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Abstract
Background Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and 
pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from 
cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue 
EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which 
can provide more accurate and comprehensive information for understanding the development and progression of diseases.
Methods We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the lat-
est research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the 
application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated.
Results We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently 
analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on out-
lining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their 
potential applications in early tumor diagnosis, prognosis, and treatment.
Conclusion When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the 
characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the 
potential risks associated with tissue EVs need to be considered as therapeutic agents.

Keywords Tissue-derived extracellular vesicles · Enzymatic digestion · Tissue culture · Density gradient centrifugation · 
Cancer diagnosis and treatment
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PMI  Post-mortem interval
TEM  Transmission electron microscope
sEVs  Small EVs
lEVs  Large EVs
UC  Ultracentrifugation
UF  Ultrafiltration
GO  Gene ontology
RCC   Renal cell carcinoma
ccRCC   Clear cell renal cell carcinoma
DAMP  Damage-associated molecular pattern
IFNγ  Interferon gamma
AA  Arachidonic acid
EVP  Extracellular vesicles and particles
EMT  Epithelial–mesenchymal transition
BCa  Bladder cancer
NSCLC  Non-small cell lung cancer
OCC  Ovarian clear cell carcinoma
AEH  Atypical endometrial hyperplasia
ERK  Extracellular signal-regulated kinases
ADSCs  Adipose-derived stem cells
ATMs  Adipose tissue macrophages
BMIs  Body mass index
BCC  Breast cancer cell
LECs  Lymphatic endothelial cells
PVAT  Perivascular adipose tissue
VSMC  Vascular smooth muscle cells
WAT   White adipose tissue
IR  Insulin resistance
FAO  Fatty acid oxidation
FA  Fatty acids
HFD  High-fat diet

Background

Extracellular vesicles (EVs) is a collective term for vesicles 
with a membrane structure that are naturally released by 
nearly all the cells. Depending on their size and biological 
origin, EVs mainly include exosomes (EXOs), microvesicles 
(MVs), and apoptosis bodies (ABs). EXOs are intralumi-
nal vesicles (ILVs) that arise from the inward budding of 
endosomal membrane during maturation of multivesicular 
endosomes (MVEs) and are secreted upon fusion of MVEs 
with the plasma membrane. MVs are derived from the out-
ward budding and fission of the plasma membrane, liber-
ating vesicles into the extracellular space. ABs, which are 
membrane-bound vesicles formed during the process of 
apoptosis and containing information and substances from 
dying cells, were discovered to be capable of delivering use-
ful materials to healthy recipient cells (Raposo and Stoor-
vogel 2013; Colombo et al. 2014; Tkach and Théry 2016; 
van Niel et al. 2018).

EVs can be isolated from cell culture supernatants, body 
fluids, and tissues (Lozano-Ramos et al. 2015; Foers et al. 
2018; Zhang et al. 2020a, b; Karimi et al. 2022) and play 
an integral role in multiple biological processes, including 
immune response, apoptosis, inflammatory response, and 
intercellular signal transduction (Kim et al. 2002; Peinado 
et al. 2012; Atay et al. 2014). They are, thus, involved in the 
pathophysiological events of most diseases, such as cancer, 
metabolic diseases, and neurodegenerative diseases (Yáñez-
Mó et al. 2015; Kalluri and LeBleu 2020; van Niel et al. 
2022). These make the work of isolation and characterizing 
of EVs attractive for the research in the fields recently.

Currently, isolated EVs can be divided into three types 
according to their sources, including cell culture-, body 
fluid-, and tissue-derived EVs (Ti-EVs). At present, most 
of the EVs studies focus on the cell culture- and body 
fluid-derived EVs. However, long-term culture may alter 
cell properties and subsequently affect the function of 
derived EVs (Allen et al. 2016). Cell lines may not be 
representative of the tumor from which they were derived 
either, due to missing the communication with the other 
co-existed cells in the tumor microenvironment (Domcke 
et al. 2013; Chen et al. 2015). Furthermore, EVs derived 
from cell culture are not able to reflect the dynamic pro-
gression of the disease over time, because the cell lines 
are obtained from one individual at a specific point during 
the development of the disease. In contrast, Ti-EVs are 
released by tissue cells under the strong influence of sur-
rounding tissue cells and/or distant organs, and thus can 
provide comprehensive information on complex intercellu-
lar communication. And EVs obtained from tumor tissues 
resected from different patients better reflect the tumor 
heterogeneity from patient to patient than those from cell 
lines. For the identification of EVs biomarkers and true 
EVs function, Ti-EVs are superior to cell culture-derived 
EVs because they contain EVs secreted by most cells in 
the tissue and can reflect the pathophysiological charac-
teristics and behavior of cells more accurately (Camino 
et al. 2020; Chen et al. 2020). Although EVs isolated from 
body fluids can reflect dynamic disease progression at a 
minimally invasive cost (Leung et al. 2021), they contain 
mixtures from various sources including serum proteins 
and huge amounts of lipoproteins (Simonsen 2017; Karimi 
et al. 2018; Wang and Turko 2018) or systemic EVs from 
the whole body (Jingushi et al. 2018). Meanwhile, the 
extent to which EVs are secreted from specific tissues into 
the circulation is still unknown at the moment (Huang and 
Xu 2021). While the Ti-EVs contained minimal contami-
nants due to the origin from only certain tissue compared 
to the EVs from body fluid (Crescitelli et al. 2020). This 
enables us to obtain highly pure organ-specific EVs for 
subsequent biomarker studies (Jingushi et al. 2018). In 
addition, Ti-EVs can be isolated from both cancer tissue 
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and normal tissues nearby with a similar biological envi-
ronment, and differences in Ti-EVs composition analysis 
from the same patient source are more beneficial for bio-
marker screening (Hoshino et al. 2020).

Due to the abovementioned characterization of the Ti-
EVs, they play an important role in disease progression 
and have been found to have great potential in understand-
ing the development and diagnosis of diseases in their 
early stages (Chen et al. 2022). Brain Ti-EVs are involved 
in central nervous system disease progression and thus 
can be used as biomarkers and therapeutic targets (Asai 
et al. 2015; Yelamanchili et al. 2015; Polanco et al. 2016; 
Wang et al. 2017; Ruan et al. 2021). Several studies have 
shown that proteins and RNAs in brain Ti-EVs are poten-
tial biomarkers for Alzheimer’s disease (AD) (Cheng et al. 
2020; Huang et al. 2022). Adipose Ti-EVs play an critical 
role in the progression of obesity and insulin resistance, as 
well as some obesity-related metabolic diseases (Jayabalan 
et al. 2019; Camino et al. 2020). They can also promote 
wound re-epithelialization, granulation tissue formation, 
and hair follicle regeneration, thereby accelerating skin 
wound healing (Dai et al. 2017; Dong et al. 2020, 2022; 
Pan et al. 2023). More studies pay their attention on the 
role of Ti-EVs in tumors, and they have been shown to 
involve in various processes of tumorigenesis and progres-
sion. The tumor Ti-EVs have been used together with body 
fluid EVs for cancer early diagnosis, monitoring of treat-
ment response, and analysis of unknown primary tumors 
(Hoshino et al. 2020; Tomiyama et al. 2021; Maruoka 
et al. 2022). Adipocytes are an important part of the tissue 
surrounding the tumor and adipose Ti-EVs were found to 
have widespread effects on tumors by providing metabolic 
substrates to support their progression and metastasis (Liu 
et al. 2023; Mathiesen et al. 2023). Exploring the role 
of adipose Ti-EVs in tumorigenesis and development can 
offer new strategies for tumor detection and treatment.

To fully make use of the Ti-EVs for understanding the 
development and diagnosis of diseases, isolation of Ti-
EVs with a high purity is an important prerequisite. But 
this task remains highly challenging, mainly due to the 
complexity of Ti-EVs. There are few optimal methods 
readily available for the isolation and characterization of 
Ti-EVs that can meet experimental and clinical needs. 
This paper looks into the state-of-the-art technologies 
involved in the whole process of Ti-EVs isolation includ-
ing tissue processing, Ti-EVs isolation and characteriza-
tion, and shares our insights to facilitate the research in 
isolating and characterizing high-purity Ti-EVs. Then we 
provide an overview of the research progress of Ti-EVs for 
addressing the challenges raised by cancer management, 
including the role of Ti-EVs for tumorigenesis and pro-
gression, and the application of Ti-EVs for early diagnosis 
and treatment of tumors.

Tissue processing

The interstitial space of solid tissues contains extracellu-
lar matrix (ECM), a complex network comprising diverse 
multi-domain macromolecules arranged in a cell- or tis-
sue-specific configuration (Yue 2014). These ECM constit-
uents intricately intertwine, engendering a robust compos-
ite structure that significantly influences the mechanical 
characteristics of tissues. The average mesh size of ECM 
is usually smaller than that of EVs (Meldolesi 2018; Len-
zini et al. 2020), which makes EVs usually embedded in 
the ECM. The purpose of tissue processing is to release 
EVs confined in the ECM, or allow tissue cells to secrete 
more EVs by tissue culturing. It is also critical to mini-
mize the impact on cellular integrity when working with 
tissues, so that the isolated vesicles are truly derived from 
the extracellular space and not intracellular vesicles or 
nanoparticles from the ruptured cells, thereby reducing 
the risk of contamination (Crescitelli et al. 2021). Note 
that even small numbers of dead cells are able to produce 
more vesicles than EVs (Théry et al. 2018).

Tissue processing methods generally include mechani-
cal disruption, enzymatic digestion, and tissue culture. 
In the mechanical disruption method, a tissue homoge-
nizer is usually used to homogenize the tissue, and then a 
series of centrifugation steps are performed on the tissue 
homogenate to remove cells and cell debris, and EVs are 
isolated following. Mechanical disruption is thought to 
result in cell broken and release of intracellular and other 
membrane vesicles, reducing the purity of Ti-EVs (Gupta 
et al. 2005, Mincheva‐Nilsson et al. 2016, Crescitelli et al. 
2021). The processes of enzymatic digestion and tissue 
culture are shown in Fig. 1. Both methods have their own 
advantages and disadvantages. Enzyme digestion only 
takes a short time, typically 15–30 min. But this method 
is considered too aggressive and has the potential to affect 
the surface of cells and EVs, thereby altering the func-
tion of EVs (Garcia-Contreras et al. 2015). Tissue culture 
method is gentler and will not cause damage to cells and 
Ti-EVs. However, tissue culture takes a long time, gener-
ally 24–48 h. The prolonged tissue culture and changes in 
the in vitro environment of tissue cells may result in new 
EVs released from cells that are different from those in 
the in vivo environment. In contrast, enzymatic digestion 
obtains a snapshot of EVs in the tissue at the time of dis-
section (Crescitelli et al. 2021).

Enzymatic digestion method

Enzymatic digestion can digest the ECM to release 
the embedded EVs for isolation. This method can be 
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performed on fresh or frozen tissue to fully dissociate cells 
and EVs in the tissue, at the same time to ensure enzymes 
not damaging the proteins on the surface of cells and EVs.

The type and concentration of enzyme, and incubation 
conditions are the key parameters to influence the effec-
tiveness of enzymatic digestion method, and the main 

parameters used in different studies are listed in Table 1. 
It can be found that there are many types of enzymes used 
for Ti-EVs isolation. Brain tissue generally uses type III 
collagenase (Vella et al. 2017) or papain (Perez-Gonzalez 
et al. 2012); tumor tissue mostly uses collagenase D (Luna-
vat et al. 2017); other enzymes include collagenase I (Chen 

Fig. 1  The tissue processing methods. (1) Tissue is dissociated 
and washed. (2) Tissue is cut into small pieces. (3a) In the enzy-
matic digestion method, the dissected tissue pieces are incubated in 
an enzyme-containing solution to digest the ECM and fully release 
EVs. The enzymatic digestion is terminated after a certain time, typi-
cally 15–30  min. (3b) In tissue culture method, the dissected tissue 

pieces are placed in culture medium and cultured under appropriate 
conditions, usually for 24–48 h. (4) The solution containing the tissue 
pieces is collected and passed through a cell strainer to remove large 
tissue segments. (5) Differential centrifugation is used to remove cells 
and cell debris, and the supernatant is collected and used to isolate 
EVs
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et al. 2020) and IV (Ishiguro et al. 2019). Papain is often 
used to digest nervous tissue (Yousef et al. 2018). Gentle 
papain digestion does not trigger cell lysis, thereby avoiding 
potential contamination of Ti-EVs isolation by intracellular 
organelles and vesicles. Collagenases are capable of degrad-
ing native collagen by gently and selectively digesting the 
ECM with minimal damage to cells. Collagenase type III 
can be used for isolating cells from injury-sensitive tissues, 
like brain (Vella et al. 2017). Collagenase D is also used 
to dissociate cells from various tissues, like liver, adipo-
cytes, islet (Uchea et al. 2015; Benck et al. 2016). Cresci-
telli combined collagenase D and DNase I to break down 
tumor tissue (Crescitelli et al. 2021). DNase I can reduce 
cell aggregation caused by extracellular DNA during cell 
dissociation (Möller et al. 2012; Legroux et al. 2015), there-
fore reducing the medium viscosity and leading to a higher 
EVs yield (Crescitelli et al. 2020). Ishiguro perfused the 
liver with an enzyme-containing medium to dissolve the 
extracellular matrix and dissociate intercellular junctions, 
and the cells and EVs were separated from the connective 
tissue after enzymatic digestion (Ishiguro et al. 2019). Col-
lagenase concentrations ranging from 0.5 to 5 mg/mL were 
used, but the different collagenase concentration was found 
to have no significant effect on the production of EVs. And 
the optimal perfusion time is 7–8 min. Too long a perfusion 
procedure increases the risk of damaging the thin connective 
tissue within the liver, leading to liver injury or rupture of 
the portal vein; while shorter times lead to incomplete lysis 
and preserve hepatocyte contacts, resulting in incomplete 
EV release. This optimal protocol achieves the isolation of 
liver cells and tissue EVs with very little damage, reduces 
the risk of EVs being contaminated by impurities. However, 
its limitation is that some Ti-EVs may be washed away in 
the perfusate, resulting in loss of Ti-EVs. Enzymatic diges-
tion methods should be adjusted when treating different type 
of tissues, for example, when a well-established method is 
to be used on bone tissue that has never been subjected to 
enzymatic digestion, some parameters should be optimized, 
such as the type and concentration of the enzyme, and the 
incubation time (Li et al. 2021). Huang found that the brains 
of mice and macaques are more sensitive to enzyme than 
human, so the digestion time should be shortened (Huang 
et al. 2020).

Not only the yield of EVs in the tissue was concerned, 
the viability of tissue cells and EVs is another aspect being 
investigated when applying different strategies of enzy-
matic digestion. Crescitelli compared three tissue process-
ing methods to study the effect of enzyme on Ti-EVs isola-
tion. Scheme 1 is without enzyme digestion; scheme 2 is to 
isolate EVs first, resuspend and then treat with collagenase 
D and DNase I, and then separate again by ultracentrifu-
gation; scheme 3 is to directly treat tissue fragments with 
the same enzymes used in scheme 2, and then isolate EVs. Ta
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The results showed that the best EVs yield was observed 
in scheme 3, indicating that the compactness of the tis-
sue would hinder the release of EVs into the supernatant, 
resulting in low yield of EVs. The enzyme digestion method 
can effectively destroy the ECM, which is conducive to the 
release of EVs into the supernatant (Crescitelli et al. 2020). 
It has been reported that the molecules on cell surface are 
not affected by collagenase D (Autengruber et al. 2012). In 
addition, Crescitelli found the combination of collagenase 
D and DNase I had no effect on the viability of the cell line 
HMC-1, and had minimal effects on the surface molecules 
of cells and EVs. CD9 and CD63 expression on the surface 
of cells and EVs did not change significantly, while CD81 
decreased slightly (Crescitelli et al. 2020). Liu used a two-
step enzymatic digestion method to dissociate human and 
mouse lung tissue. First, dispase II working solution was 
dripped into the lungs of mice until the lung lobes were 
fully expanded, and then liquefied 1% agarose was added 
dropwise. After the agarose had fully gelled, the lungs were 
harvested and put into dispase II working solution and incu-
bated for 1 h at room temperature. After digestion, the num-
ber of viable cells obtained from human and murine lung 
tissue were 96.2% and 94.2% of the total cells, respectively. 
This suggests that enzymatic digestion causes minimal dam-
age to lung cells, which would greatly reduce contamination 
of Ti-EVs by intracellular vesicles (Liu et al. 2022).

Tissue culture method

Fresh tissue must be used and generally cut into smaller 
pieces prior to tissue culture. The obtained fresh tissue 
should be put into the culture medium as soon as possible 
and cultured under appropriate conditions to promote the 
tissue cells to release EVs, which are then collected for EV 
isolation.

Tissue culture uses a protocol similar to cell culture. For 
example, using cell culture medium, with the addition of 
penicillin–streptomycin, and with or without fetal bovine 
serum (FBS). If FBS is used, exosome-depleted ones are 
generally recommended (Lunavat et al. 2017). In conven-
tional practice, tissues are typically cultured within a carbon 
dioxide incubator at 37 °C. However, certain studies involve 
culturing tissues under conditions maintained at 4 °C (Jin-
gushi et al. 2018; Tomiyama et al. 2021). Tissues need to be 
cut into small pieces to facilitate the delivery of nutrients and 
gases  (O2/CO2) to all cells, and also to facilitate the release 
of EVs secreted by tissue cells to the medium. Dense tissues 
need to be cut into smaller pieces than loose mucosal tissues 
(Mincheva‐Nilsson et al. 2016). Never use mechanical and/
or enzymatic disruption as cell disruption, for it may intro-
duce unnaturally secreted EVs from multivesicular bodies 
(MVBs). Freshly obtained tissue is processed immediately, 
and shorter incubation times are recommended, although 

a shorter culture time may result in insufficient Ti-EV 
release as well as a lower EVs recovery rate. Otherwise, 
if the culture time is too long, the viability of tissue cells 
may decrease, and the composition of released EVs may be 
changed. An increase in dead cells may lead to a significant 
increase in EVs impurities. Jingushi and Tomiyama cultured 
tissue for only 1–2 h at 4 °C (Jingushi et al. 2018; Tomiyama 
et al. 2021). Mincheva cultured tissue at 37 °C for 24–48 h, 
and up to 72 h depending on the viability of the tissue cells 
(Mincheva‐Nilsson et al. 2016). Tong cultured human pla-
centa tissue at 37 °C for up to 16–96 h (Tong and Chamley 
2018). Lapeire demonstrated that 24-h in vitro culture had 
no effect on adipose tissue integrity, metabolic activity, and 
bioactivity (Lapeire et al. 2014). In addition to the culture 
time, some studies have also examined the atmosphere of 
tissue culture. Knowing that the human placenta developed 
under hypoxic conditions during the first 10 weeks of gesta-
tion, Tong investigated the effect of oxygen concentrations 
(2%, 8%, and 20%) in culture conditions on the release of 
EVs from the human placenta. The results showed that oxy-
gen concentration did not influence the number and the mean 
and modal sizes of EVs, and the concentration of proteins in 
EVs (Tong et al. 2016).

Gomes compared both enzymatic digestion and tissue 
culture methods using mouse brain tissue. The tissue culture 
method provides a smaller total protein yield of EVs, but 
it shows a higher particle: protein ratio than the enzymatic 
digestion method, indicating higher EV purity. Proteomics 
results showed more proteins were identified in EVs from 
the tissue culture method (1660 proteins) compared to the 
enzymatic digestion method (409 proteins). In the category 
of cellular components “exosomes” (GO:0070062), EVs iso-
lated from tissue culture could detect more proteins. While 
for the rest of the cell component category, the protein num-
bers looked similar for both methods (Gomes et al. 2023). 
The digestion with papain and/or other enzymes would 
affect the molecules on the plasma membrane surface (Par-
ish et al. 1977; Iijima et al. 1999). This may be the reason 
that EVs proteins from tissue culture methods are particu-
larly abundant in the membrane and extracellular domain 
categories. EVs isolated by tissue culture method are struc-
turally, biochemically, and functionally intact (Gomes et al. 
2023). However, Gomes used different isolation methods 
for enzymatic digestion and tissue culture when isolating 
Ti-EVs. Density gradient centrifugation was used for enzy-
matic digestion method, while a combination of size exclu-
sion chromatography (SEC) and sucrose cushions was used 
for tissue culture. Isolation methods also have an impact 
on Ti-EVs; therefore, the differences among Ti-EVs cannot 
be attributed only to different tissue processing methods. 
Cianciaruso compared the two methods of enzyme digestion 
and non-enzyme digestion. From the nanoparticle tracking 
analysis (NTA) results, EVs number obtained by enzyme 
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digestion was small and showed multiple peaks, while 
non-enzyme digestion showed a single peak. Therefore, it 
is considered that fewer but more heterogeneous EVs were 
obtained after enzymatic digestion. However, there was no 
significant difference in the western blot (WB) results of 
the two methods, both expressed EV characteristic proteins; 
however, both also expressed the endoplasmic reticulum pro-
tein GP96 (Cianciaruso et al. 2019). It should be noted that 
due to the differences in density among different tissues, 
attention must be paid when applying the above conclusions 
to other tissues. Most EVs isolated from adipose tissue have 
used tissue culture methods to process the tissue (Kranen-
donk et al. 2014a, b; Huang et al. 2021; Dong et al. 2022; 
Hong et al. 2022). When extracting EVs from the brain, 
enzymatic digestion methods are used more frequently, 
partly because brain samples are cryopreserved and are not 
suitable for tissue culture methods (Perez-Gonzalez et al. 
2012; Muraoka et al. 2020a, b; Su et al. 2021).

Other factors before tissue processing

Several factors during the process between tissue harvesting 
and tissue processing can also affect the isolation of Ti-EVs. 
After the tissue is obtained, perfusion using phosphate buff-
ered saline (PBS) is beneficial to flush the blood cells and 
reduces the contamination of EVs. For blood-rich tissues, 
such as liver and heart, perfusion prior to tissue processing 
is critical. Liu perfused mouse lung tissue with cold PBS to 
remove blood before extracting Ti-EVs. Blood contamina-
tion in tissues influences cell viability, EVs recovery, and 
EVs proteome data (Liu et al. 2022). When isolating brain 
EVs, no significant difference in particle yield was observed 
after perfusion compared without perfusion, but the Golgi 
marker GM130 was significantly depleted, suggesting that 
perfusion played a role in reducing EVs contamination 
(Huang et al. 2020). Removal of blood to eliminate plasma 
EVs contamination through perfusion can be realized in 
animals, but not feasible when processing human samples.

EVs isolation typically takes a long time and may not be 
performed immediately after surgical harvesting of tissue. 
In addition, all the tissues needed for research are usually 
not available at the same time. For proteomics and genom-
ics, it is recommended that all the tissue samples should be 
analyzed at the same time. Therefore, the harvested tissues 
need to be stored. Huang assessed the effect of the waiting 
time from death to treatment (post-mortem interval, PMI) 
on EVs isolation. After taking the macaque brain tissue, it 
was placed for 2, 6, or 24 h at room temperature before EVs 
collection. Compared with 2 h and 6 h, the EVs in the tis-
sues resting for 24 h had a higher yield, but the number of 
intracellular proteins also increased significantly, indicating 
more cell destruction in the 24 h tissues. Long PMI did not 
affect the RNA biotype of EVs in macaque brain tissue, but 

resulted in the degradation of some small RNAs and lower 
miRNA diversity. For many, miRNAs are only detected in 
EVs from 2-h tissue (Huang et al. 2020). Perez-Gonzalez 
isolated EVs from human brain tissue frozen for several 
years, long-term frozen mouse brain, and freshly isolated 
mouse brain to evaluate the effects of cryopreservation 
on Ti-EVs, and transmission electron microscope (TEM) 
images showed no difference in morphology of isolated EVs 
(Perez-Gonzalez et al. 2012). However, this study did not 
present proteomics or RNA sequencing data; therefore, we 
cannot judge whether cryopreservation alters the purity and 
function of Ti-EVs or not. Some precious human tissues 
cannot be processed immediately after harvesting, but are 
cryopreserved. Although the tissue cell viability is preserved 
well in cold storage (Hyatt and Wilber 1959), the formation 
of ice crystals in storage temperature and the freeze–thaw 
cycles may destabilize EVs lipid membranes (Cheng et al. 
2019). Using fresh tissue as a control, Shizhen Shen (Shen 
et al. 2023) compared the effects of − 80 °C frozen tissue and 
− 80 °C frozen tissue lysate on tissue EVs. After freezing 
at − 80 °C, the integrity of the cell membrane was damaged 
and intracellular vesicles were released. The production 
of both small EVs (sEVs) and large EVs (lEVs) was sig-
nificantly increased, and markers associated with cell were 
slightly upregulated. In the − 80 °C frozen tissue lysate, lEVs 
numbers decreased slightly, while sEVs increased, and the 
expression of sEVs-related markers was also slightly down-
regulated. A portion of EVs proteins and miRNAs are lost in 
both approaches, but proteins are affected less than miRNAs. 
The authors prefer frozen tissues at − 80 °C to study the pro-
tein composition of Ti-EVs, as this storage method is sim-
pler. Although tissue frozen can damage the cell membrane, 
this method did not significantly alter the EVs contents due 
to the intracellular vesicle origin of EVs. When studying 
miRNA components, it is recommended to use fresh tissue 
to isolate tissue EVs (Shen et al. 2023).

Isolation of Ti‑EVs

Ti-EVs isolation is more difficult than isolating EVs from 
cell supernatant and urine, as the medium used to isolate Ti-
EVs usually contains more contamination like cell debris, 
intracellular vesicles, and intercellular components. Cur-
rently, there is no optimal method readily available for iso-
lating Ti-EVs to meet experimental and clinical needs. It is 
challenging to design and implement an appropriate isola-
tion method in which several factors need to be considered, 
including the expected yield, purity, integrity, and concen-
tration of EVs, depending on downstream analysis and the 
scientific question to be addressed (Witwer et al. 2017).

The EVs isolation methods including ultracentrifugation 
(UC), density gradient centrifugation, SEC, immunoaffinity, 
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PEG precipitation, asymmetric field flow fractionation, etc., 
are also described in other works (Coumans et al. 2017; 
Shao et al. 2018; Gandham et al. 2020). PEG precipitation 
method is a simple operation and of low cost, and does not 
require expensive equipment such as an ultracentrifuge 
(Karttunen et al. 2018). However, the EVs purity obtained 
by precipitation is quite low. Matejovič extracted EVs from 
liver tissue culture supernatants using a precipitation kit and 
UC. The Ti-EVs isolated by UC were observed as EV-like 
structures in TEM, while those isolated by precipitation 
mainly showed debris-like structures, but no EV-like. UC 
samples contained more EVs of smaller size than precipita-
tion. The calnexin, a protein associated with endoplasmic 
reticulum, was detected in Ti-EVs isolated by precipitation, 
but not in UC samples, indicating that Ti-EVs isolated by 
precipitation contained non-EV contamination (Matejovič 
et al. 2021). UC is currently the most popular EVs isolation 
method (Gardiner et al. 2016). But using UC alone may lead 
to co-precipitation of protein aggregates. Adding a sucrose 
cushion purification step after UC can effectively reduce the 
contamination of these protein aggregates. Matejovič used a 
sucrose cushion to purify EVs after UC, which improved the 
yield, count, total protein content, and CD63 expression of 
Ti-EVs. EVs signature proteins HSP70, Alix, and TSG101 
could be detected in Ti-EVs isolated both with and without 
sucrose cushion after UC, while CD63 was only detected 
in sucrose cushion purified samples. Furthermore, calnexin 
was detected in a higher level in EVs not purified by sucrose 
cushion (Matejovič et al. 2021). SEC can avoid aggregation 
of EVs during UC (Linares et al. 2015), and remove the 
soluble protein and lipoprotein that are often contaminated 
in EVs separated by UC or density gradient centrifugation 
(Karimi et al. 2018). Many studies have used SEC for the 
isolation of plasma EVs and achieved promising results 
(Gaspar et al. 2020; Guo et al. 2021). Muraoka performed 
UC to obtain EVs pellets from mouse brain tissue, and then 
conducted a EVs purification step either by a density gradi-
ent centrifugation or SEC. The results showed that higher 
EVs particle number and protein yield can be obtained by 
SEC. However, both NTA and TEM results demonstrated a 
broader size distribution of Ti-EVs isolated by SEC than that 
by density gradient centrifugation. Nano-LC–MS/MS analy-
sis revealed that SEC-isolated Ti-EVs contained non-EVs 
proteins (Muraoka et al. 2020a, b). Therefore, the density 
gradient centrifugation is necessary for proteomic analysis 
of Ti-EVs (Muraoka et al. 2020a, b). Huang extracted EVs 
from human brain tissue and compared three isolation meth-
ods, i.e., density gradient centrifugation, SEC + UC, and 
SEC + ultrafiltration (UF). From the NTA results, Ti-EVs 
number obtained by SEC was slightly higher, which was 
consistent with the results of Muraoka’s study. However, the 
protein concentration of Ti-EVs was similar among the three 
different methods, thus resulting in a higher particle:protein 

ratio of Ti-EVs isolated by SEC than those by density gra-
dient centrifugation. In the WB results, calnexin was only 
found in the SEC + UF lane, but not in the other two lanes, 
indicating that UC has a slight advantage over UF in improv-
ing the Ti-EVs purity after SEC. Although Ti-EVs isolated 
by the SEC + UC method had the highest particle:protein 
ratio, the authors do not recommend using SEC to replace 
density gradient centrifugation (Huang et al. 2020). Density 
gradient centrifugation is considered to obtain the highest 
purity of EVs (Onodi et al. 2018; Zhang et al. 2020a, b), and 
currently used most frequently in Ti-EVs isolation.

The key parameters in the density gradient centrifugation 
process include the density gradient medium, the separation 
of EVs by flotation or sedimentation, and the density layer 
collected, as listed in Table 2. Density gradient medium 
mainly included sucrose solution and iodixanol (Optiprep), 
and Kowal compared the purification effects of the two gra-
dient mediums. When using iodixanol, the precipitate was 
mainly floating in two separate fractions with densities of 
1.115 g/mL (fraction 3) and 1.145 g/mL (fraction 5). Both of 
these two fractions contain EV characteristic proteins MHC 
II, CD63 and CD9. TEM results revealed that the 1.115 g/
mL fraction contained a majority of small EVs with a diam-
eter of 50–150 nm. In contrast, sucrose density medium 
resulted in a series of continuous fractions containing MHC 
II and CD9 at densities from 1.12 to 1.19 g/mL, with most 
EVs floating in two adjacent fractions at 1.15 and 1.17 g/mL. 
Therefore, iodixanol could separate EVs subtypes of differ-
ent densities and sizes, with more small EVs concentrated in 
the 1.115 g/mL light fraction. However, the sucrose gradient 
forms a continuous distribution of particles, which is not 
conducive to accurately distinguishing different EVs sub-
types (Kowal et al. 2016). The difference in the separation 
of EVs between sucrose and iodixanol may be the result of 
different viscosity and osmolarity. The isoosmotic property 
of iodixanol is ideal for the isolation of cells and subcel-
lular membrane vesicles (Li and Donowitz 2008). Hurwitz 
compared flotation and sedimentation methods to separate 
EVs. The flotation method is to resuspend the EVs pellet in a 
high-concentration iodixanol solution, and then place several 
low-concentration iodixanol gradients on top of it layer by 
layer; while the sedimentation method is to place the EVs 
sample on the top of the iodixanol gradient. TEM showed 
the presence of cellular debris in Ti-EVs isolated by sedi-
mentation. While the floating Ti-EVs showed highly pure 
and abundant membrane-structured vesicles. Mass spec-
trometry identified 865 proteins in Ti-EVs isolated by the 
sedimentation method and 1,045 proteins in floating Ti-EVs. 
For the same amount of protein, the abundance of EVs pro-
teins including CD81, Alix, Rab10, Flotillin, and CHMP4B 
was higher in the floating EVs, while the abundance of cal-
nexin and ATP2A2 was relatively higher in the sedimenta-
tion samples. These findings suggest that Ti-EVs isolated 
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by sedimentation are contaminated by membrane debris or/
and other lipid particles that migrate together with Ti-EVs 
into the same density gradient (Hurwitz et al. 2018). The 
floating-based separation method can prevent protein aggre-
gates from migrating up to the EVs density layer to improve 
the purity of EVs (Zonneveld et al. 2014; Kowal et al. 2016). 
We noticed that the density corresponding to the collected 
EV layers in different studies varied greatly, from 1.06 to 
1.19 g/ml, as shown in Table 2. In addition to possible dif-
ferences in individual laboratory testing methods for density, 
different tissue sources can also affect the density of Ti-EVs. 
Hurwitz compared Ti-EVs isolated from brain and tumor 
tissue, and found that tumor tissue had two distinct popula-
tions of Ti-EVs, 1.075 g/ml (low-density EVs) and 1.144 g/
ml (high-density EVs), while brain Ti-EVs only enriched in 
low density (Hurwitz et al. 2019). EVs from different tissues 
may float to fractions with different densities, or may seg-
regate into low- or high-density subpopulations. Crescitelli 
isolated large EVs by centrifugation at 16,500 g for 20 min, 
and small EVs by centrifugation at 118,000 g for 2.5 h from 
melanoma tissue. Both EVs showed that EVs characteris-
tic proteins Flotillin-1, CD63, and CD81 were all positive, 
and calnexin is also positive at different degrees. The large 
and small EVs were further subjected to density gradient 
centrifugation, and the low-density fraction at 1.116 g/ml 
and the high-density fraction at 1.176 g/ml were collected, 
respectively. Proteomic analysis of these fractions revealed 
that particles enriched in primarily low-density small EVs 
were most similar to EXOs from the endosomal pathway. 
Proteins enriched in high-density small EVs are associated 
with the proteasome and nucleus. These proteins were pre-
cipitated during centrifugation at 118,000 g, but separated 
from lower density components during density gradient cen-
trifugation (Crescitelli et al. 2020).

Purity characterization of Ti‑EVs

The complexity of Ti-EVs isolation makes the purity char-
acterization of Ti-EVs necessary. The particle:protein ratio 
is a surrogate indicator of EVs purity (Webber and Clayton 
2013). But this method is not reliable, since the number of 
particles measured by existing methods does not necessar-
ily correspond to the number of EVs, and the co-separated 
impurity particles are also counted and taken as the number 
of EVs (Witwer et al. 2013; Bachurski et al. 2019). Interna-
tional Society of Extracellular Vesicles (ISEV) recommends 
protein characterization of isolated EVs (Witwer et al. 2017; 
Théry et al. 2018). The existence of EVs or EVs subtypes 
is proved by detecting EVs characteristic proteins; at the 
same time, the purity of EVs samples is evaluated by testing 
non-EVs and co-isolated impurity proteins. This section will Ta
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mainly focus on the characterization of the characteristic 
proteins and impurity proteins of Ti-EVs.

Western blot

WB is an effective method to characterize EV characteris-
tic proteins and impurity proteins. Endosomal pathway EV 
protein markers, syntenin and TSG101, and tetraspanins, 
like CD81, CD63 and CD9, are usually used to prove the 
presence of EVs (Clotilde Théry et al. 2006, Mincheva‐Nils-
son et al. 2016, Théry et al. 2018). However, the expres-
sion abundance of these markers may be different in EVs 
from different species and sources. Hoshino performed a 
large-scale, comprehensive analysis of the proteome of 
EVs from 426 human cancer and non-cancer samples from 
tissues, cells, and body fluids. Some commonly used EVs 
markers were expressed in low amounts in human plasma. 
This indicated the need to find new pan-EVs markers. 
Therefore, they screened 13 new pan-EVs markers from 
tens of thousands of human EVs proteins. Among them, 
A2M, B2M (Zagorac et al. 2012), STOM (Snyers et al. 
1999; Mairhofer et al. 2002), FLNA, FN1, GSN, HBB, 
LGALS3BP, RAP1B, ACTB, and JCHAIN are proteins that 
are transported through endosomes (Hoshino et al. 2020). 
They all have high expression in all human EVs samples 
and can be used as new pan-EVs markers. ACTB, MSN 
(Muriel et al. 2016), and RAP1B (Pizon et al. 1994) rep-
resent markers for human EXOs and exomeres. STOM is 
found only in EXOs that can be used to distinguish EXOs 
from exomeres (Hoshino et al. 2020). Golgi’s protein BIP, 
endoplasmic reticulum protein calnexin, and mitochondrial 
protein VDAC, CYTOCHROME C, and ATP5A are often 
used as impurity proteins to judge the purity of EVs (Théry 
et al. 2018) (Bordas et al. 2020). When separating EVs from 
brain tissue, the impurity proteins include Histone H1 (from 
nucleus), HSPE1 (from mitochondria), RAB2A (from the 
Golgi apparatus) (Muraoka et al. 2020a, b), CytC, NSE 
(Gomes et al. 2023), Synaptophysin and SNAP-25 (Yela-
manchili et al. 2015). In addition, Grp94 (Jayabalan et al. 
2019), Lamp-1 (Deng et al. 2009), and GM130 (Zhou et al. 
2020) are also used as negative control proteins when isolat-
ing EVs from adipose tissue. The platelet marker CD41a can 
be used to demonstrate the degree of blood contamination of 
EVsv (Crescitelli et al. 2020). When comparing the purity 
of Ti-EVs obtained by three different isolation methods, 
Huang found that the calnexin protein in the WB results 
was more credible than the particle: protein ratio of Ti-EVs 
in reflecting the purity of Ti-EVs (Huang et al. 2020). Vella 
separated EVs from human brain tissue by density gradient 
centrifugation, and obtained two EV-containing fractions, 
F2 and F3. The authors ran WB and used characteristic pro-
teins to distinguish Ti-EVs in these two fractions, which 
belong to different EVs subtypes. Between them, F2 was 

highly enriched in endosomal protein syntenin and tetras-
panin CD81, while there was no endosomal protein enrich-
ment in F3, but the common EVs protein marker Flotillin-1 
was detected. Therefore, it is speculated that the EVs in F3 
are mainly of non-endosome origin, while those in F2 are 
mainly of endosome origin (Vella et al. 2017). Protein abun-
dance may vary greatly between different species or differ-
ent tissues; therefore, appropriate protein markers need to 
be carefully selected (Hoshino et al. 2020). Loyer extracted 
EVs from cardiac ischemic tissue and used cardiomyocyte 
troponin T as a characteristic marker of cardiac Ti-EVs 
(Loyer et al. 2018). GPRC5A and AGER were identified as 
signature proteins of EVs from lung tissue (Liu et al. 2022). 
Li detected high PLIN-A/B expression derived from the adi-
pocyte, little CD68 from macrophage, and no CD31 from the 
endothelial cell in isolated adipose Ti-EVs, suggesting that 
these EVs are mainly produced by perivascular adipocytes 
(Li et al. 2019).

Proteomic

In addition to WB, mass spectrometry-based proteomic 
analysis is often used to provide evidence of the purity of 
EVs. The first valuable analysis in proteomic is the protein 
number detected from EVs samples and the degree of over-
lap between the identified protein types and the EVs protein 
database (Ji et al. 2021), such as Vesiclepedia (Kalra et al. 
2012), EVpedia (Kim et al. 2013), and Exocarta (Keerthiku-
mar et al. 2016). Huang identified 427 proteins from human 
brain Ti-EVs. After comparing with Vesiclepedia, EVpe-
dia, and Exocarta, 99% of the proteins coincided with the 
proteins in the database (Huang et al. 2020). Proteomics 
can also give more detailed information on EVs character-
istic proteins and impurity proteins. Among the 1144 pro-
teins identified by Kowal, there are proteins associated with 
endosomal pathway and trafficking, exosome biogenesis, and 
also the newly discovered small EVs markers ADAM10 and 
EHD1 (Kowal et al. 2016). EVs marker proteins identified 
by Huang include tetraspanins, cytoplasmic proteins, Annex-
ins, RABS, and cytoskeletal proteins (Huang et al. 2020). 
Liu identified two characteristic proteins of lung Ti-EVs, 
GPRC5A and AGER, by proteomics. More cytoskeleton and 
cytoplasm proteins were identified from lung cells compared 
with Ti-EVs (Liu et al. 2022).

Gene Ontology (GO) can give bioinformatics informa-
tion about the identified proteins, such as the source of 
cellular components of the proteins (Huang et al. 2009; 
Cheung et al. 2016). Cellular composition terms related 
to EVs include: “membrane-bound vesicle”, “extracellu-
lar vesicle”, “extracellular exosome”, “extracellular orga-
nelle”, and “extracellular region” (Crescitelli et al. 2020). 
Meanwhile, terms related to cellular debris or contami-
nants include: “nucleus”, “Golgi apparatus”, “endoplasmic 
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reticulum”, “synaptic vesicles”, or “blood particles” (Vella 
et al. 2017) (Muraoka et al. 2020a, b). An abundance of 
proteins associated with terms such as “blood”, “plate-
lets”, “red blood cells”, “plasma”, and “T cells” may 
indicate contamination from blood cell or infiltration of 
immune cells (Huang et al. 2020). Of note, proteins asso-
ciated with mitochondria are generally considered con-
taminants. However, Jang found that three mitochondria 
inner membrane proteins were highly expressed in Ti-
EVs isolated from melanoma metastatic tissue rather than 
non-melanoma tissue, and considered them to be potential 
biomarkers (Jang et al. 2019). Huang compared the prot-
eomics of brain homogenate (BH), 10 K precipitated large 
vesicles (10 K), and purified EVs. The GO terms related to 
EVs like “exosomes”, “cytoplasmic vesicle”, and “vesicle” 
were enriched in both 10 K and purified EVs, and common 
terms like “cytoskeleton”, “lysosome”, and “cytoplasm” 
were detected in all three groups. “Plasma membrane”, 
“membrane”, and “whole membrane” were only detected 
in purified EVs, while “intracellular part”, “protein con-
taining complex”, “nucleolus”, and “nucleosome” were 
found in both 10 K and BH (Huang et al. 2020). Cresci-
telli isolated lEVs from melanoma tissue by centrifuga-
tion at 16,500 g for 20 min, and sEVs by centrifugation 
at 118,000 g for 2.5 h. The lEVs and sEVs were further 
purified by density gradient centrifugation, and the low-
density fraction of 1.116 g/ml and the high-density frac-
tion of 1.176 g/ml were collected, respectively. Proteomic 
analysis was performed on six groups of lEVs, sEVs, 
low-density lEVs, high-density lEVs, low-density sEVs 
and high-density sEVs. The 742 proteins that were dif-
ferentially expressed by multiple group comparisons were 
divided into 6 clusters. Proteins from clusters 1 and 2 were 
enriched in low-density sEVs and low-density lEVs, and 
had the highest proportion of membrane proteins, 77% 
and 86%, respectively. GO terms for these two clusters are 
associated with “extracellular exosomes”, “plasma mem-
brane”, “endosomes”/“circulating endosomes”, and “Golgi 
apparatus”. Clusters 3, 4, and 5 were enriched in lEVs, 
and contained proteins from “endoplasmic reticulum” or 
“mitochondria”. Cluster 6 contained proteins enriched 
in sEVs and high-density sEVs, and was associated with 
the “cytosol”, “proteasome”, and “nucleoplasm”. DnaJ 
homology subfamily C member 13 (also known as RME-
8), a protein associated with membrane trafficking through 
early endosomes (Chang et al. 2004; Girard et al. 2005; 
Fujibayashi et al. 2008), was only enriched in low-density 
sEVs. These results suggest that mainly low-density sEVs 
are most similar to EXOs from the endosomal pathway. 
High-density sEVs-enriched proteins associated with the 
proteasome and nucleus were co-pelleted during centrif-
ugation at 118,000 g, but separated from lower density 

fractions by density gradient centrifugation (Crescitelli 
et al. 2020) (Table 3).

Research progress of Ti‑EVs in tumors

Currently, Ti-EVs used in tumor diagnosis and treatment 
research are mainly derived from tumor and adipose tissue. 
Therefore, in this paper, we only discuss the research pro-
gress of tumor- and adipose-derived Ti-EVs in tumors.

Ti‑EVs derived from tumor tissue

The tumor microenvironment plays an important role in 
the occurrence and development of tumors, and EVs are an 
important part of the tumor microenvironment. EVs have 
been proven to be involved in multiple processes of tumo-
rigenesis and development. At present, numerous studies 
have revealed the relationship between tumor Ti-EVs and 
the occurrence and development of various cancers (Li et al. 
2021; Qin et al. 2021), including the promotion of tumor cell 
proliferation, angiogenesis, tumor migration and metastasis, 
and immune microenvironment regulation by Ti-EVs.

Jingushi found that LAIR1 was highly expressed in renal 
cell carcinoma (RCC) Ti-EVs compared with that in adja-
cent non-cancerous renal tissue. LAIR1 activated the Akt 
pathway by upregulating the phosphorylation status of Akt, 
thereby increasing the cell proliferation of RCC. And using 
siRNA to knock down LAIR1 can reduce RCC cell prolif-
eration by inhibiting Akt phosphorylation, providing a new 
target for clinical treatment of RCC (Jingushi et al. 2019). 
Zhang found that gastric cancer Ti-EVs induced neutro-
phil autophagy and tumor precursor activation through the 
HMGB1/TLR4/NF-κB signaling pathway, promoting cancer 
cell proliferation and migration. This result provided new 
insights into how neutrophils regulated and promoted tumor 
growth and metastasis, and also provided new strategies for 
the diagnosis, treatment, and prognosis of tumors (Zhang 
et al. 2018). Bone-metastatic RCC Ti-EVs contained higher 
APN and thus a higher pro-angiogenic capacity compared 
with Ti-EVs from non-bone metastatic tumor (Takeda et al. 
2023). Colorectal cancer-derived Ti-EVs were enriched in 
CAT1 and may promote angiogenesis through activation of 
the arginine-NO-cGMP metabolic pathway and ERK/p38 
phosphorylation signaling in vascular endothelial cells. This 
may also provide new drug pathways for colorectal cancer 
treatment (Ikeda et al. 2021). Ti-EVs from clear cell renal 
cell carcinoma (ccRCC) regulated the permeability of the 
vascular endothelial cell layer and promoted endothelial 
migration of ccRCC cells in an AZU1-dependent manner 
(Jingushi et al. 2018). Eldh indicated that 69 of the most 
abundant proteins in bladder Ti-EVs were enriched in can-
cer-related metabolic pathways, and were associated with 
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poor prognosis (Eldh et al. 2021). Specific damage-associ-
ated molecular pattern (DAMP) molecules of tumor Ti-EVs 
may induce immunosuppression and pro-tumor inflamma-
tion (Hoshino et al. 2020). Cianciaruso found that TAM-
EVs promoted T cell proliferation and interferon gamma 
(IFNγ) production in vitro. Several proteins in TAM-EVs 
were involved in the biosynthesis of arachidonic acid (AA) 
lipid metabolites. TAM-EVs may shift the AA catabolism 
to a COX1-dependent pathway instead of a COX2-depend-
ent pathway, which may limit the tumor-promoting effects 
of certain prostaglandins (PGs) (Cianciaruso et al. 2019). 
Lunavat found miR-211-5p was significantly upregulated in 
cells and EVs isolated from tumor tissues after vemurafenib 
treatment. Mechanistically, inhibition of BRAF by vemu-
rafenib modulated PERK1/2 and MITF pathways, resulting 
in upregulation of TRPM1, which induced the expression of 
miR-211-5p. Upon activation of this pathway, the survival 
pathway of melanoma cells was also activated, thereby pro-
moting resistance to vemurafenib. Inhibition of miR-211-5p 
in vemurafenib-resistant cell lines negatively affected cell 
proliferation, which provides a solution for vemurafenib 
resistance (Lunavat et al. 2017).

Compared with body fluid- and cell line-derived EVs, 
Ti-EVs derived from specific tissues provide advantages 
in good specificity and easy analysis of the spatiotemporal 
heterogeneity of the tissue microenvironment. Moreover, Ti-
EVs mediate complex intercellular communication between 
tissue cells, and therefore carry more original information. 
Meanwhile, by having a pair of EVs with the same genetic 
background from tumor and nearby normal tissues, compar-
ative analysis can be conducted to help accurately identify-
ing cancer-specific cargo in tumor Ti-EVs without consider-
ing the noise of individual differences. Tumor Ti-EVs have 
great potential to be used as biomarkers for cancer detection 
in early stage, as well as for diagnosing unknown primary 
tumors (Li et al. 2021). Hoshino performed a large-scale 
analysis of the extracellular vesicles and particles (EVP) 
proteome, comparing with EVP isolated from adjacent and 
distant tissues, protein markers were screened from EVP 
of tumor tissue, with a sensitivity and specificity of more 
than 90%. Some of these protein markers are also present in 
plasma EVP. By detecting tumor-associated plasma EVP in 
various cancer patients from stage I to stage IV, it was shown 
that plasma EVP protein can be used as biomarkers to detect 
cancer in early stage. In addition, EVP protein packaging 
differed in different types of tumor and reflected tumor biol-
ogy. For example, proteins associated with epithelial–mes-
enchymal transition (EMT), coagulation, and actin signaling 
pathways were enriched in pancreatic adenocarcinoma EVP, 
while cell cycle, metabolism, and RNA processing pathways 
were highly expressed in lung adenocarcinoma EVP. Spe-
cific combinations of EVP proteins from plasma or tumor 
tissue were able to distinguish cancers of unknown origin. 

Therefore, EVP profiles from tissue biopsies can help clas-
sify cancer types, thereby support more personalized treat-
ment plans for cancer patients with unknown origin of the 
primary tumor (Hoshino et al. 2020).

Melanoma is a highly aggressive malignancy with high 
rates of metastasis and mortality, and its prevalence keeps 
increasing. Ti-EVs isolated from melanoma, with a higher 
expression of mitochondrial membrane proteins, were dif-
ferent from cell-line-derived EVs. Jang isolated EVs from 
melanoma tissue and discovered two proteins from mito-
chondrial membrane, MT-CO2 and COX6c, which were 
also found in the plasma of melanoma, breast, and ovar-
ian cancer patients, therefore can be potential biomarkers 
for liquid biopsy (Jang et al. 2019). Crescitelli isolated EV 
subpopulations from metastatic melanoma tissues, studied 
34 melanoma-related genes, and found that 6 genes (BRAF, 
STK19, CDKN2A, PPP6C, NRAS, and RAC) were mutated 
in Ti-EVs. Ti-EV DNA showed a higher frequency of 
mutant alleles when compared with the total plasma DNA, 
indicating the potential value of Ti-EVs as melanoma bio-
markers (Crescitelli et al. 2022). Colorectal cancer ranks 
third among common cancers and second among cancer-
related deaths. Ikeda found that CAT1 expression was higher 
on tumor Ti-EVs than on normal Ti-EVs. In addition, the 
concentration of EV-CAT1 in the plasma of colorectal can-
cer patients was also significantly higher compared with 
healthy donors. Importantly, EV-CAT1 levels have been 
significantly increased even in phase I patients, indicating 
that EV-CAT1 levels had high potential in colorectal can-
cer detection. The combined diagnostic model of EV-CAT1 
and carcinoembryonic antigen had ideal detection efficiency 
(sensitivity 66.7%, specificity 92.0%, AUC value 0.907; 
95%CI 0.850–0.963) (Ikeda et al. 2021). Ji selected five 
cases of colorectal cancer that recurred within 1 year as the 
recurrence group, and five cases that did not relapse within 
1 year as the non-recurrence group. In the adjacent tissue 
of the recurrence group, four Ti-EVs proteins (HLA-DPA1, 
S100P, NUP205, PCNA) were significantly expressed, so 
these proteins can be used as biomarkers to predict postoper-
ative recurrence (Ji et al. 2021). Bladder cancer (BCa) is the 
cancer most closely associated with urine. Tomiyama per-
formed simultaneous proteomic analysis on both tumor Ti-
EVs and urinary EVs, and found that most proteins detected 
in tumor Ti-EVs were also found in urinary EVs. Three EVs 
proteins, HSP90, SDC1, and MARCKS, were identified as 
reliable biomarkers for BCa detection (Tomiyama et al. 
2021). Eldh found 69 proteins in EVs released from blad-
der tissue that were associated with poor prognosis after 
transurethral bladder resection (TUR-B), 20 of which were 
also found in urinary EVs. These 20 proteins had a greater 
impact on long-term survival and were able to be considered 
as potential prognostic markers (Eldh et al. 2021). ccRCC is 
the most common histopathological type of sporadic cancer, 
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accounting for approximately 90–95% of renal cancer cases. 
Jingushi discovered that AZU1 in ccRCC-derived EVs had 
great potential as a biomarker and can be detected through 
non-invasive liquid biopsy (Jingushi et al. 2018). Compared 
with normal tissues and their Ti-EVs, CA9, CD70, and 
CD147 were increased in tumor tissues and their Ti-EVs. 
So, CA9, CD70, and CD147 may be used as biomarkers for 
identifying RCC (Himbert et al. 2020). Non-small cell lung 
cancer (NSCLC) is the main type of lung cancers. Song iso-
lated Ti-EVs from cisplatin-resistant and cisplatin-sensitive 
tumor tissues and compared the expression levels of miR-
4443 between them. Compared with cisplatin-sensitive Ti-
EVs, miR-4443 levels were upregulated in cisplatin-resistant 
Ti-EVs, and thus could serve as a predictive marker of tumor 
resistance (Song et al. 2021). Ovarian clear cell carcinoma 
(OCC) is a cancer caused by endometriomas. Maruoka iso-
lated Ti-EVs from OCC and normal ovarian tissue from the 
same patients, and preoperative and postoperative serum 
samples were also collected from OCC and atypical endo-
metrial hyperplasia (AEH) patients (control group). A total 
of 959 miRNAs were studied, and 6 OCC tissue-specific 
miRNAs were identified, which can be used as biomarkers 
for their early diagnosis (Maruoka et al. 2022).

Ti‑EVs derived from adipose tissue

Obesity may increase overall cancer risk and be associ-
ated with worse outcomes in cancer patients (Booth et al. 
2015). The adipose tissue of obese individuals secretes 
large amounts of EVs, which mediate information delivery 
between adipocytes and cancer cells (Lazar et al. 2016). Adi-
pose Ti-EVs have been proven to play a key role in the link 
between obesity and cancer.

Adipose Ti-EVs can promote tumor cell proliferation and 
cell death resistance. Breast cancer cells (ZR75.1) treated 
with Ti-EVs derived from cancer-associated adipose had a 
higher degree of phosphorylation of cAMP response ele-
ment-binding protein (CREB) serine residue 133, indicating 
that Ti-EVs can promote the breast cancer cell proliferation 
(Jeurissen et al. 2017). Similarly, extracellular signal-reg-
ulated kinases (ERK) phosphorylation was increased after 
treatment with obese adipose Ti-EVs, which promoted the 
proliferation of MCF-7 cells (Ramos-Andrade et al. 2020). 
EVs derived from adipose-derived stem cells (ADSCs) facil-
itate tumor proliferation and growth by regulating Wnt/β-
catenin signaling, through the procollagen galactosyltrans-
ferase 2 (COLGALT2) pathway (Wang et al. 2020). Wei 
Ying isolated macrophages from adipose tissue. Adipose 
tissue macrophages (ATMs) in lean mice were mainly anti-
inflammatory, while the number of ATMs in obese mice 
increased and showed a pro-inflammatory activation state. 
The levels of miR-155 increased in ATM-EVs from obese 
mice, promoting obesity-induced insulin resistance (Ying 

et al. 2017). miR-155 has also been shown to play onco-
genic/anti-apoptotic effects in breast cancer cells (Zhang 
et al. 2013). Mathiesen found that PC3ML metastatic pros-
tate cancer cells proliferated significantly after contacting 
with EVs from adipose tissue. This may be attributed to 
the transcription factor twist family bHLH transcription fac-
tor 1 (twist1), which is critical for secondary tumor growth 
(Mathiesen et al. 2023).

Adipose Ti-EVs can promote tumor cell migration and 
invasion. Obese adipose Ti-EVs induced the migration and 
invasion of MDA-MB-231 cells by promoting the increase 
of protein kinase B (PKB, namely AKT) phosphorylation 
(Ramos-Andrade et al. 2020). Lazar observed that adipose 
Ti-EVs isolated from obese mice promoted migration of 
melanoma cell more than those isolated from lean mice. 
The results were also observed in human adipose tissue 
taken from people with different body mass index (BMIs). 
Adipose Ti-EVs derived from overweight and obese people 
increased melanoma migration compared with those from 
the lean individuals (Lazar et al. 2015). miRNAs contained 
in adipose Ti-EVs, such as miR-128 and miR-155, were 
also found to promote cancer invasion and metastasis, espe-
cially in a pro-inflammatory environment (Mathiesen et al. 
2023). Moraes found that ADSC-derived EVs may activate 
the Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT-3) pathway through epidermal growth 
factor receptor 1 (EGFR-1)/IL-6, thereby promoting breast 
cancer cell migration and metastasis (Moraes et al. 2021). 
Khanh confirmed that ADSCs-EVs from type 2 diabetes 
mellitus (T2DM) patients induced higher expression of 
genes associated with breast cancer cell (BCC) migration 
and metastasis. Thus, treatment with these EVs significantly 
increased BCC migration in vitro and induced higher lung 
metastasis in vivo (Khanh et al. 2020).

Adipose Ti-EVs can promote angiogenesis. EVs derived 
from ADSCs contain pro-angiogenic proteins. Internali-
zation of ADSC-EVs by endothelial cells significantly 
increased their migration and proliferation in vitro and 
induced angiogenesis in mice (Gangadaran et al. 2021). 
Wang found that EVs derived from ADSCs expressed more 
miR-132 after treatment with vascular endothelial growth 
factor-C (VEGF-C). The transfer of miR-132 by ADSCs-
EVs to lymphatic endothelial cells (LECs) promoted the pro-
liferation and migration of LECs and tube formation (Wang 
et al. 2018). Moraes also suggested that ADSCs secrete EVs 
enriched in miR-132 and miR-31 to induce angiogenesis in 
obesity-associated cancers (Moraes et al. 2021). Li found 
that miR-221-3p was highly enriched in obese perivascular 
adipose tissue (PVAT) and its derived EVs. miR-221-3p can 
significantly promote the proliferation and migration of vas-
cular smooth muscle cells (VSMC) (Li et al. 2019).

Adipose Ti-EVs can also communicate with immune cells 
and change the immune microenvironment to promote tumor 
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progression. ADSC-EVs deliver STAT3 to macrophages, 
increase Arg-1 expression in macrophage, and promote M2 
subtype polarization to reduce white adipose tissue (WAT) 
inflammation, which significantly reduces pro-inflammatory 
TNF-α secretion but increases anti-inflammatory IL-10 
secretion (Zhao et al. 2017). In tumors, M2 polarization 
of macrophages and upregulation of anti-inflammatory 
cytokines will create an immunosuppressive tumor micro-
environment and promote tumor growth. Kranendonk found 
that adipocytes and macrophages achieve cross-talk through 
EVs. Macrophage-driven AT inflammation reduces insulin 
signaling in adipocytes, leading to systemic insulin resist-
ance (IR) and increased cancer risk (Kranendonk et  al. 
2014a, b). Deng verified that adipose Ti-EVs significantly 
enhanced the development of IR, impaired glucose toler-
ance, and induced inflammatory cytokines in a toll-like 
receptor 4 (TLR4)-dependent manner, which would increase 
cancer incidence (Deng et al. 2009). Blazquez found that 
ADSC-EVs significantly inhibited the proliferation and dif-
ferentiation of CD4 and CD8 T cells, and also inhibited the 
secretion of IFN-γ. At the same time, there was a lack of 
major histocompatibility complex (MHC-II) class molecules 
and costimulatory molecules, which were beneficial to the 
survival and development of tumors (Rebeca Blazquez et al. 
2014).

Adipose Ti-EVs can regulate the tumor cell metabolism. 
Through the transfer of the functional enzymes ECHA and 
hydroxyacyl-CoA dehydrogenase (HCDH), adipose Ti-EVs 
may induce metabolic reprogramming in favor of fatty acid 
oxidation (FAO) in recipient cells. The metabolic repro-
gramming was associated with increased mitochondrial 
number and density in melanoma and prostate tumor cells 
(Lazar et al. 2016). In addition, adipocyte EVs transported 
fatty acids (FA) to melanoma cells (Clement et al. 2020). 
These FAs were stored in lipid droplets and provided fuel for 
FAO. High-fat diet (HFD)-EVs delivered more FA, which 
increased lipid accumulation. And fueling FAO by FA may 
reshape the mitochondrial network in melanoma cells, redis-
tributing these organelles to cell ends, thereby promoting 
cell migration. Liu found that adipose Ti-EV caused meta-
bolic reprogramming of estrogen receptor + breast cancer 
cells, enhanced the dependence of breast cancer cells on 
mitochondrial respiration, and drove the proliferation of 
breast cancer cells (Liu et al. 2023).

The study of adipose Ti-EVs in the mechanism of tumor 
development will help discover new targets that inhibit 
tumor growth and provide new strategies for tumor treat-
ment. For example, pharmacological inhibition of FAO 
completely reversed the effects of adipose Ti-EVs on obese 
tumor cell migration. Therefore, FAO inhibitors can be 
used for antitumor treatments, especially for obese patients 
(Lazar et al. 2016). ADSC-EVs can significantly reduce the 
apoptosis rate of neutrophils and significantly improve the 

phagocytic ability of neutrophils (Mahmoudi et al. 2019). 
These data consistently demonstrate that ADSC-EVs can 
bias the neutrophils to N1-like profile shift, which may pro-
vide a new strategy for cancer treatment. Zhou observed 
that there was more miR-424-5p in ADSC-EVs than the 
EVs from other MSCs. miR-424-5p can mediate PD-L1 
repression by binding to 30-untranslated regions (UTR) in 
MM231 cells. MM231 cells exposed to ADSC-EVs were 
co-cultured with activated PBMCs, and the content of pro-
inflammatory signals IFN-γ, IL-6, and TNF-α in the medium 
was increased, while the anti-inflammatory signal IL-10 
decreased. Therefore, the antitumor effects of miR-424-5p-
enriched ADSC-EVs were observed both in vitro and in vivo 
(Zhou et al. 2021). Treatment with miR-424-5p-enriched 
ADSC-EVs can induce cytotoxic T cells in tumors, which is 
a useful tumor treatment strategy. Li found that two subtypes 
of ADSCs (high CD90 and low CD90) had different antitu-
mor activities. Compared with CD90-high ADSC-EVs, the 
latter significantly slowed down proliferation and inhibited 
migration of tumor cells (Li et al. 2020). Antitumor effects 
were exhibited in a breast cancer mouse model, suggesting 
that ADSC-EVs could be used as new effective therapeutic 
agent or drug delivery vesicles.

Prospects

Isolation of highly pure Ti-EVs is a prerequisite for sub-
sequent research, and the most desirable isolation of EVs 
from tissue is the efficient release of Ti-EVs from ECM 
confinement without causing any damages to tissue cells 
and EVs. However, the isolation process may deteriorate 
because of many factors involved, such as different sources 
of contamination. Any severe pressure (chopping, vortex-
ing, homogenization) during tissue isolation and processing 
may cause cell rupture in the tissue, resulting in membrane 
debris of broken cells and the release of immature intracel-
lular vesicles. If enzymatic digestion is used, over-digestion 
will destroy proteins on the surface of tissue cells and EVs. 
Therefore, it is necessary to optimize the parameters during 
enzymatic digestion, such as enzyme type, concentration, 
and digestion time. Freeze–thaw cycle and ice crystal for-
mation may also damage EV membrane structure during 
the storage of the tissue and Ti-EVs at low temperature. 
Therefore, fresh tissue is recommended to use to isolate 
Ti-EVs, and if freezing is necessary, try to avoid multiple 
freeze–thaw cycles. Neighboring tissue cells not removed 
and residual blood cells can lead to EVs contamination from 
non-specific tissue cells. Therefore, removal of adjacent tis-
sue and washing of tissue are effective methods to reduce 
these contaminants.

Although the research around Ti-EVs has received 
extensive attention in recent years, related investigation 
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techniques and outcomes have also made great progress as 
reviewed above (Qin et al. 2021). However, there are still 
some issues to be elucidated in the isolation and charac-
terization of Ti-EVs. For example, whether cryopreserva-
tion after specific tissue acquisition has a side effect on 
the isolation and application of Ti-EVs and how the tissue 
can be preserved to minimize this effect; whether enzyme 
treatment and tissue incubation cause a large difference 
in the applied research of Ti-EVs and which method may 
better reflect the real function of Ti-EVs. Finally, specific 
tissue processing and Ti-EVs isolation methods need to be 
investigated for different tissues as well as the most suit-
able EVs signature protein and potential impurity protein 
are necessary to be determined for characterizing the iso-
lated EVs in question.

The role of Ti-EVs in the occurrence and development of 
tumors has been increasingly revealed. These studies have 
provided new ideas and strategies for early diagnosis, prog-
nosis, and treatment of tumors. Due to the advantages of 
Ti-EVs over cell line and body fluid-derived EVs in tumor 
diagnostics, Ti-EVs have become a hot research topic in this 
field. Unlike the significant progress achieved by Ti-EVs in 
tumor diagnostics and prognosis research, there remains a 
lack of research on their role in tumor treatment. Several 
obstacles have hindered the progress of tissue EVs in onco-
logical treatment research. For example, most human tissue 
is difficult to obtain, and EVs secreted by animal tissues 
may trigger immune response due to carrying exogenous 
molecules. Although tumor tissues and obese adipose tissues 
are relatively easier to access, the EVs they secrete pose a 
risk of promoting tumor growth. ADSCs are easily isolated 
from adipose tissue discarded during liposuction or other 
surgeries, and these ADSCs can be cultured in vitro and gen-
erate large numbers of ADSC-EVs. And there are already 
many studies proving that ADSC-EVs are effective poten-
tial therapeutic vehicles for tumors. However, EVs derived 
from ADSCs have been reported to possess a dual nature, 
with both tumor-promoting and antitumor effects, which 
is associated with the heterogeneous subtypes of ADSCs 
themselves. Therefore, screening ADSC subtype with anti-
tumor properties from healthy donors’ adipose tissue as a 
source for therapeutic EVs is recommended. Alternatively, 
employing suitable stimuli on ADSCs to produce antitumor 
EVs could also be a feasible approach. Furthermore, some 
studies have demonstrated that loading anticancer drugs can 
further enhance the antitumor effects of ADSC-EVs. Any-
way, ADSC-EVs have the therapeutic potential for tumor 
treatment.
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