CoV2 testing/diagnosis 13 (5.5) 12 (6.3) 1 (2.0)

Other 28 (11.8) 12 (6.3) 16 (32.7)

Outcomes

Deterioration (composite, with fatal outcomes) 109 (45.0) 91 (47.2) 18 (36.7)

Fatal outcomes (single endpoint) 116 (47.9) 94 (48.7) 22 (44.9)

Hospitalization 14 (5.8) 5 (2.6) 9 (18.4)

Post-acute COVID syndrome 3 (1.2) 3 (1.6) 0 (0.0)

Handling of missing values

Any imputation method applied … … 19 (38.8)

Multiple imputation … … 11 (22.4)

Modeling technique

(Cox, (Bayesian) Logistic, LASSO) Regression … … 41 (83.7)

Machine learning … … 2 (4.1)

Mixed methods or other … … 6 (12.2)
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Among the 188 different predictors (extracted from all 
scores), age (68.2%) was the most frequently included, followed 
by C-reactive protein (CRP) (29.8%). This also applied to mor
tality or severity scores, where the importance of laboratory 
data, demographics, and physiological information stood out. 
Hospitalization scores often included age (87.8%) and dyspnea 
(57.1%) (for the top 20 predictors in each category, see 
Supplementary Table 3). The number of predictors per score 
ranged from two to 29. Figure 2 shows the frequency of predic
tor use in relation to the overall AUC of the scores. We also pre
sent the predictor domains by score, category, and inclusion 
level (Figure 3, Supplementary Figures 1 and 2).

Characteristics of Scoring Systems Selected According to Predefined 
(Quality) Criteria (Level 2)

The most frequent outcomes among L2 scores were mortality 
as single endpoint (44.9%) or severity as composite outcome 
(36.7%). Among pure mortality and severity scores, 0.4%– 
51.2% and 3.7%–51.6% of the patients in the development 

cohorts reached the outcome, respectively. The estimated 
EPV ranged from 0.9 to 709.8 (eEPV < 10: 47.5%). The scores 
had a median AUC of 0.81 (IQR = [0.80, 0.87]).

Nine scores predicting hospitalization (18.4%) met the L2 
criteria (outcomes: 4.0%–38.9%). The scores profited from 
larger sample sizes, with EPVs ranging from 15.6 to 120.7. 
The median AUC was 0.84 (IQR = [0.80, 0.85]).

The scores predicting PCC primarily used symptom infor
mation. None of them met the L2 criterium AUC ≥ 0.75 and 
were therefore not further analyzed.

Risk of Bias

Many studies did not adhere to general guidance for develop
ing predictive models [7, 15, 16], so that information relevant 
to their evaluation was unavailable. Most scores raised at least 
one concern within one of the PROBAST domains, leading to 
an overall high ROB (low 10.2%, unclear 6.1%, high 83.7%) 
(Figure 4, Supplementary Table 4). The primary concerns 
pertained especially to the “analysis” domain, namely, the 

Table 3. Continued  

Characteristics

All
Level

N = 242 
n (%)e

Level 1d, N = 193 
n (%)e

Level 2, N = 49 
n (%)e

Validationc

Separate cohort present 138 (57.0) 89 (46.1) 49 (100)

Geographical validation … … 10 (20.4)

Temporal validation … … 17 (34.7)

Temporal and geographical validation … … 7 (14.3)

Random split … … 13 (26.5)

Validation with different population characteristics … … 1 (2.0)

Independent external validation … … 2 (4.1)

Discrimination

AUC of the strongest validation ≥ 0.75 190 (78.5) 141 (73.1) 49 (100.0)

AUC (median, IQR) 0.83 (IQR = [0.77, 0.90]) 0.84 (IQR = [0.77, 0.91]) 0.81 (IQR = [0.80, 0.85])

Calibrationc

Any method applied … … 30 (61.2)

Calibration plot or table … … 23 (46.9)

Hosmer-Lemeshow … … 12 (24.5)

Application

Formula 65 (26.9) 65 (33.7) 0 (0.0)

Points-based and formula 172 (71.1) 123 (63.7) 49 (100.0)

Formula 3 (1.2) 3 (1.6) 0 (0.0)

Other 2 (0.8) 2 (1.0) 0 (0.0)

We present n (%) for categorical information and the median (IQR) for continuous information. The column “All” includes all scores fulfilling the a priori inclusion criteria. In contrast, Level 1 
merely includes scores that did not fulfill the selection criteria and Level 2 only includes the scores fulfilling the criteria (see Methods section). As a result of two granularity levels of data 
extraction, some information is only available for Level 2 scores.  

Abbreviations: AUC, area under the curve; COVID, coronavirus disease; ICU, intensive care unit; IQR, interquartile range; PCC, post-COVID-19 condition; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2.  
aEvents per variable (EPV) were estimated using the absolute number of candidate predictors. Some studies did not precisely name the number of candidate predictors. To generate 
assumptions regarding the sample size, we counted predictors indicated as candidates in tables or texts (signed by “∼” in Supplementary Table 2), even though we acknowledge that 
using the number of regression coefficients instead is more precise [15].  
bRegarding population characteristics, “severe disease” includes ICU patients and patients with respiratory complications, pneumonia, intubation, or other severe conditions.  
cMultiple options possible.  
dLevel 1 (L1) includes those scores among “all” scores that did not fulfill the Level 2 selection criteria.  
eOr median with IQR.
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absence of calibration measures (eg, adaptation of the relation 
of estimated and observed event probabilities) [17], failure to 
account for over-optimism (which could be met by, eg, boot
strapping or cross-validation) [15, 18], mishandling of 
missing values (eg, use of complete case analysis instead of im
putation methods) [15], and insufficient validation techniques 
(eg, using random splits instead of geographical (external) 
validation) [15].

Table 4 shows scores with an overall ROB rating of “low” or 
“unclear.” Five scores were rated “low” ROB: (1) the ISARIC’s 
4C [12], (2) the CCEDRRN COVID-19 Mortality Score [20], 
(3) the SEIMC score [25] for the prediction of mortality, (4) 
the PRIEST score [23], and (5) the LMIC-PRIEST [21] for se
verity prognosis. Three more scores were rated with “unclear” 
ROB (AFEM [19], OURMAPCN [22], SARS2 [24]). These 
scores have common characteristics: their cumulative sample 
size was comparably large (except AFEM), and missing value 
imputation (except SEIMC) and calibration measures (except 
AFEM) were applied.

External Validations

Only a fraction of the scores (n = 33) were validated externally 
(see Supplementary Table 5). The 4C was replicated most fre
quently: 37 validations from 20 countries yielded a primarily 
robust median AUC of 0.80 (range: 0.55 to 0.93) for different 
outcomes. Based on our literature search, most COVID-19 
scores remained unvalidated.

DISCUSSION

This systematic review investigated the quantity and quality of 
clinical scores predicting COVID-19 outcomes. Although nu
merous scores were developed specifically for this purpose, 

none were implemented in COVID-19 treatment guidelines 
[4, 11, 13] to become part of the clinical routine. Our analysis 
showed that most scores insufficiently adhered to the quality 
criteria required to ascertain validity, reliability, and 
trustworthiness.

Scores Identified With Low or Unclear ROB

Most scores (n = 41) were found to carry a significant ROB due 
to methodological choices. We identified only 5 scores with low 
and 3 scores with unclear ROB (Table 4).

The 4C score [12] can be recommended for prognostication 
of mortality, as it is based on a large, prospective cohort, makes 
use of widely available predictors (in high-resource settings at 
hospital admission), and was frequently validated (at least 37 
validations in 20 countries) [26]. Although the CCEDRRN 
COVID-19 Mortality [20] and SEIMC scores [25] were also de
veloped on large cohorts, the designs of their development 
studies are based on retrospective data, and both would profit 
from additional validations (CCEDRRN: 0 validations; 
SEIMC: 4 validations, 4 countries). We identified the PRIEST 
score [23] and the LMIC-PRIEST [21], developed on large, 
multicenter cohorts, to be potentially suitable for the prognosis 
of COVID-19 severity. The LMIC-PRIEST might especially be 
relevant for low- and middle-income countries (LMIC) [21]. 
Although disease severity seems more relevant nowadays, 
only a few validation studies exist (PRIEST: 3 validations in 3 
countries; LMIC-PRIEST: 0 validations, but external validation 
within the original study). A broad clinical application should 
thus wait for further validation. In general, an adjustment to al
tered frequencies of COVID-19-related deaths and severe dis
ease courses since score development (eg, by immunity and 
vaccination) should be investigated.
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Predictor Selection, Applicability, and Complexities

Many scores included a wide range of predictors (Figure 2) 
from different domains (Figure 3). We may assume that data 
availability often impacts the predictor choices more than 
what is recommended by best practice guidelines [6, 27]. This 
heterogeneity is most likely a result of differences across stud
ies, such as the scope of data sources used, entry criteria for an
alyzed cohorts, slight differences in endpoints and definitions, 
and statistical approaches employed. The heterogeneous clini
cal appearance of COVID-19 and changing vaccination status
es may have added to that heterogeneity. However, the review 
reveals a common set of predictors used in many scores (eg, age 
and CRP), whereas others were included in only 1 or very few 
(eg, nausea or hypotension).

Our results indicate that COVID-19 mortality or severity 
scores should include age, respiratory conditions, laboratory 
data, and comorbidities to predict outcomes reliably [10, 28]. 
Pre-hospital scores (eg, predicting hospital admission) primar
ily use information on comorbidities and sociodemographic in
formation, applicable without diagnostic infrastructure. 
Overall, symptoms and imaging appeared to play a minor 
role. Among the 20 most frequently used predictors, 6 (age, 
sex, diabetes, hypertension (as part of metabolic syndrome), 
blood urea nitrogen (BUN), creatinine) represent components 
of baseline assessment for (organ-related) infection outcomes 
or differential diagnoses, 10 (CRP, lactate dehydrogenase, oxy
gen saturation, respiratory rate, neutrophils-lymphocyte ratio, 
lymphopenia, dyspnea, thrombocytopenia, blood pressure, 
paO2/FiO2, temperature, and leukocytes) are accepted markers 
of overall infection severity/sepsis [29–32]. In contrast, only 2 
(D-dimer, albumin) may not be universally accepted as part 
of a baseline assessment for moderate to severe respiratory ill
nesses [33, 34]. It is not surprising that studies primarily confirm 

prior knowledge, since clinical practice is based on existing ev
idence. This in turn leads to selection of established markers for 
patient screening and thus limited availability of markers for 
score validation. Prospective determination of comprehensive 
metabolic panels might well lead to more effective models. 
This observation may partly be attributed to prior knowledge 
as a key criterion in defining the data sets that, in turn, were 
used in the analyses. It should be emphasized this means that 
the most used criteria are generally available during patient 
care in medium to high-resource settings. However, given the 
considerable overlap of predictors of general infection and se
verity/sepsis, it also suggests that the scores might not add 
much to existing knowledge on respiratory infection outcomes 
and are probably not very specific to COVID-19.

Non-routine laboratory indicators such as D-dimer and 
interleukine-6 restrict score applicability to high-resource set
tings [10]. However, because D-dimer belonged to the top 10 
predictors (Figure 2), further studies are warranted to define 
the incremental value of such parameters for successful patient 
management. Overall, laboratory tests for scores (eg, indicators 
of kidney function or protein metabolism [urea, BUN, creati
nine] or indicators for inflammation such as the CRP vs leuco
cytes) may restrict practicability to specific resource and 
management settings. Not all general practitioners and outpa
tient departments will perform comprehensive tests based on 
moderate respiratory symptoms [35]. The association between 
data availability, care setting, and regional standards is a likely 
source of bias that may limit transferability. Furthermore, non- 
conventional or time-dependent predictors such as arrival 
mode [20] or admission date [22] are less generalizable for val
idation in most cohorts. Only one score asked for the vaccina
tion status [36], as most scores were developed on data from 
the early pandemic. Results from clinical trials indicate that 
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vaccination status may be among the most critical outcome pre
dictors today [37, 38].

Limitations of the Evidence Included in the Review

Differences in score development design may lead to varied 
performance [15]. Notably, we observed a substantial variation 
in sample sizes, settings, and case definitions. Population char
acteristics, including age [28, 39], ethnicity [40], and immunity 
influence COVID-19 outcomes. Additionally, we noted differ
ences in preconditions for specific therapies or hospital admis
sions among countries [41]. Further complicating matters, the 
comparability of composite outcomes was limited due to the 
variation in the combination selected by different study groups.

Good performance measures, in combination with small 
sample sizes or inconsistent reporting of both discrimination 
and calibration measures, indicate a higher risk for overfitting 
[15, 42]. Regarding “all” scores, high AUCs (78.5% ≥ 0.75) of
ten came together with relatively small sample sizes (64.0% ≤  
1000 patients). Scores should not be applied in clinical practice 
until validations show generalizability, applicability, and robust 
performances across various patient characteristics that match 
regional circumstances [8, 42, 43].

Comparison to Other Studies

With the abundance of published models and scores, identify
ing “all” relevant items is demanding. Therefore, complemen
tary approaches are needed. We identified a few reviews on 
COVID-19 predictions or scores, all focusing on different ap
proaches and yielding a (slightly) different set of models, 
both overall and in terms of low ROB [8, 9, 44, 45]. The 4C 
score [12], the PRIEST model [23] and the NEWS2 were re
peatedly discussed as favorable prognostic tools.

Limitations of the Review Process

We restricted the detailed analysis to scores that fulfilled prede
fined criteria; thus, the L2 results refer to scores not representa
tive of “all” scores. A broader approach, including additional 
sources, might have revealed further relevant studies. We did 
not contact the studies’ authors for missing information and 
used a restricted Checklist for critical Appraisal and data extrac
tion for systematic Reviews of prediction Modelling Studies 
(CHARMS) checklist [7] (see Supplementary Text 3) focused 
on aspects considered most relevant to our research question. 
Well-established early warning scores were not within our scope 
but are reported to have a robust performance in validation 
studies [46].

CONCLUSION

Our study is a comprehensive analysis of COVID-19 scores re
garding predictor assessment and applicability. Most scores ex
hibited a marked ROB and lacked external validation. In future 
pandemics, data and resource sharing alongside the application 

of recommended model development and reporting guidelines 
[6, 7, 15, 16] would improve score quality and visibility, leading 
to better implementation for the benefit of the patients.

With currently 3 years of COVID-19 investigations at data re
trieval, we also recognize the absence of reliable scoring systems 
for the prognosis of PCC. Because outcomes have continuously 
improved since the first wave of the pandemic, many experts con
sider PCC has surpassed severe illness and death as a health haz
ard. Reliable predictors of poor long-term outcomes would be an 
asset for decision making and the design of future clinical trials.

In conclusion, none of the numerous scores that have been 
developed received strong guideline recommendations on an 
international level. The current consensus is that the predictive 
tools for COVID-19 are helpful but should only support and 
not replace physician’s judgments.
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