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Abstract: Over the last decade, single-cell sequencing has
transformed many fields. It has enabled the unbiased
molecular phenotyping of even whole organisms with un-
precedented cellular resolution. In the field of human ge-
netics, where the phenotypic consequences of genetic and
epigenetic alterations are of central concern, this transfor-
mative technology promises to functionally annotate ev-
ery region in the human genome and all possible variants
within them at a massive scale. In this review aimed at the
clinicians in human genetics, we describe the current sta-
tus of the field of single-cell sequencing and its role for hu-
man genetics, including how the technologyworks as well
as how it is being applied to characterize and monitor dis-
eases, to develop human cell atlases, and to annotate the
genome.
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Introduction

The advent of next-generation sequencing (NGS) technolo-
gies has made the screening of patients and the discov-
ery of new variants routine; however, the task of decipher-
ing the impact of the uncovered genomic alterations is still
the central challenge of the field of human genetics. Over
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60% of patients with rare diseases of probable genetic eti-
ology leave the clinicwithout a diagnosis even afterwhole-
genome sequencing according to the pilot report from the
UK 100,000 genomes project [1]. Improving this necessi-
tates multifaceted efforts, starting with thorough charac-
terization of the “normal or wild-type” state of tissues to
benchmark diseased states against, obtaining a complete
picture of genotype–phenotype relationships across vari-
ants, and developing technologies that facilitate clinical
translation. Advances in all three areas will be decisive in
developing effective diagnosis and therapeutic regimes.

One technology that attracted an enormous amount of
attention lately across many fields is single-cell sequenc-
ing (sc-seq). While sequencing of tissues (hereafter re-
ferred to as bulk-seq) has been a remarkable method to
characterize the average profile of a tissue in health and
in disease, it becomes insensitive in detecting a pheno-
type, when a disease affects only a subpopulation of cells
in an organ or tissue leading to fraught conclusions. Sc-
seq technologies enable acquiringmore granular informa-
tion about the different cell types within a tissue, thus in-
creasing not only the resolution of the data but also the
statistical power when benchmarking a diseased state to
a normal state. That is, it is theoretically possible to com-
pare sequencing data from patients to a “wild-type” sam-
ple to determine gene expression as well as cell composi-
tion changes, even at early stages of disease progression.
This is just one of the reasons why sc-seq was named the
method of the year in 2013 (Nature Methods) and break-
through of the year in 2018 (Science), has been highlighted
for early detection of diseases [2], and draws over 8700
publications per year (“single-cell” on PubMed). Creation
of such “wild-type” benchmarks – the so-called cell at-
lases – has been one of the major achievements of the
field. What cell atlases are and how they can be used is
discussed towards the end of this review. Sc-seq as an un-
biased and high-resolution phenotyping method has also
been paralleled with multiplexed gene editing methods,
such as pooled CRISPR and saturation genome editing.
This combined genotype–phenotype screening allows an-
notation of hundreds to thousands of genomic regions in
one single experiment, which is also briefly discussed.

This review gives an introduction to the field of single-
cell genomics with a specific focus on its use for human
geneticists. We describe the current state of sc-seq tech-
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nology and how it applies to human genetics. First, we
briefly outline the experimental and analytical workflows.
Then we review sc-seq applications most relevant to the
field of human genetics and discuss how the toolbox com-
prising various flavors of sc-seq is being integrated into
the field of medical genetics. In the interest of brevity, we
have restricted the scope of the review based on the def-
inition of the technology and the biological focus of the
studies. We define sc-seq as technologies that provide cel-
lular resolution, use sequencing as a read-out strategy (cf.
hybridization probes), and probe cellular nucleic acids (cf.
proteome sequencing). We limit our discussions to studies
which focus onhuman tissues and diseases relevant to hu-
man genetics, except for the section on the applications
under development. For more focused reviews on these
topics, we suggest the following reviews [3–6].

Experimental and analytical
workflows
As the name implies, sc-seq comprises the extraction of
the nucleic acids of interest from individual cells or nuclei
(hereafter collectively referred to as cells for simplicity),
followed by sequencing and data analysis (Fig. 1). Here we
provide a quick summary of the modalities of sc-seq as
well as the experimental and analytical workflows, which
have been elaborated and critically evaluated in many re-
cent reviews [4, 7–10].

In its most basic form, there are three mainmodalities
of sc-seq where the cellular nucleic acids are sequenced –
sc-genome-seq, sc-epigenome-seq, and sc-transcriptome-
seq. Each of these modalities offer complementary in-
formation that are uniquely suited to solve niche chal-
lenges in human genetics. Sc-genome-seq is suited for
applications such as identifying genotypes (albeit with
sparse coverage when compared to bulk-genome-seq),
elucidating mechanisms that lead to somatic mutations
[11], constructing developmental lineages, and prenatal
testing [12]. On the other hand, sc-epigenome and sc-
transcriptome offer the possibility to phenotype cells and
also elucidate the mechanistic pathways leading from the
genotype or environmental cues to a pathological state.
More recently, multi-ome or multimodal sequencing has
enabled the simultaneous profiling of combinations of
these modalities, for example to link regulatory elements
to gene expression profiles and to deduce gene regulatory
networks [13, 14].

The experimental workflow of sc-seq resembles bulk-
seq for themost part, including PCR steps, enzymatic frag-

mentation, and end-repair, as well as sample-index and
sequencing-adapter ligation. However, there are two ma-
jor steps that differentiate sc-seq from bulk-seq – dissoci-
ating the tissue to cells and cellular barcoding (Fig. 1A, B).
Dissociating the sample into a single-cell suspension en-
ables access of reagents to individual cells and thereby
the extraction of molecules of interest, without mixing
the molecular contents between cells. This step requires
painstaking optimization, since the tissue type, whether
it is fresh or frozen, and the biological age of the sample
all affect the protocol. Follow-up flow-assisted cell sorting
(FACS) may be required to filter out cell debris. Often nu-
cleus sequencing is preferred over cell sequencing due to
the ease of dissociation.

Cellular barcoding is in principle similar to sample in-
dexing – a prevailing method for cost reduction in NGS,
where molecules (or sequencing libraries) from multi-
ple samples aremultiplexed using unique oligonucleotide
indices prior to pooled sequencing (Fig. 1C). The result-
ing data is bioinformatically demultiplexed based on the
known indices. In cellular barcoding, unique oligonu-
cleotides instead demarcate the molecules with cellular
identities. But unlike sample indexing, where indices refer
directly back to a particular metadata of the sample (e. g.,
treatment vs. control group, or the experimental replicate
#), cellular barcoding occurs at random and the identities
of the cells (e. g., cell type) need to be bioinformatically
determined. Several technologies have been developed
for cellular barcoding. Each employs a different strategy
to append oligonucleotide barcodes to molecules within
each cell. These include using micro/nano-wells (Fig. 1B)
[15, 16] to isolate cells in individual reaction chambers, or
microfluidics-based droplets [17, 18] or split-pool methods
that use combinatorial methods to achieve this goal with-
out cellular isolation [19]. Kits that simplify most of the
steps from cellular barcoding to generation of sequenc-
ing libraries are commercially available from BD Rhap-
sody, 10x Genomics, TakaraBio, MissionBio, and Standard
Biotools, among others. A comparison of some of these
technologies can be found in several reviews [10, 20, 21].

The resulting sequence datasets are generally large
and complex. Their large size is a result of the fact that
most recent sc-seq methods readily sequence well over
thousands and up tomillions of cells [23]. The datasets are
challenging because of artifacts arising from the limited
amount of nucleic acid molecules within each cell (e. g.,
dropout events, as discussed in the Technological limita-
tions section). Apart from additional correction and filter-
ing measures to account for the artifacts and that the se-
quencing reads need to be demultiplexed using the cellu-
lar barcodes to generate an omics profile per cell, themain
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Figure 1: The experimental workflow of sc-seq. (A) The workflow starts with the dissociation of the biopsy samples into a cellular or nuclear
suspension. (B) This is followed by cellular barcoding using droplet- or well-based technologies that enables pooled sequencing of the
molecules from all the cells. (C) The final step is sequencing. Although long-read sequencing is rarely used in current analysis workflows,
it has potential for identification of splice variants in the case of sc-transcriptome-seq or structural variants in the case of sc-genome-seq as
well as to reduce sequencing costs [22]. Adapted from [10].

analytical workflow also resembles that of bulk-seq. The
genomic features, i. e., variants in sc-genome-seq, gene ex-
pression counts in sc-transcriptome-seq, or read counts in
sc-epigenome-seq, are then extracted from the raw data
by alignment to the reference genome. The extracted fea-
tures are segregated per cell and tabulated into a cell × fea-
ture matrix. At this point in the analytical workflow, the
cell names in this matrix are alphanumerals correspond-
ing to the oligonucleotide barcodes and do not contain
any interpretablemetadata (e. g., cell typeor cellular geno-
type).

The next steps of the workflow are generally aimed at
inferring this metadata from the data by means of (hierar-
chical) clustering of the cells (Fig. 2A) and the identifica-
tion of differential features between clusters. Cell type an-
notation, i. e., the identification of cell type corresponding
to each cluster, is usually performed manually. However,

thanks to the recent boom in the abundance of public cell
atlases, automated methods are also becoming available
[24]. However, the accuracy and sensitivity of annotations
to smaller and previously undescribed cell populations
may still be limited, making manual curation a necessary
step. From this point on, the downstream analyses vary
significantly based on project goals, such as identifying
mutational landscapes and differentially expressed genes,
calculating cellular compositions, or establishing gene
regulatory networks stratified either by sample groups or
by the identified cell clusters. Several bioinformatic meth-
odshavebeendeveloped tohandle all aspects of the analy-
sis. Some of these include Cellranger, Seurat, Scanpy, etc.,
for sc-transcriptome-seq analysis [25], chromVar, Signac,
scABC, etc., for sc-epigenome-seq analysis [26], andMono-
var, SCIΦ, etc., for sc-genome-seq analysis [27]. Neverthe-
less, the sc-seq data continues to be vulnerable to subjec-
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tive analysis, and is best left to experienced bioinformati-
cians. Automated and web-based interactive tools are be-
coming available, which will make sc-seq more accessible
to a diagnostics setting [28, 29].

Applications of sc-seq technologies

In this section, we review the literature on applying sc-seq
to human genetics. This section is divided into three parts:
(i) applications in disease characterization, (ii) applica-
tions to aid diagnosis or therapy, and (iii) applications un-
der active development.

i. Applications in disease characterization –
Cellular phenotyping and deciphering
molecular mechanisms

Sc-seq is suited to the characterization of diseases and un-
derpinning the molecular mechanisms behind the pathol-
ogy. This is especially the case when the pathological state
affects a subset of cells (e. g., cell type-specific) or when
it affects multiple organs or tissues because of pleiotropic
genes. Given the single-cell resolution, it also enables
identification of co-occurringmutations frommutually ex-
clusive ones, which is not possible in bulk-seq [12]. These
advantages have led to the application of sc-seq for the
characterization of various diseases, including infectious
diseases such as HIV, tuberculosis, influenza, COVID-19,
etc., which have already been reviewed recently [12, 30,
31]. A large proportion of applications on non-infectious
diseases focuses on cancer, namely the characterization
of cellular heterogeneity, gene pathways, clonal evolution,
etc. [32–36]. Sc-seq has also been used to characterize
complex genetic diseases [37] such as heart diseases [38],
Diamond–Blackfan anemia [39], and autism [40]; auto-
immune conditions such as lupus [41], multiple sclerosis
[42], and rheumatoid arthritis [43]; respiratory illnesses
such as asthma [44–46]; and tissue degenerative condi-
tions such as aging [47, 48], age-related ocular diseases
[49–51], Alzheimer’s disease [52, 53], Parkinson’s disease
[54–56], and ALS [57]. These efforts have also resulted in
publicly accessible databases similar to wild-type cell at-
lases, providing an easy portal to query the expressionpat-
terns of genes of interest (e. g., scREAD for Alzheimer’s dis-
ease [52]). To a lesser extent, sc-seq has also been used
to characterize monogenic and chromosomal disorders,
which are summarized in Table 1. In order to portray the
power of sc-seq for disease characterization and molecu-

lar phenotyping of a mutation, we describe two of these
studies in Boxes 1 and 2.

Box 1. Trisomy. Autosomal polyploidy, such as trisomy
21 and 18, is associated with decreased cellular prolifera-
tion, congenital defects, intellectual disability, and short-
ened life expectancy. In the case of trisomy 21 (Down syn-
drome), it also leads to impaired memory [58] as well as
a higher predisposition for Alzheimer’s disease, with its
clinical hallmark of plaques [59]. The etiology of the syn-
drome is, however, not fully known. Palmer et al. [60] ap-
plied sc-transcriptome-seq on cerebral cortices from 29
age-, sex-, and quality-matched Down syndrome and con-
trol brains to characterize the differential cellular consti-
tution as well as isoform-specific expression profiles. One
of the primary observations in this study was the imbal-
ance between the numbers of inhibitory and excitatory
neurons in the cortex – an observation reported previously
inmousemodels. This imbalancewas seen in all examined
brains, but limited to the interneuronsdeveloping from the
caudal (as opposed tomedial) ganglionic eminence.As op-
posed to naive expectation and in congruence with previ-
ous investigations, the expression of only nine genes cor-
related with the polyploidy (i. e., fold expression change> 1.5), and most of the affected genes are not located in
chromosome 21. Moreover, the misexpression in the Down
syndrome group was cell type-dependent, with microglia
being the most affected cell type. Additionally, signatures
of aging were found in the microglia from young Down
syndrome samples. The Down syndrome microglia also
overexpressed components of C1q and ADGRG1, which are
implicated in overactive synapse pruning and in mem-
ory loss. In short, the authors identified cellular processes
that could mediate the phenotypic consequences of Down
syndrome, which would have gone undetected by bulk-
transcriptome-seq or other comparable methods.

The nuclear protein MECP2 is suggested to act as a tran-
scriptional repressor by recruiting repressor elements to
methylated DNA in a cell type-specific manner, a func-
tion which is impaired in the mutated MECP lacking the
transcriptional repressor domain. As a result of the mo-
saicism, the neural circuits in female individuals with Rett
syndrome are composed of normal as well as diseased
neurons. Many of the previous investigations on the func-
tion of MECP2 were carried out on hemizygous male mice,
where all the cells are affected, limiting the conclusions
for mosaic states. Renthal et al. [75] addressed this by ap-
plying sc-transcriptome-seq as well as clever genotyping
methods to establish genotype–phenotype relationships.
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Table 1: A list of sc-seq-based studies to phenotype and elucidate monogenic and chromosomal disorders.

Genetic disorder Single-cell
modality

Goal Tissue/cell type
analyzed

Main findings Reference

Autosomal dominant
polycystic kidney
disease (ADPKD)

Transcriptome Cell composition and
origin of ADPKD

Kidney Cysts can originate from multiple
renal tissues with varying gene
set activation

[62]

Autosomal dominant
polycystic kidney
disease (ADPKD)

Transcriptome,
chromatin
accessibility

Cell type and
mechanisms driving
ADPKD

Kidney GPRC5A upregulated in cyst
lining cells

[63]

Huntington’s disease
(HD)

Transcriptome Phenotype astrocytes
in HD

Cingulate cortex;
astrocytes and
other cells

HD astrocytes of multiple states,
some upregulating and some
downregulating key genes
compared to the control

[64]

Huntington’s disease
(HD)

Transcriptome Study changes in
cerebrovascular cells

Brain; vascular
cells

Activation of innate immune
signaling in vascular and glial
cells, reduction of blood–brain
barrier integrity

[65]

Huntington’s disease
(HD)

Transcriptome Study mechanism
leading to neuronal
death

Brain; striatal
neurons

Upregulation of innate immune
signaling in spiny projection
neurons

[66]

Cystic fibrosis Transcriptome Characterize sputum
cells

Sputum Shift of immune cell repertoire,
altered phagocytic and cell
survival pathways

[67]

Cystic fibrosis Transcriptome Characterize
disease-related
changes to proximal
airway

Lung Increase of epithelial cells
transitioning to ciliated and
secretory cells

[68]

Systemic
sclerosis-associated
interstitial lung disease
(SSc-ILD)

Transcriptome,
multimodal
(transcriptome+ proteome)

Identify and define
fibroblast
transcriptome to
understand
pathogenesis

Lung; fibroblasts Myofibroblasts undergo greatest
phenotypic changes;
myofibroblast differentiation
and proliferation are key disease
mechanisms

[69]

Sickle cell disease (SCD) Transcriptome Characterization of
CD34tsup+
hematopoietic
stem/progenitor cells

Bone marrow;
CD34+ cells

Increase in CD34+ B-lymphoid
progenitors

[70]

Klinefelter syndrome
(KS)

Transcriptome Elucidate the molecular
basis of infertility

Testis Subpopulation of Sertoli cells in
KS lack transcription from the
XIST locus

[71]

Klinefelter syndrome
(KS)

Transcriptome Elucidate the molecular
basis of the KS
phenotype

Peripheral blood
mononuclear
cells

Identified candidate genes
leading to KS phenotype

[72]

Systemic and mosaic
aneuploidy (T21, T18,
T8, T13)

Transcriptome Molecular basis
phenotype from copy
number alterations

Skin; fibroblasts In trisomic cells, the additional
allele is independently
transcribed

[73]

Trisomy 21 – Down
syndrome

Transcriptome Gene changes in cells
with age

Brain Microglial activation, increased
inhibitory neurons, RNAs with
intra-exonic junctions

[60]

Trisomy 18 – Edward’s
syndrome

Chromatin
accessibility

Disease mechanism
and phenotype

Umbilical cord
blood

Altered cell populations and
misregulated pathways

[74]

Rett syndrome Transcriptome Gene expression in
mosaic Rett syndrome

Occipital cortex The upregulated genes in Rett
syndrome are correlated with the
extent of DNA methylation

[75]
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However, one of the technical challenges in addressing
a genotype–phenotype problem is that sc-transcriptome-
seq technologies are not ideal for genotyping, because of
several reasons: (1) they only detect variants in the tran-
scribed regions; (2) most technologies (except for Smart-
seq or other bespokemethods [60]) are designed for count-
ing the transcripts as opposed to genotyping and there-
fore do not cover the full length of the transcript; and
(3) they only capture a small fraction of the cellular tran-
scriptome (usually 2000–3000 transcripts per cell). The
authors therefore relied on identifying the cells express-
ing the wild-type allele or the mutant allele by taking ad-
vantage of allele-specific SNPs that were maintained in cis
with themutantMECP2 gene. As a result, theywere able to
identify the ∼ 3000 dysregulated genes in excitatory neu-
rons and ∼ 200 genes in vasoactive intestinal peptide in-
terneurons. By taking advantage of published single-cell
methylation data from the human cortex [76], they were
able to conclude that indeed MECP2 in humans represses
highly methylated long genes in wild-type but notMECP2
mutant neurons, thus providing mechanistic insight into
this disease.

Box 2. Rett syndrome. X-linked genetic disorders, such
as Rett syndrome, which is caused by mutations in the
MECP2 gene, or Fragile X syndrome, which is caused by
repeat expansion within the FMR1 gene [61], result in neu-
rodevelopmental disorders. In female patients the man-
ifestation of the disorder is generally milder as a result
of mosaicism, where the affected tissues are composed
of cells expressing either normal or non-functional genes
due to the random inactivation of the alleles. Bulk/tissue-
level sequencing methods are insensitive to the pheno-
typic characterization in these cases due to the lack of
cellular resolution to tease apart somatic mosaicism. Sc-
seq offers unique advantages. Not only does it offer single-
cell resolution to characterize the cellular phenotypes, it
also offers the possibility to compare the phenotypes be-
tween cells expressing the functional or themutantMECP2
obtained from the same individual, thus avoiding batch
effects and biological variabilities when comparing Rett
samples and age-matched controls. Moreover, since the
cellswith altered transcriptome inmosaic diseases are sur-
rounded by an otherwise “normally functioning” environ-
ment, inter-cellular factors affecting the cells are also alle-
viated.

ii. Pre-clinical applications to aid diagnostics
and therapy

The ability to detect rare cellular subpopulations within
a tissue biopsy has been the long-held promise of sc-seq
technologies for early disease diagnosis, enabling timely
therapeutic interventions (Fig. 2B). But, unlike the rapidly
accelerating literature on such prospective applications
of sc-seq for disease diagnosis [77], its explicit use in the
clinic is lagging behind. Currently there are a dispropor-
tionately largenumber of reviewshighlighting thepromise
of sc-seq and its diverse use case scenarios for diagnostics,
therapeuticmonitoring, and personalizedmedicine, espe-
cially in the context of cancer [78–84]. While several hur-
dles, as discussed in the Technological limitations section,
prevent the direct application of sc-seq in the clinic, its us-
age, e. g., in clinical trials, to assess the (in)effectiveness
of a new therapy and to delineate the underlying mecha-
nisms has seen some interest [85–87].

One of the primary applications of the technology in
a therapeutic setting has been in assessing and under-
standing the response (or resistance) to cancer therapy.
For example, Kim et al. [88] used sc-seq on triple-negative
breast cancer biopsies/excised samples to address an un-
resolved question, i. e., whether resistance to neoadjuvant
chemotherapywas causedbygenerationof newmutations
during the therapy or the selection of rare, pre-existing
clones, owing to intra-tumor heterogeneity. By the com-
bined use of sc-genome-seq and sc-transcriptome-seq the
authors found out that while the chemotherapy caused
the adaptive selection of pre-existing mutations, the se-
lected cells underwent transcriptional reprogramming in
response to the therapy.

Mochizuki et al. [89] report on their intermediate re-
sults from a Phase I clinical trial utilizing chimeric antigen
receptor T-cell (CART) therapy for gliomas. They find corre-
lations between immunosuppressive myeloid populations
and the response to therapy based on sc-transcriptome-
seq of cerebrospinal fluid biopsies. In this context, it is
worth highlighting that the use of circulating cells, such
as circulating tumor cells and cells in the cerebrospinal
fluid, in combination with sc-seq is being recognized as a
promising strategy for diagnosis and therapeutic monitor-
ing [83]. Indeed tools specifically designed to enrich cells
from patient biopsies with liquid samples are also being
developed [90].
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Figure 2: Analysis of sc-seq data for early disease detection. (A) The sc-seq data obtained from a brain biopsy can be visualized in the form
of a UMAP embedding, where each cell is represented by a dot. Cells (dots) with similar phenotype (transcriptome or epigenetic marks) clus-
ter together, which are assigned to cell types based on prior knowledge. (B) Clusters in A might contain cells undergoing transition, such
as differentiation or cell cycles, which can be visualized by means of trajectory analysis. Here, cells that deviate from established healthy
trajectories may aid in early disease detection. Based on [10] and [2]. Note – synthesized data.

iii. Applications under active development

Most aspects of sc-seq are yet to be standardized for rou-
tine clinical use. One of the reasons for this steady and
continuous development is to build upon the basic idea
of sequencing every cell and to introduce new capabili-
ties. Incorporation of new capabilities constitutes one of
the focus areas of the development, which include si-
multaneous recording of spatial characteristics with “sci-
space” (see Box 3), longitudinal sequencing of the tran-
scriptome in live cells with “live-seq” [91], or the record-
ing of information related to cell physiology with “patch-
seq” [92]. Another direction into which the technology is
currently developing is to address fundamental and long-
standing questions in biology, such as annotating the non-
coding genome or unraveling the complexity of humande-
velopment. These challenges are being addressed using
novel approaches utilizing sc-seq such as “pooled CRISPR
screening” [93] and “cell lineage tracing” [94, 95]. While
not all of these breakthroughs are of immediate relevance
to human genetics, we believe some of the outcomes of
this global effort mandate a discussion for this reader-
ship, even if their benefits in the clinic may take years to
fruition. These include: the construction of open-access
cell atlases, the unbiased annotation of functional ele-
ments in the genome, and the high-throughput phenotyp-
ing of variants. We limit our discussion below to the cell
atlases and the phenotyping of variants, since the anno-
tation of functional elements in the genome was recently
reviewed elsewhere [10].

Box 3. A word on spatial transcriptomics. One of the
drawbacks of sc-seq is the loss of spatial informationwhen
dissociating the tissue into cells. This loss is most noticed
when an entire organism (e. g., whole embryos [23, 96]
or zebrafish [97]) or a large tissue (e. g., brain [98]) is se-
quenced, where the spatial context is at least as important
as the cell type information because of abundant cell types
such asmesenchymal or epithelial cells. Spatial transcrip-
tomics is a related sequencing methodology that, until re-
cently, prioritized preserving spatial coordinates over cel-
lular identity of the sequenced molecules [99]. Methods
have been developed to integrate, experimentally [100]
and bioinformatically [5, 101], the sc-seq data with spa-
tial data, which can help delineate how tissue-level phe-
notypes form by collective cellular functions.

iii (a) Human and mouse cell atlases

Creating publicly accessible cell atlases of organisms
based on sc-seq has been one focus area of the develop-
mental research field (Fig. 3A). In a cell atlas, cells are
classified and catalogued based on their expression pro-
files and epigenetic marks. They are an especially valu-
able resource for developmental and disease research, as
they provide an open and peer-reviewed benchmark to
compare diseased cellular states as well as to screen gene
expression patterns or epigenetic modifications at a par-
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Figure 3:Wild type atlases of human tissues and their applications in human genetics diagnostics. (A) Single-cell atlases of many human
organs and tissues are publicly available, some of which are highlighted here. Blue and red colors indicate the modality of sc-seq included
in the dataset. Detailed information related to these atlases can be found in Supplementary Table 1. (B) Schematic of a use case scenario
for the diagnosis of polycystic kidney disease, depicting the identification of candidate genes using a standard exome diagnostics work-
flow. This gene list can be further filtered based on expression analysis in the relevant (e. g., whole embryo or kidney) publicly available
cell atlases. In the portrayed scenario, Gene C, expressed in the affected organ (brown arrowhead), will be prioritized for diagnostics. Note:
Synthesized data.

ticular cell type, developmental time, or tissue (Fig. 3A).
An example of this was discussed earlier – the work on
Rett syndrome (Box 2). The international effort of build-
ing such cell atlases has seen contributions from individ-
ual labs through to one enormous single-cell experiment
as well as international consortia, such as the Human
Cell Atlas (https://www.humancellatlas.org/), collaborat-
ing to put together different sc-seq experiments to scan
the whole body. The outcome has not only been extensive
knowledge on how the cells work in an orchestrated fash-
ion leading to the development of a functional organism,
but it has also laid the groundwork to interpret diseased
cellular states, which from a clinical perspective can aid
early disease detection and therapy (Fig. 2). In a case ex-
ample where the clinician aims to determine the pheno-
typic consequences of a deleterious frame-shift mutation
found in a patient with a rare disease, where the expres-
sion pattern of the gene is still unknown, it will no longer
require painstaking expression profiling (e. g., in situ hy-
bridization assays). Instead, this information is readily
available at the fingertips throughweb interfaces to atlases
such as https://www.cambridgecellatlas.org/ or https://

descartes.brotmanbaty.org/ (Fig. 3B). Whole-embryo at-
lases of other model organisms such as mice, includ-
ing during its embryonic development between E9.5 and
E13.5 [23] with spatial information [102], and those featur-
ing pleiotropic mutations are also available [103]. Indeed
new cell atlases are being published on a daily basis and
it will take a concerted effort to collect, host, organize,
and present this information in a useful, comparable, and
seamless fashion to maximize their clinical benefits [104].

iii (b) Multiplexed, high-throughput phenotyping of
variants

Current pipelines for the diagnosis of rare genetic diseases
critically rely on functionally annotated variants. How-
ever, only about 30% of the known variants in ClinVar
have been definitely classified to be pathogenic or not,
with nearly half the variants classified to be variants of un-
certain significance (VUS). Indeed, the lack or uncertainty
of some of the annotations has been attributed to the 10%
of the undiagnosed cases after whole-genome sequenc-
ing [1].Withwhole-genomesequencingbeing envisagedas

https://www.humancellatlas.org/
https://www.cambridgecellatlas.org/
https://descartes.brotmanbaty.org/
https://descartes.brotmanbaty.org/
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standard care and the increasing number of un-annotated
variants being identified in coding and non-coding re-
gions, there is an urgent need for high-throughput geno-
type–phenotype screening technologies that can establish
(cf. bioinformatically predict) deleteriousness and pheno-
typic consequences of variants. The advent of approaches
such as saturation genome editing (see accompanying ar-
ticle by Findlay et al. in this issue) have enabled the high-
throughput generation and screening of thousands of cod-
ing and non-coding variants, as opposed to relying on
population screens to identify variants, where the rate of
discovery of rare variants is inherently limited by muta-
tion rates and selective pressures. These approaches have
also been beautifully and comprehensively reviewed else-
where [93]. However, the throughput of genotyping has
not yet been met in phenotyping, which is mostly lim-
ited to specific functional screens, by means of guide RNA
representation in the population [105], application of se-
lective pressure, or FACS sorting [106]. Sc-seq promises
to provide this tool, offering unbiased, multiplexed, and
high-throughput phenotyping capabilities. It has already
found applications in the annotation of genomic regions
[107–110]. The combination of genome editing approaches
with sc-seq technologies will eventually enable testing of
all observed variants of a patient in one multiplexed ex-
periment. This will have an immediate impact on human
genetics and help to establish genotype–phenotype rela-
tionships for variants across the entire human genome at
scale.

Technological limitations
Sc-seq shares some of the fundamental challenges with
bulk-seq in capturing and amplifying thenucleic acid from
the samples, leading to PCR amplification biases, dropout
events, and allelic imbalance, except that these biases
are more exaggerated in sc-seq due to the limited nucleic
acid content in individual cells. Bioinformatic quality con-
trol tools currently represent the primary strategy used
to tackle such experimental artifacts. For example, tools
such as Scrublet [111] have been developed to detect dou-
blet cells in sc-seq to be filtered out, which may otherwise
corrode the data. Appropriate extraction and handling of
the samples are also vital, since the qualities of chromatin
and the RNA are known to have a direct influence on the
data quality [112]. Current sc-seq sequencingmethods also
face a real trade-off between sequencing coverage and
number of cells sequenced [10]. Commercially available

kits such as 10x Genomics toolkits help sequence 20,000
cells and detect a few thousand genes per cell, running
the risk of smaller cell populations or phenotypes with
subtle gene expression changes left undetected. However,
advanced bioinformatic tools can help overcome some of
these experimental limitations, as demonstratedbyus and
others by detecting even minor changes in both gene ex-
pression and cell type compositions in mutant mouse em-
bryos [103].

Conclusions
In basic research, sc-seq technologies have beenwidely es-
tablished as a toolbox to query developmental processes
and disease mechanisms with unprecedented sensitivity
and granularity. Despite neck-breaking advances over the
last decade, the technology is in many ways still nascent.
That is, the data created and conclusions drawn do not
yet suffice as a “one-experiment proof” and continue to
require reinforcements with additional validations. There
are indications of increased transfer of sc-seq to a number
of fields, including human genetics, with tens of genetic
diseases that have already been characterized with this
technology (Table 1). With sequencing and library prepa-
ration costs rapidly dropping, the protocols being stan-
dardized [113], and bioinformatic tools becoming more ac-
cessible, the barriers to translation are rapidly vanishing.
The ultimate promise of the technology for the field of hu-
man genetics is to offer the means for massively parallel
functional variants testing in vitro andat some stage also in
vivo. While we are not there yet, we expect the technology
to be ripe for adoption within the present decade. Educa-
tion will ultimately play a key role in realizing this and we
hope this review has contributed towards informing this
readership of human geneticists about the current state of
this recent and booming technology.
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