
Submitted 11 September 2023; accepted 1
Blood Advances First Edition 17 January 2
March 2024. https://doi.org/10.1182/blooda

Any renewable materials, data sets, and proto
by email to the corresponding author Magali F
Original data are deposited in a repository an
corresponding author Magali Fontaine (mfont

REGULAR ARTICLE

9 APRIL 2024 • VOLUME 8, NUMBER 7
Aberrant GPA expression and regulatory function of red blood cells
in sickle cell disease
Juliana N. Marshall,1 Matthew N. Klein,1 Pratap Karki,2 Kamoltip Promnares,2 Saini Setua,1 Xiaoxuan Fan,3 Paul W. Buehler,1

Konstantin G. Birukov,2 Gerardo R. Vasta,3,4 and Magali J. Fontaine1

1Department of Pathology, 2Department of Anesthesiology, and 3Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD; and
4The Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD
Key Points

• RBC transfusion can
restore quiescence in
previously activated
immune cells under
inflammatory
conditions, such as
sickle cell disease.

• RBCs restore
quiescence of
activated leukocytes
through their cell
surface glycophorin A.
Glycophorin A (GPA), a red blood cell (RBC) surface glycoprotein, can maintain peripheral

blood leukocyte quiescence through interaction with a sialic acid–binding Ig-like lectin

(Siglec-9). Under inflammatory conditions such as sickle cell disease (SCD), the GPA of RBCs

undergo structural changes that affect this interaction. Peripheral blood samples from

patients with SCD before and after RBC transfusions were probed for neutrophil and

monocyte activation markers and analyzed by fluorescence-activated cell sorting (FACS).

RBCs were purified and tested by FACS for Siglec-9 binding and GPA expression, and

incubated with cultured endothelial cells to evaluate their effect on barrier function.

Activated leukocytes from healthy subjects (HS) were coincubated with healthy RBCs

(RBCH), GPA-altered RBCs, or GPA-overexpressing (OE) cells and analyzed using FACS.

Monocyte CD63 and neutrophil CD66b from patients with SCD at baseline were increased

47% and 27%, respectively, as compared with HS (P = .0017, P = .0162). After transfusion,

these markers were suppressed by 22% and 17% (P = .0084, P = .0633). GPA expression in

RBCSCD was 38% higher (P = .0291) with decreased Siglec-9 binding compared with RBCH

(0.0266). Monocyte CD63 and neutrophil CD66b were suppressed after incubation with

RBCH and GPA-OE cells, but not with GPA-altered RBCs. Endothelial barrier dysfunction

after lipopolysaccharide challenge was restored fully with exposure to RBCH, but not with

RBCSCD, from patients in pain crisis, or with RBCH with altered GPA. Pretransfusion RBCSCD

do not effectively maintain the quiescence of leukocytes and endothelium, but quiescence is

restored through RBC transfusion, likely by reestablished GPA-Siglec-9 interactions.

Introduction

Red blood cells (RBCs) have been extensively studied for their gas exchange capability in the lung and
peripheral tissues. However, RBC transfusions also exert a wide array of immunomodulatory effects that
either augment or suppress the immune system, a phenomenon known as transfusion-related immu-
nomodulation.1 The transfusion-related immunomodulation effect was first reported when whole blood
transfusions were observed to enhance graft survival after kidney transplantation.1 Although the
chemical and morphological changes that occur in RBC units may lead to proinflammatory effects,2
4 January 2024; prepublished online on
024; final version published online 28
dvances.2023011611.

cols will be made available upon request
ontaine (mfontaine@som.umaryland.edu).
d can be accessed upon request to the
aine@som.umaryland.edu).

The full-text version of this article contains a data supplement.

© 2024 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

1687

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://doi.org/10.1182/bloodadvances.2023011611
mailto:mfontaine@som.umaryland.edu
mailto:mfontaine@som.umaryland.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


there is evidence that RBC transfusion is immunosuppressive.3,4

Indeed, in vitro models suggest that anti-inflammatory interleukin-
10 (IL-10) release and concomitant suppression of the proin-
flammatory tumor necrosis factor alpha response occur after
coincubation of venous blood samples with leukoreduced alloge-
neic whole blood.3

The RBC is now recognized as a regulator of innate immunity.5 The
RBC sialic acid moieties are primarily carried on the trans-
membrane sialoglycoprotein glycophorin-A (GPA), which interacts
with a sialic acid–binding Ig-like lectin (Siglec-9) on the surface of
peripheral blood leukocytes (ie, neutrophils and monocytes).6 The
interaction between RBC surface GPA and lectin Siglec-9 main-
tains neutrophil and monocyte quiescence.7,8

The goal of this study was to further characterize the immunoreg-
ulatory properties of the RBC surface in ex vivo models of inflam-
mation. Here, we focus on sickle cell disease (SCD) as an
inflammatory condition in which RBCs may demonstrate structural
alteration of the surface sialoglycoproteins that affect their inter-
action with immune cells. We hypothesize that RBCs from patients
with SCD show decreased Siglec-9 binding and reduced immune
modulatory effect on innate immune cell responders (ie, leukocytes
and endothelial cells). We tested this hypothesis in a cohort of
patients with SCD who were chronically transfused and evaluated
the effect of RBC transfusion on their innate immune cell response.

Materials and methods

Study participants and blood collection

This study was approved by the University of Maryland Baltimore
Institutional Review Board and conducted according to the
Declaration of Helsinki. Patients at the University of Maryland
Medical Center were included in the study based on the following
criteria: (1) patients with sickle cell disease receiving chronic pro-
phylactic RBC transfusions to prevent or treat vaso-occlusive cri-
ses and who (2) have no demonstrable history of RBC antibodies
(see Table 1). Most subjects were stable (n = 19) and transfused
prophylactically to prevent a vaso-occlusive crisis (VOC); 8
Table 1. Patient demographics and laboratory values

All patients

Subjects (n) 23

Age
Mean ± SD, range

28.7 ± 11.3, 8-52

Males 16

Females 7

RBC (x 106/uL)
Mean ± SD

3.64 ± 0.98

WBC (x 103/uL)
Mean ± SD

13.05 ± 6.50

HGB (g/dl)
Mean ± SD

9.99 ± 2.22

HCT (%)
Mean ± SD

29.38 ± 6.61

Pretransfusion HbS (%) Mean ± SD 30.64 ± 14.63

Posttransfusion HbS (%) Mean ± SD 13.58 ± 6.14

HbS, Hemoglobin S; HCT, hematocrit; HGB, hemoglobin; RBC, red blood cell count; WBC, w
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patients were in pain and transfused to treat VOC. Whole blood
samples were drawn 20 minutes before transfusion and
20 minutes after transfusion for each subject for comparison of
pre- and posttransfusion inflammatory markers. Leukocytes from
whole blood pre- and posttransfusion samples were assessed for
activation by flow cytometry (staining and analysis protocol
described below). Healthy subjects (HS) with negative RBC anti-
body screens served as controls.

Red blood cell glycophorin A expression

Glycophorin A is an RBC surface glycoprotein that interacts with
innate immune cells by binding to Siglec-9, an inhibitory sialic acid-
binding Ig-like lectin. The level of GPA expression on the surface of
RBCs from patients with SCD was assessed and compared with
that of healthy subject RBCs. Whole blood samples were washed 5
times with 2.5 mM phosphate-buffered saline (PBS)-EDTA at 500 ×
g for 5 minutes. The RBC pellets were resuspended in magnetic-
activated cell sorting (MACS) buffer and stained with phycoerythrin
anti-GPA (Biolegend) for 30 minutes at 4◦C in the dark, washed, and
resuspended in MACS buffer for flow cytometry analysis.

Red blood cell Siglec-9 binding assay

Siglec-9 is the GPA-ligand on the surface of neutrophils and
monocytes. Siglec-9 binding to RBCs from patients with SCD was
assessed and compared with healthy subject RBCs. RBCs were
purified as described above. RBC pellets were resuspended in
PBS-EDTA and incubated with Fc-recombinant human Siglec-9
with an added Fc region (R&D Systems, Minneapolis, MN) (5 μg
rSiglec-9/1 million RBCs) for 30 minutes at 4◦C. Cells were then
incubated with FITC anti-Fc (Millipore Sigma, Munich, Germany)
and phycoerythrin anti-GPA (Biolegend, San Diego, CA), washed
once, and resuspended in MACS buffer for flow cytometry analysis.
Data are presented as mean fluorescence intensity (MFI).

Cell culture

Human pulmonary artery endothelial cells (HPAECs) and EGM-2
growth media kit were obtained from Lonza (Allendale, NJ) and
cultured according to the manufacturer’s instructions. For the
Full exchange Partial exchange

17 6

33.29 ± 8.50, 22-52 15.67 ± 7.45, 8-24

12 4

5 2

3.75 ± 1.00 3.21 ± 0.88

12.31 ± 6.71 16.2 ± 5.02

10.19 ± 2.19 9.13 ± 2.49

29.87 ± 6.79 27.30 ± 6.19

25.46 ± 11.93 41.00 ± 15.43

11.23 ± 6.23 17.10 ± 5.66

hite blood cell count.
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coculture experiments, HPAEC were used at early passages.
Before the experiments, the EGM media was changed to basal
media supplemented with 2% fetal bovine serum (FBS), unless
otherwise specified.

TF-1 cells were cultured as described previously.9 Briefly, TF-1
cells, an erythroleukemia cell line, were obtained from ATCC
(Manassas, VA) and genetically engineered to overexpress GPA.
These cells were graciously donated to us by the Kingsbury
Laboratory at the University of Maryland School of Medicine.
Cells were cultured in RPMI medium (Gibco, ThermoFisher,
Waltham, MA) containing 10% FBS and 1 ng/mL GM-CSF
(Biolegend, San Diego, CA). Cells were split every 48 to 72
hours and plated at a density of 1 million cells per mL of medium.
GPA overexpression was confirmed after fluorescent antibody
staining and flow cytometry analysis, as described above, for
RBC surface GPA.

Measurement of endothelial barrier function

Endothelial permeability was evaluated by monitoring the trans-
endothelial electrical resistance (TER) across the HPAEC mono-
layers in an electric cell-substrate impedance sensing system
(Applied Biophysics, Troy, NY). Briefly, cells reaching >1200 Ω of
steady-state resistance were used for measurement of TER under
experimental conditions, and normalized resistance values were
plotted against time. HPAECs were incubated with RBCs from
patients with SCD pre- and posttransfusion. Healthy subject RBCs
served as controls. To investigate the effect of GPA on endothelial
cell resistance, HPAECs were incubated with healthy RBCs pre-
treated with anti-GPA or neuraminidase as described below. To
measure resistance to inflammatory damage induction, endothelial
cells were first incubated with RBCs for 30 minutes and then chal-
lenged with LPS (200 ng/mL). TER was then measured continuously
for up to 20 hours10 (data shown at 0, 5, 10, 15, and 20 hours).

Reversing leukocyte activation in vitro

As shown previously,7,8 whole blood-derived leukocytes are activated
upon separation from RBCs. In light of the immunosuppressive
properties of RBC transfusions in chronically transfused patients,11

we evaluated if leukocyte activation could be reversed in vitro by
suspending them with aliquots of RBCs either coated or not coated
with anti-GPA. Whole blood samples were centrifuged at 800 × g for
10 minutes. Buffy coats were then separated, resuspended in PBS
containing 2% v/v FBS, and incubated with EasySep RBC Depletion
Reagent (Stemcell Technologies, Vancouver, BC) in an EasySep
magnet for removal of RBCs. Leukocytes were then separated from
RBCs and as a result became activated as previously described.7 In
order to test if their activation could be reversed, these were then
washed and incubated at a 1:1000 leukocyte:RBC ratio with various
RBC suspensions: (1) autologous healthy subject RBCs; as well as
(2) autologous healthy subject RBCs either coated with anti-GPA
(1:10) (clone JC159; Abcam, Cambridge, UK), or mouse IgG1 iso-
type serving as a control (Invitrogen, Carlsbad, CA); or (3) RBCs
treated with sialidase (Clostridium perfringens neuraminidase (Sigma
Aldrich, Munich, Germany) in PBS for 1 hour at 37◦C, to cleave off
sialic acid. In a separate suspension of leukocytes, in which activation
had already been reversed by RBC incubation, GPA antibody at 1:10
dilution was added to disrupt the RBC-leukocyte inhibitory interac-
tion, and mouse IgG1 isotype antibody (Invitrogen, Waltham, MA)
served as a control.
9 APRIL 2024 • VOLUME 8, NUMBER 7
TF-1 erythroleukemia cells engineered to overexpress GPA (GPA-
OE) were cultured and tested to restore leukocyte quiescence.
Leukocytes were coincubated with TF-1 cells at either 1:100 or
1:200 in a total volume of 100 μL of MACS buffer. Incubations
were repeated in a transwell assay using 24-well plates (Corning,
Corning, NY) containing 3 μM transwell inserts (Corning, Corning,
NY). TF-1 cells were placed in the lower chamber, whereas leu-
kocytes were placed in the upper chamber and removed for flow
cytometry analysis.

Microvesicles (MVs) were purified from healthy subject RBC sus-
pensions after incubation with the Piezo1 agonist, Yoda1 as pre-
viously described.12 Briefly, RBCs were stimulated with Yoda1 to
trigger EV release, and then subjected to differential centrifugation
to remove cell debris and apoptotic bodies. MVs were then isolated
using centrifugation at 20 000 g for 1 hour at 4○C. GPA-positive
MVs were identified using magnetic beads (Exosome immunopre-
cipitation kit (Protein G), Thermo Fisher Scientific, Reference
number 10612D, Waltham, MA). These GPA-positive EVs were
also tested to reverse leukocyte activation after incubation at a
1:20 000 leukocyte:MV ratio.

All leukocytes were incubated for 1 hour (for monocytes) or 24 hours
(for neutrophils, whose activation is delayed compared with that of
monocytes) at room temperature in the dark before being stained for
viability and activation markers and analyzed by flow cytometry.

Fluorescent antibody staining

Before fluorescent antibody staining, all cells were incubated with
Human TruStain FcX Fc Block (Biolegend, San Diego, CA) at a
1:50 ratio for 10 minutes at 4◦C. For SCD and RBC coincubation
experiments, cells were also incubated with 1:1000 fixable viability
dye (Live/Dead Fixable Green; ThermoFisher, Waltham, MA) for
5 minutes at 4◦C.

Samples incubated with RBCs and/or TF-1 cells were stained for
CD45, CD41a, and either CD14 and CD63 (monocytes) or CD11b
and CD66b (neutrophils) (all Biolegend, San Diego, CA). Samples
incubated with TF-1 cells were stained for CD34 (Biolegend, San
Diego, CA) to identify TF-1 cells. All the stained samples were
incubated at 4◦C for 30 minutes in the dark and washed with MACS
buffer. Samples incubated with RBCs were resuspended in BD
PhosFlow Lyse/Fix buffer at 4◦C overnight, resuspended in MACS
buffer the next day, and analyzed by flow cytometry. Samples incu-
bated with TF-1 cells overexpressing GPA were similarly stained,
except for the viability stain, which was performed using 7AAD
viability dye (1:100) (Biolegend, San Diego, CA).TF-1 coincubation
samples were not fixed and were analyzed on the same day.

Flow cytometry analysis

All samples, performed in triplicates, were acquired on a BD LSRII
Fortessa cytometer using DIVA software and analyzed using FCS
Express 7. Rainbow Calibration Particles (Biolegend, San Diego,
CA) were used to standardize the cytometer settings between
runs. Single-color compensation beads (Invitrogen, Carlsbad, CA)
were used to calculate compensation. Samples incubated with
RBCs were gated as previously described.8 For TF-1 experiments,
the gating scheme was as follows: (1) FSC-A vs FSC-H to exclude
doublets and large aggregates. (2) 7AAD vs FSC-H to exclude
dead cells. (3) GFP (GPA Overexpression) or CD34 vs FSC-H
to gate leukocytes and platelets to GFP/CD34null. (4) CD45 vs
ABERRANT RBC GPA FUNCTION IN SICKLE CELL DISEASE 1689



FSC-H to gate leukocytes to CD45high. From the leukocyte gate,
neutrophils and monocytes were identified as follows: CD66b vs
SSC-A to gate neutrophils as CD66bhigh and SSChigh and CD14
vs SSC-A to gate monocytes as CD14high and SSCmid.

All data on either monocyte or neutrophil activation from patients
with SCD and HS are reported as relative median fluorescence
intensity (rMFI), by normalizing the mean fluorescence intensity
(MFI) of each triplicate value to the average MFI of the pre-
transfusion sample and then averaging the normalized triplicate
values. Data on leukocyte activation after in vitro incubation with
RBCs or GPA-OE TF-1 cells are reported as rMFI by normalizing
the MFI of each triplicate value to the average MFI of the leukocyte-
alone group. rMFI was used to eliminate the variation in MFI
between patients and HS and to allow comparison of percent
change between the treatment groups.

Data analysis

Normalization tests (Anderson-Darling test, D’Agostino & Pearson
test, Shapiro-Wilk test, Kolmogorov-Smirnov test) were performed
on all data sets using GraphPad Prism 8 and confirmed that the data
were normally distributed. As sample sizes in all data sets were small,
one-way analysis of variance (ANOVA) with Bonferroni post hoc test
was used for comparison of leukocyte activation between patients
with SCD and healthy control. For comparison of SCD leukocyte
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Figure 1. Patients with sickle cell disease (SCD) present with activated leukocyt
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activation pre- and posttransfusion, paired t tests were used. For
GPA expression and Siglec-9 binding experiments, student t tests
were used. For all leukocyte plus RBC or TF-1 cell coincubations,
one-way ANOVA with Bonferroni correction was used. For electrical
cell-substrate impedance sensing analysis, resistance was taken at
select time points and one-way ANOVA with Bonferroni correction
were performed for each time point. For all tests, P ≤ .05 was
considered statistically significant.

Results

Monocyte and neutrophil surface activation markers

are suppressed in patients with SCD after RBC

transfusion

The expression levels of monocyte and neutrophil surface activa-
tion markers were first analyzed in peripheral blood samples drawn
before transfusion from patients with SCD (n = 7) and compared
with HS. These showed an increase (39% and 40%, respectively,
P = .0038, P = .0015) in the surface expression of CD45, a
tyrosine phosphatase, suggesting an increased threshold for acti-
vation compared with healthy individuals (Figure 1). Monocytes
from patients with SCD showed a 47% increase (P = .0017) in
CD63, a surface protein involved in membrane trafficking
and signaling,13,14 whereas neutrophils showed a 27% increase
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(P = .0162) in CD66b, a granulocyte-specific surface activation
marker involved in granule formation (Figure 1).15,16

Monocyte and neutrophil activation markers from patients with
SCD were then analyzed after transfusion and compared with
those before transfusion (n = 7). Monocyte CD63 expression
decreased after transfusion by 22% (P = .0084), whereas CD45
decreased by 35% (P = .0646) as compared with that before
transfusion. Neutrophil CD45 decreased significantly after trans-
fusion by 36% (P = .0282), whereas CD66b decreased by 17%
(P = .0633) compared with before transfusion (Figure 1).

GPA expression is increased on the surface of RBCs

from patients with SCD, but Siglec-9 binding is

decreased

Leukocytes interact with RBC surface GPA through sialic acid-
binding immunoglobulin-type lectin (Siglec) called Siglec-9.17

Siglec-9 is a sialic acid-binding immunoglobulin-type lectin pre-
sent on immune cells that is known to suppress immune
responses.7,18 The expression levels of RBC surface GPA, which
maintains leukocyte quiescence in whole blood through Siglec-9
binding, were analyzed in purified RBCs from patients with SCD
and HS (n = 9). RBCs from patients with SCD showed a 37.8%
higher level of GPA expression than RBCs from HS (P = .0291)
(Figure 2A).

RBCs were incubated with recombinant Siglec-9 protein and
analyzed by flow cytometry to detect binding levels to RBCs. RBCs
from patients with SCD showed a 31.5% decrease in Siglec-9
binding compared with RBCs from HS (P = .2125) (Figure 2B).
The decrease in Siglec-9 binding to RBCs from patients with SCD
may disrupt leukocyte quiescence and is consistent with data
above showing increased monocyte and neutrophil activation in
SCD whole blood. Importantly, with the inclusion of 2 patients with
SCD who were not chronically transfused and for whom hemo-
globin S level was >95%, Siglec-9 binding was reduced by 50%
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Figure 2. RBCs from patients with SCD present higher surface GPA expression wi
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healthy RBCs (blue), RBCs of patients with SCD pretransfusion (n = 4) (red), and from p

comparison performed using unpaired t tests. Error bars represent standard deviation. * P
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compared with RBCs from HS (P = .0266) (Figure 2B). Siglec-9
binding and HPLC quantification of HbS levels in healthy subjects,
patients with SCD with low HbS, and patients with SCD with high
HbS are shown in supplemental Figure 1 and supplemental
Figure 2. The decrease in Siglec-9 binding to RBCs from
patients with SCD may disrupt leukocyte quiescence and is
consistent with data above showing increased monocyte and
neutrophil activation in SCD whole blood.

RBCs from patients with SCD in crisis reduce

endothelial cell barrier function, similar to RBCs with

altered GPA

Previous data have suggested that RBCs promote endothelial
barrier integrity and attenuate injury in response to inflammation.10

We measured trans-endothelial resistance (TER) across a
confluent layer of HPAECs after incubation with purified RBCs
from stable patients with SCD (not in pain) obtained before and
after transfusion or RBCs from HS (n = 6). HPAEC incubation with
RBCs from HS increased TER by 1.5-fold (P < .0001) compared
with endothelial cells alone, similar to the increase in HPAEC TER
when incubated with RBCs obtained from stable patients with
SCD pre-and posttransfusion increase (P < .0001) (Figure 3A).
Importantly, the supernatant from the endothelial cell (HPAEC)
culture ECIS was analyzed and was negative for the presence of
either free heme or hemoglobin, which could have activated
HPAECs after a 20-hour incubation of RBCs (data not shown).19

To model the chronic vascular inflammation found in patients with
SCD, RBC samples were tested to improve the endothelial barrier
challenged with LPS. In this model, RBCs from HS restored TER to
1.4-fold greater than endothelial cells alone challenged with LPS
alone (P < .0001). RBCs sampled before and after transfusion
from stable patients with SCD (with no pain, n = 6) restored TER
by 1.2- and 1.5-fold, respectively, compared with baseline endo-
thelial cells challenged with LPS (P = .007 and P < .0001),
consistent with a sustained posttransfusion protective effect on the
B
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Figure 3. RBCs from patients with SCD and RBCs with altered GPA have a reduced protective effect on the endothelium. Transendothelial electrical resistance (TER)

is represented at different time points over 20 hours, for human pulmonary arterial endothelial cells (HPAECs) exposed at baseline or with LPS challenge, to RBCs (1:20) from

stable patients with SCD (no pain; n = 6) (A-B); from patients with SCD in pain crises (n = 8) (C-D); and from HS but treated with anti-GPA or with neuraminidase to alter GPA on
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endothelium (Figure 3B). RBCs sampled before and after transfusion
from patients with SCD in VOC with pain (n = 8) also increased TER
significantly compared with HPAEC alone (Figure 3C). However,
when the HPAECs were challenged with LPS, TER was not signifi-
cantly restored (1.1-fold; P = .1217) with pretransfusion RBCs
compared with HPAEC alone. After transfusion, the sampled RBCs
raised the TER significantly to 1.4 times as compared with baseline
HPAECS alone after LPS challenge (P = .0028) (Figure 3D), sug-
gesting that transfusion of healthy RBCs may improve endothelial
barrier protection in patients with SCD in a pain crisis.

Considering the altered expression of GPA in RBCs from patients
with SCD, suggesting that GPA integrity may play a role in endo-
thelial barrier protection against inflammation, TER was measured
across HPAECs incubated with RBCs pretreated with either anti-
GPA (n = 18) or neuraminidase (n = 7), both at baseline and
after LPS challenge. At baseline (without LPS challenge), GPA
antibody treated RBCs increased in TER to 1.4 times and
neuraminidase-RBCs increased TER by 1.2 times compared with
HPAEC alone (Figure 3E). Importantly, the increase in TER
observed by GPA altered RBCs was significantly less than that
observed in healthy RBCs from TER of HPAEC alone (P < .05).
Furthermore, after inflammatory LPS challenge, GPA antibody- and
neuraminidase-treated RBCs increased TER by 1.1 times, signifi-
cantly less than the increase in healthy RBCs (1.3 times) from
HPAEC alone challenged with LPS (P < .05) (Figure 3F).

Leukocyte activation is suppressed after incubation

with healthy RBCs but not with anti-GPA-treated or

neuraminidase-treated RBCs

To assess whether the surface expression of monocyte CD63 and
neutrophil CD66b observed in patients with SCD at baseline may
be due to altered GPA in SCD RBCs, we first tested RBC samples
from HS, treated them with either anti-GPA or neuraminidase, and
incubated them with activated monocytes and neutrophils.
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Monocytes and neutrophils were activated by simple separation
from whole blood as previously described by Lizcano et al.7

Monocytes were then probed for the surface expression of CD63,
also known as LAMP-3, which plays a role in cellular signaling
cascades20 and immune stimulation.14-16 CD63 expression from
isolated monocytes separated from whole blood served as the
reference activated control group, and we have previously shown
that CD63 is significantly increased in isolated monocytes from
buffy coats compared with monocytes in whole blood.8 CD63
expression in isolated monocytes was suppressed by 26% after
incubation with autologous RBCs (n = 7) at a 1000:1 ratio (P =
.0464) (Figure 4A).

Neutrophils were probed for CD66b expression (n = 7), secondary
degranulation, and surface activation marker.16 Similar to the iso-
lated monocytes described above, isolated neutrophils from whole
blood served as the reference activated control group. CD66b
expression in isolated neutrophils was also suppressed by 10.2%
after incubation with autologous RBCs at a 1000:1 ratio (P =
.0388) (Figure 4B).

To test whether GPA plays a role in the RBC-mediated immu-
noregulatory effect, suppression of monocyte and neutrophil
activations were tested after incubation with RBCs coated with
GPA antibodies (n = 3). Neither monocyte CD63 nor neutrophil
CD66b expression was significantly suppressed after coincuba-
tion with anti-GPA-coated RBCs, which disrupted the GPA-
Siglec-9 interaction (n = 3) (P > .99). Furthermore, indirect
GPA blockade by adding anti-GPA separately after healthy RBC
incubation did not suppress monocyte CD63 or neutrophil
CD66b (Figure 4AB).

To further refine the effect of GPA alteration on the activation level
of monocytes and neutrophils, RBCs were treated with neur-
aminidase, a sialidase that removes sialic acid from the surface of
RBC GPA (n = 3). Monocyte CD63 expression and neutrophil
****
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Cs (red), anti-GPA-treated RBCs (green), healthy RBCs and indirectly with anti-GPA

y donor whole blood (light blue) are shown as baseline (all n > 3). A one-way ANOVA
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CD66b expression were not suppressed after incubation with
neuraminidase-treated RBCs compared with isolated respective
controls (Figure 4A-B).

Monocyte CD63 and neutrophil CD66b expression

were suppressed upon incubation with TF-1 cell lines

overexpressing (OE) GPA

After a 1-hour incubation with GPA-OE TF-1 cells (n = 4), mono-
cyte CD63 expression decreased by 26.5% (when incubated at
100:1 for TF-1:leukocyte titer) and by 39.3% when incubated
at 200:1 compared with isolated activated monocytes alone
(P = .0004 and P < .0001).

After a 24-hour-incubation with GPA-OE TF-1 cells (n = 3),
neutrophil CD66b expression was decreased by 59.3% when
incubated at 100:1 and by 43.3% when incubated at a 200:1 titer
compared with isolated activated neutrophils alone (P = .0017 and
P = .0168) (Figure 5A).

To test whether direct contact was required for GPA to maintain
leukocyte quiescence, monocytes and GPA-OE TF1 cells were
1.5
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separated using a transwell. Monocytes incubated with GPA-OE
TF-1 cells, but separated by a transwell insert, were not sup-
pressed compared with isolated monocytes incubated alone (P >
.9999 for both) (Figure 5A). Similarly, neutrophil activation was not
suppressed (data not shown), suggesting that cell contact was
required for GPA-mediated suppression.

GPA-overexpressing microvesicles did not reduce

leukocyte activation

Activated leukocytes were incubated with the MVs derived from
HS’ RBCs. Neither monocyte CD63 expression nor neutrophil
CD66b expression was suppressed compared with isolated acti-
vated leukocytes alone (Figure 5B).

Discussion

RBCs are increasingly being recognized as modulators of innate
immunity.5 In this study, a chronic inflammatory state was observed
at the baseline in a cohort of patients with SCD. Indeed, SCD
peripheral blood monocytes and neutrophils are poised towards
activation with increased monocyte CD63 and neutrophil CD66b
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surface expression compared with HS. Importantly, after RBC
transfusion, the expression of these activation surface markers was
suppressed, and approximated baseline quiescence.

The current study by our group confirms the immunomodulatory
effects of RBC transfusion on the inflammatory state observed in
patients with SCD. However, in a previous study by Dembele et al
on chronically transfused patients with SCD, the level of neutro-
phil activation measured before transfusion was not significantly
suppressed compared with patients with SCD maintained on
hydroxyurea therapy without transfusion,21 suggesting that
chronic activation of neutrophils is characteristic of SCD, as
healthy RBCs move out of circulation and are replaced by the
patient’s SCD RBCs. These data are in line with our results,
confirming that the chronic inflammatory state is a hallmark of
sickle cell disease.22,23 Nevertheless, our study as well as Boyle
et al.24

This study extends a previous observation by our group showing
that under inflammatory stress, the endothelial barrier is protected
when in contact with RBCs from HS.10 Indeed, RBCs from
patients with SCD obtained before and after transfusion demon-
strated different effects in our endothelial assay, depending on
whether the patients were stable or in pain crisis. RBCs obtained
from patients in a pain crisis before transfusion did not improve
endothelial barrier function challenged with LPS, whereas RBCs
obtained after transfusion did convey an improvement in endo-
thelial function. Conversely, the inability of RBCs from patients with
SCD to mitigate endothelial dysfunction due to LPS challenge is in
line with the chronic vascular inflammation known to be a hallmark
of SCD, which contributes to the development of vaso-occlusive
pain crises.25 These results are consistent with those of a study
by Hyacinth et al, which showed a decrease in circulating endo-
thelial inflammatory markers in patients with SCD after trans-
fusion.26 Furthermore, our data agree with observations from a
Brazilian cohort study of patients with SCD who demonstrated a
reduced risk of vaso-occlusive crises with chronic transfusion
therapy.27 It is hypothesized that endothelial activation is one of the
main drivers of chronic pain in patients with SCD,28 and mitigating
endothelial activation in patients from SCD through transfusion
may help reduce the pain these patients experience.

We and others have demonstrated that GPA, a sialoglycoprotein
on the RBC surface, maintains leukocyte quiescence in the
peripheral blood.7,8 Importantly, GPA expression on the surface of
RBCs from these patients with SCD was increased at baseline
compared with HS’ RBCs, but showed decreased binding to
recombinant Siglec-9, a lectin leukocyte surface ligand for GPA
that maintains leukocyte quiescence. Ashwood et al explored the
glycan expression profile of RBCs in patients with SCD and also
showed variable changes of sialylation with increased α2,6 linkages
(ie, GPA) compared with healthy donor RBCs.29 These findings are
also consistent with those of Kiser et al, who showed that RBCs
from patients with SCD had decreased Siglec-9 binding, whereas
the availability of sialic acid on the RBC surface was increased
compared with healthy control RBCs.30,31 However, data from
Aminoff and Ekeke showed decreased GPA/sialic acid content in
RBCs from patients with SCD compared with HS.32,33 Thus,
further investigations of the structural alterations of GPA and/or its
sialic acid surface content are required to determine the RBC
ability to interact with immune cells.
9 APRIL 2024 • VOLUME 8, NUMBER 7
In vitro analysis of the effect of various alterations in GPA and its
sialic acid showed that RBCs treated with either neutralizing GPA
antibody or neuraminidase, which both decreased Siglec-9 bind-
ing, lost their ability to restore leukocyte quiescence as well as
endothelial barrier protection. Siglec-9 is not expressed on HPAEC
(data not shown); thus, it is likely that a different Siglec on endo-
thelial cells interacts with GPA. Nevertheless, these findings
strongly suggest that restoration of immune cell quiescence is
RBC-GPA- and sialic acid-dependent. Sialic acid glycosylation is
found on nearly all cells in the body and plays an important role in
modulating both innate and adaptive immune responses.18,34

Importantly, this role often involves binding to Siglecs, a family of
receptors typically linked to an inhibitory signaling motif.17 In sup-
port of these data, monocyte and neutrophil quiescence were
restored upon coincubation with GPA-OE cells. This effect could
not be reproduced in a transwell assay, suggesting that cell con-
tact between leukocytes and GPA-OE cells is required.

The role played by GPA-expressing microvesicles in modulating the
activation state of leukocytes was also investigated. RBC-derived
microvesicles expressing GPA on their surface may inhibit
macrophage cytokine production35 and inhibit B cell differentiation
and antibody production in vitro.36 Paradoxically, Danesh et al
found that in vitro coincubation of monocytes with RBC-derived
exosomes increased proinflammatory cytokine production.37

However, our findings are consistent with those of Muszynski
et al, who showed no effect of RBC-derived microvesicles on
monocyte or neutrophil activation.4 These paradoxical results can
be explained by the highly heterogeneous composition of micro-
vesicles and the environment in which they are generated.38

One major limitation of the study is that most of the RBC samples
analyzed were not pure sickle RBC fractions but whole blood
samples from patients who received regular RBC transfusions. The
average HbS level across the patient samples studied was 35%
before transfusion and <20% after transfusion. Nevertheless, the
decrease in leukocyte activation after transfusion was consistent
with the dilution of the sickle cell effect in peripheral blood. Another
limitation is that the ECIS model of endothelial barrier function is
static, and thus may not provide detailed information as a micro-
fluidic model or in vivo system, in which RBCs are free flowing with
other cell types included.

In conclusion, this study confirms that patients with SCD present
with a proinflammatory state of their immune cells and unveils a
beneficial role of RBC transfusion in restoring their quiescence and
in protecting the endothelial barrier against inflammation. This
immunomodulatory function of RBCs is mediated by GPA, a
sialylated-Siglec ligand, which is altered in patients with SCD. As
such, future studies will focus on the structural analysis of RBC
GPA and its Siglec-interactions in SCD.
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