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Abstract 
Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte 
antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-
I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast 
cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression 
level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we 
evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had 
distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), 
while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating 
the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we 
found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that 
targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented 
an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs. 
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INTRODUCTION 
Breast cancer remains one of the most common cancer and a 
major cause of cancer-related mortality in women worldwide [1]. 
As a molecularly heterogeneous disease, breast cancer can be cat-
egorized into distinct subtypes defined by the expression of hor-
mone receptor (HR) and human epidermal growth factor receptor 
2 (HER2) amplification: HR+HER2−, HR−HER2+, HR+HER2+ and 
triple-negative breast cancer (TNBC) [2]. Prognosis and therapeu-
tic approaches differ across various subtypes of breast cancer due 
to distinct biological features. In addition, a plethora of studies 
have highlighted the value of dynamic tumor-immune interac-
tions in the control of tumor development and the effectiveness 
of therapeutic intervention [3–5]. Despite significant progress, the 
understanding of the complex immune system in the entire breast 
cancer ecosystem is still insufficient. Hence, further exploration 
of critical regulators within the tumor microenvironment (TME) 
holds the potential to drive advancements in precise treatment 
strategies for breast cancer. 

Human leukocyte antigen class I (HLA-I) molecules play a 
crucial role in tumor antigen presentation and antitumor immune 

response [6]. Hence, HLA-I is widely recognized as a potent factor 
influencing patients’ chances of survival. As suggested by pre-
vious studies, the greater sequence divergence between HLA-I 
alleles would increase the diversity of tumor neopeptide reper-
toire available for presentation, thereby contributing to a more 
effective immune response and better prognosis [7–9]. Conversely, 
the loss of heterozygosity (LOH) in somatic HLA-I has been iden-
tified as a key factor of immune escape and worse prognosis 
[10, 11]. However, these reports were contrast with the findings 
of 17 clinical trials conducted across eight tumor types, involv-
ing thousands of patients treated with pembrolizumab. In this 
research, germline HLA genotype and diversity, such as HLA-I 
heterozygosity, HLA-A and HLA-B supertypes, were not found to 
be associated with the clinical outcome of all patients or certain 
tumor types [12]. Consequently, the intricate interplay between 
HLA diversity and TME, and its subsequent impact on the progno-
sis of patients remains controversial. In addition, data evaluating 
the relationship between indicators associated with HLA-I and 
clinical outcomes are limited, particularly among breast cancer 
patients.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-4503-148X

 17914 13596 a 17914
13596 a
 
mailto:yizhoujiang@fudan.edu.cn
mailto:yizhoujiang@fudan.edu.cn
mailto:yizhoujiang@fudan.edu.cn

 40037 14648 a 40037
14648 a
 
mailto:zhimingshao@fudan.edu.cn
mailto:zhimingshao@fudan.edu.cn
mailto:zhimingshao@fudan.edu.cn

 3802 16751 a 3802 16751 a
 
mailto:yixiao11@fudan.edu.cn
mailto:yixiao11@fudan.edu.cn
mailto:yixiao11@fudan.edu.cn
mailto:yixiao11@fudan.edu.cn


2 | Ding et al.

Herein, we established a large Chinese breast cancer multi-
omics cohort (n = 1156) with data of both somatic HLA-I alter-
ations and germline HLA-I diversity. We evaluated HLA-I status 
in each individual, including HLA-I expression, somatic HLA-I 
LOH, HLA-I evolutionary divergence (HED) and peptide-binding 
promiscuity (Pr); and delineated their landscape across all breast 
cancer samples and specific clinical subtypes. To further eval-
uate their predictive value, we identified the prognostic signifi-
cance and immunological characteristics of patients with distinct 
HLA-I phenotypes. Furthermore, we explored the underlying fac-
tors leading to worse clinical outcomes in low-Pr patients with 
matched multiomics data. 

METHODS 
Cohort and multiomics database 
Patients diagnosed with malignant breast cancer were retrospec-
tively recruited. Chinese patients who were treated at Fudan 
University Shanghai Cancer Center (FUSCC) and enrolled in three 
datasets (CBCGA cohort, Luminal cohort and FUSCCTNBC cohort) 
were selected. Detailed information about patient selection was 
described in our previous studies [13–15]. We integrated these 
three cohorts to enlarge the sample size for each subtype of 
breast cancer. Samples with available RNA sequencing data or 
HLA-I status were included in the present study. In summary, a 
total of 1156 patients with RNA sequencing (n = 853), whole-exome 
sequencing (WES, n = 942), copy number variation (CNV, n = 1020) 
and clinical data (n = 1156) were obtained for further analyses. 
Clinicopathological characteristics included tumor size, histolog-
ical type, lymph node status, Ki67 status and ER, PR, HER2 status. 
Relapse-free survival (RFS) was defined as the duration from 
diagnosis to the first recurrence or death from any cause. Distant 
metastasis-free survival (DMFS) was defined as the duration from 
the date of surgery to the first detection of distant metastasis 
or death from any cause. All baseline characteristics of patients 
in this study are shown in Supplementary Table 1. All patients 
included in this study provided written informed consent before 
enrollment. Patient samples were collected with ethics approval 
by the FUSCC Ethics Committee. 

HLA genotyping and diversity 
HLA-I genotyping was performed using the POLYSOLVER tool to 
identify the four-digit HLA type from germline normal DNA exome 
sequencing data of each breast cancer patient [16]. We measured 
HLA diversity by the mean mRNA expression level of classical 
HLA-I molecules (HLA-A, HLA-B and HLA-C), HLA-I LOH, HED (a 
quantifiable measure of HLA-I evolution) and Pr (a quantifiable 
measure of peptide repertoire breadth of HLA-I). 

HLA-I LOH was determined by LOHHLA tools using copy num-
ber values at the segment level [17]. The estimated tumor purity 
and ploidy were adjusted when assessing copy number values by 
the ACSAT algorithm [17]. LOH of each HLA-I gene was defined 
as one of the two alleles showing a copy number < 1 and a  P 
value < 0.05. Only patients with LOH at any HLA-I gene (HLA-A, 
HLA-B or HLA-C) were considered as ‘LOH’, while those without 
HLA-I LOH loci were ‘non-LOH’. Patients with LOH were subdi-
vided into ‘LOH at all’ (all of HLA-A, HLA-B and HLA-C showed LOH) 
and ‘LOH at least one’ (one or two of HLA-A, HLA-B and HLA-C 
showed LOH). 

HED was calculated as described previously [7, 18]. Briefly, 
protein sequences of each individual allele of each patient’s HLA-
I genotype were extracted from the IMGT/HLA database. Exons 2 
and 3 of each allele, which encode the variable peptide-binding 

domains, were annotated according to the Ensembl database 
and then selected. Next, we calculated HED using the Grantham 
distance metric implemented in Pierini and Lenz [18]. The mean 
HED of each patient was calculated as the mean of divergences at 
HLA-A, HLA-B and HLA-C loci. 

In regard to the calculation of Pr, only HLA-I alleles that can 
bind at least 400 different peptides according to the data of 
peptide-HLA class I interactions in The Immune Epitope Database 
were further analyzed [19]. First, the Kullback–Leibler divergence 
(DKL) of peptides with different amino acid lengths was calculated 
to measure the distance between the amino acid frequency distri-
bution at each position and that in the complete human proteome 
[20]. Then, peptide-length-specific divergences were averaged by 
weighting with the relative proportion in the repertoire. Finally, 
HLA allelic Pr was calculated as the reciprocal value of the average 
DKL. 

Immune microenvironment phenotypes 
The abundance of TME cells was estimated as described previ-
ously [3]. We generated a microenvironment compendium that 
contains 364 genes representing 24 specific microenvironment 
cell subsets. Single-sample gene set enrichment analysis (ssGSEA, 
‘GSVA’ function in R) was then performed to evaluate the level of 
cell infiltration in each sample with expression data. To further 
determine the optimal number of microenvironment subtypes, 
we performed Nbclust testing (‘NbClust’ function in R) and k-
means (‘kmeans’ function in R) clustering according to the cell 
composition in the microenvironment. 

Survival analysis 
The Cox proportional hazard regression model was used to inves-
tigate the effect of variables on patient prognosis. HLA-I indica-
tors, including HLA-A/B/C mean mRNA expression level, HLA-I 
LOH, HED and Pr, were included for analysis. In addition, survival 
curves were generated using the Kaplan-Meier method and com-
pared using the log-rank test. 

Statistical analysis 
Student’s t-test, Wilcoxon test and Kruskal-Wallis test were used 
to compare continuous variables, such as HED score and Pr. Prior  
to the comparisons, the normality of the distributions was tested 
with the Shapiro-Wilk test. Pearson’s chi-squared test and Fisher’s 
exact test were employed for the comparison of unordered cate-
gorical variables. Correlation matrices were created with Pearson 
or Spearman correlation. All tests were two-sided and P < 0.05 was 
regarded as statistically significant unless otherwise specified. 
All statistical analyses were performed using R software (version 
4.2.1, http://www.R-project.org). 

RESULTS 
Overview of the study design 
In the present study, we aimed to portray the HLA-I landscape 
in breast cancer and explore its biological significance (Figure 1). 
With this purpose, we conducted this research in four steps. First, 
we integrated three cohorts established in FUSCC, including the 
CBCGA cohort (n = 773), Luminal cohort (n = 354) and FUSCCTNBC 
cohort (n = 465) [13–15]. In this study, breast cancer patients who 
met the criteria for assessing HLA-I status were collected. In 
total, 1156 samples were selected from our multiomics dataset 
with RNA sequencing (n = 853), WES (n = 942), CNV (n = 1020) and 
follow-up data (n = 1156) available in Supplementary Figure 1
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and Supplementary Table 1. Second, we calculated four HLA-
I indicators in the breast cancer cohorts and delineated their 
patterns in different subtypes, including HLA-I mRNA expression 
level, somatic HLA-I LOH, germline HED and peptide-binding Pr. 
HED quantifies HLA-I allele evolution by calculating the sequence 
divergence between distinct HLA-I alleles, while Pr represents the 
diversity of peptides that the HLA-I allele can bind. Third, we 
assessed the prognostic significance of these HLA-I indicators in 
breast cancer patients with different clinical subtypes. We also 
demonstrated their ability to reveal tumor immune microenvi-
ronment phenotypes. Finally, we explored the potential immune 
mechanisms and genomic drivers leading to poor prognosis in 
patients with low Pr. 

HLA-I landscape in breast cancer 
Based on the multiomics dataset, we initially estimated the dis-
tribution of four HLA-I-related indicators within the whole breast 
cancer cohort, as well as among distinct clinical (HR+HER2−, 
HR−HER2+, HR+HER2+ and TNBC) and immune (Cluster 1, Cluster 
2 and Cluster 3, see Methods) subtypes. Samples in cluster 1 
exhibited low immune infiltration, and cluster 2 showed moder-
ate immune infiltration distinguished by the infiltration of inac-
tivated immune cells, fibroblasts and endothelial cells, whereas 
cluster 3 represented the immune-inflamed tumor which was 
characterized by high immune infiltration (Supplementary 
Figure 2A). 

First, we focused on the HLA-I features of tumor cells, and 
conducted an evaluation of the HLA-I mRNA expression and 
scrutinized the HLA-I LOH status (Supplementary Table 2). HLA-I 
molecules and the mean expression of HLA-A, HLA-B and HLA-C 
(HLA-A/B/C mean) were significantly higher in TNBC samples and 
cluster 3 than other subtypes and normal tissues (Figure 2A–C, 
Supplementary Figure 2B). In addition, 19.9% of samples within 
639 patients carried HLA-I genes with LOH (Figure 2D). HLA-
I LOH samples were conspicuously enriched within the TNBCs 
(P = 0.006) and evenly distributed in immune subtypes across all 
samples and each clinical subtype (Figure 2E–F, Supplementary 
Figure 2C). 

In addition, we also assessed a germline HLA feature, HED, 
which quantified the physiochemical divergence in sequence 
between HLA-I alleles of each individual. It assumes that an 
increased HED is correlated with the greater diversity of peptides 
that a given HLA-I molecule can bind. The divergence in HLA-
B alleles was higher relative to HLA-A and HLA-C, in line with 
the reports that HLA-B was the most polymorphic (P < 0.001, 
Figure 2G) [21]. Then, the mean HED was calculated as the 
mean divergence of HLA-A, HLA-B and HLA-C for each patient 
(Supplementary Table 2). No difference in the mean HED score 
was observed, neither in clinical subtypes nor in immune clusters 
(Figure 2H–I, Supplementary Figure 2D). Notably, distinct HLA 
alleles can exhibit overlapping peptide-binding repertoires. Thus, 
we further calculated the peptide-binding Pr for a representative 
set of HLA-I alleles using previously identified HLA-I-peptide 
interactions. Among these HLA-I alleles, HLA-A carried higher 
Pr compared with HLA-B and HLA-C (P < 0.001, Figure 2J). The Pr 
score of each patient was determined by calculating the mean DKL 

values across HLA-A, HLA-B and HLA-C alleles and subsequently 
taking the reciprocal value (Supplementary Table 2). However, 
there was no difference in the Pr score among different clinical 
subtypes and immune subtypes of breast cancer (Figure 2K–L, 
Supplementary Figure 2E). To be specific, Pr was relatively higher 
in cluster 3 among TNBCs (Supplementary Figure 2E). 

Prognostic significance of HLA-I indicators in 
breast cancer 
To explore the clinical implications of HLA-I in breast cancer, 
we performed an analysis to assess the role of the HLA-
I status, including both somatic and germline variations, in 
the clinical course. First, we conducted a Cox proportional 
hazards model for RFS and DMFS in the breast cancer cohort 
(Figure 3A, Supplementary Figure 3A). We observed a statis-
tically significant correlation between the expression level 
of classical HLA-I molecules and clinical outcomes in whole 
breast cancer samples. In addition, we found that non-LOH 
and higher Pr were better prognostic indicators in TNBCs. 
However, HED was not associated with better prognosis, neither 
across all breast cancer patients nor within each clinical 
subtype. 

Furthermore, we confirmed the above findings through the 
Kaplan-Meier method. Increased expression of the mean HLA-
A/B/C was related to favorable clinical outcomes in all breast 
cancer patients (log-rank, RFS, P = 0.04, Figure 3B; DMFS,  P = 0.014, 
Supplementary Figure 3B), suggesting that interindividual 
variability in the HLA-I expression may explain the differences 
in prognosis across patients. In addition, patients with HLA-I 
LOH showed significantly worse RFS and DMFS than the HLA-I 
non-LOH group in TNBCs (log-rank, RFS, P = 0.00086, Figure 3C; 
DMFS, P = 0.0019, Supplementary Figure 3C). In the subgroup of 
patients with TNBC, the Pr score was associated with favorable 
RFS (log-rank, P = 0.049, Figure 3D) and DMFS (log-rank, P = 0.044, 
Supplementary Figure 3D). These effects were also observed when 
analyzing only fully heterozygous patients (Figure 3E–G, Sup-
plementary Figure 3E–G). Beyond survival, predicted responders 
to immunotherapy were more likely to be enriched in TNBCs 
with high Pr (Supplementary Figure 3H), suggesting that high-Pr 
patients may benefit from immunotherapy. 

In conclusion, we uncovered the prognostic significance 
of classical HLA-I expression in the entire breast cancer 
cohort, as well as the importance of HLA-I LOH and Pr within 
TNBCs. 

Immunological portrait in HLA-I-based breast 
cancer groups 
Given the importance of HLA-I in antitumor immune activity, we 
further examined the immunological features in the subgroup of 
breast cancer samples with distinct variations in HLA-I. Thus, we 
separately tested the association of each HLA-I-related indicator 
with the abundance of immune cells (Figure 4A and B, Supple-
mentary Table 3). In overall breast cancer samples, HLA-I mRNA 
expression showed a strong association with the infiltration level 
of immune cells in the TME, including a wide range of innate and 
adaptive immune cells, which was also observed within the TNBC 
subtype. However, no notable correlation was displayed between 
HLA-I LOH, HED, Pr and the composition of immune cells in the 
TME in our whole breast cancer cohort. Surprisingly, TNBCs with 
high Pr exhibited a substantial enrichment of antitumor immune 
cells, such as T cells, dendritic cells and NK cells. These results 
suggested the potential impact of Pr in shaping the TME of TNBCs. 
Nevertheless, this association did not remain significant when 
examined in other clinical subtypes. 

The expression of immune molecules was aligned with the 
above results. Alteration in HLA-I expression was positively 
related to the level of costimulatory and chemotactic molecules 
in all breast cancer samples and TNBCs (Figure 4C, Supplemen-
tary Figure 4). In addition, the correlation between the expression
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Figure 1. Schematic of the study. The framework of the study. First, a large Chinese breast cancer multiomics cohort was established through amalgamat-
ing three cohorts from FUSCC. Second, HLA-I status in each sample was calculated, including HLA-I mRNA expression, HLA-I LOH, HED and Pr. Third, the 
distribution of each HLA-I indicator, their prognostic significance and immunological characteristics within different subtypes were evaluated. Finally,  
the underlying mechanisms leading to worse clinical outcomes in low-Pr TNBCs were explored through multiomics analysis. Abbreviations: FUSCC, 
Fudan University Shanghai Cancer Center; WES, whole-exome sequencing; CNV, copy number variation; LOH, loss of heterozygosity; HED, evolutionary 
divergence of HLA class I genotype; Pr, promiscuity. See also Supplementary Figure 1. 
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Figure 2. HLA-I landscape in breast cancer. (A) Heatmap showing the normalized mRNA expression level of HLA-I molecules in each breast cancer 
sample and normal tissue. The clinical subtypes and immune subtypes were annotated. (B–C) The mean mRNA expression of HLA-A, HLA-B and HLA-C 
in different clinical subtypes (B) and immune clusters (C). Center line indicates the median value, lower and upper hinges represent the 25th and 75th 
percentiles, respectively, and whiskers represent 1.5 × interquartile range. Wilcoxon test P value was shown. (D) Distribution of LOH at all HLA-I alleles, 
LOH at least one HLA-I allele and non-LOH in the whole breast cancer cohort. (E–F) Bar plots showing the distribution of clinical subtypes (E) and 
immune clusters (F) among the HLA-I LOH-based subtypes. Fisher’s test P value was shown. (G) Distributions of HED score for each HLA-A, HLA-B and 
HLA-C genotype. Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers 
represent 1.5 × interquartile range. Wilcoxon test P value was shown. (H–I) Distribution of patient mean HED across different clinical subtypes (H) and 
immune clusters (I). Vertical line indicates the median value. Wilcoxon test P value was shown. (J) Distributions of Pr for each HLA-A, HLA-B and HLA-C 
genotype. Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers represent 
1.5 × interquartile range. Wilcoxon test P value was shown. (K–L) Distribution of patient Pr score across different clinical subtypes (K) and immune 
clusters (L). Vertical line indicates the median value. Wilcoxon test P value was shown. Abbreviations: LOH, loss of heterozygosity; HED, evolutionary 
divergence of HLA class I genotype; Pr, promiscuity. See also Supplementary Figure 2. 
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Figure 3. The prognostic significance of HLA-I indicators in breast cancer. (A) Univariate Cox proportional hazard models for RFS in the whole breast 
cancer cohort and different clinical subtypes. (B) Kaplan–Meier survival curve according to HLA-A/B/C mean mRNA expression groups for RFS in whole 
breast cancer cohort. (C–D) Kaplan–Meier survival curve according to HLA-I LOH groups (C) and Pr groups (D) for RFS in TNBCs. (E) Kaplan–Meier 
survival curve according to HLA-A/B/C mean mRNA expression groups for RFS in whole breast cancer patients fully heterozygous at HLA-I loci. (F–G) 
Kaplan–Meier survival curve according to HLA-I LOH groups (F) and Pr groups (G) for RFS in TNBCs fully heterozygous at HLA-I loci. Abbreviations: RFS, 
relapse-free survival; LOH, loss of heterozygosity; HED, evolutionary divergence of HLA class I genotype; Pr, promiscuity. See also Supplementary Figure 3. 

level of immune molecules and Pr score solely occurred in 
populations with TNBC ( Figure 4C). In contrast, there was no 
significant difference observed in the levels of immune molecules 
among patients with different LOH status or varying HED scores, 
both within the entire breast cancer cohort and across each 
clinical cluster. 

In summary, these results indicated the immunomodulatory 
role of classical HLA-I mRNA expression level in breast cancer. 
Intriguingly, we discovered that TNBCs with high Pr displayed the 
characteristics of a ‘hot’ TME. 

Promiscuity is positively correlated with the 
recruitment of immune cells in TNBCs 
To comprehensively understand the potential immunological 
mechanisms underlying the close correlation between Pr and 
TME phenotypes in TNBCs, we analyzed the activity of antitumor 
immunity across a seven-step cancer-immune cycle [22]. As 
depicted in Figure 5A, the cancer-immune cycle is initiated by 

the release of tumor antigens from tumor cells (Step 1). Next, 
antigen-presenting cells such as dendritic cells capture antigens 
on major histocompatibility complex (MHC) molecules to T 
cells (Step 2), triggering the priming and activation of T cells 
(Step 3). Ultimately, the activated T cells traffic to (Step 4) and 
infiltrate into TME through blood circulation (Step 5), specifically 
recognizing cancer cells through the interaction between T cell 
receptor (TCR) and the cognate antigen bound to MHC-I (Step 6), 
subsequently leading to the antitumor cytotoxic killing (Step 7). 
The immune activity score of each step for each breast cancer 
sample is shown in Supplementary Table 4. The overall immune 
activity in high-Pr TNBCs was significantly higher than that in 
low-Pr TNBCs (Supplementary Figure 5A). In the early stages of the 
immune response, it appeared that the processes of tumor antigen 
release, presentation and activation (Steps 1, 2 and 3) shared 
similarities between the low-Pr and high-Pr samples (Figure 5B). 
In line with this result, there were no notable differences in 
the neoantigen load, diversity or clonality of TCRs between

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
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Figure 4. The immunological portrait in HLA-I-based breast cancer groups. (A–B) Estimation of the Spearman correlation of immune cell subsets with 
HLA-A/B/C mean mRNA level, HLA-I LOH, HED score and Pr in whole breast cancer cohort (A) and TNBCs (B). (C) Estimation of the Spearman correlation 
of immune molecules with HLA-A/B/C mean mRNA level, HLA-I LOH, HED score and Pr in TNBCs. Abbreviations: LOH, loss of heterozygosity; HED, 
evolutionary divergence of HLA class I genotype; Pr, promiscuity; TILs, tumor infiltrating lymphocytes; sTIL, stromal tumor infiltrating lymphocyte; 
iTIL, intratumoral tumor infiltrating lymphocyte. See also Supplementary Figure 4. 

patients with low Pr and high Pr ( Supplementary Figure 5B–C). 
Specifically, the trafficking and infiltration activities of immune 
cells into tumors (Steps 4 and 5) were notably elevated in high-Pr 
TNBCs compared with those with low Pr (Figure 5B). We further 
found that samples with high Pr displayed high expression 
levels of chemokines and cytokines, such as CCR5 and TNFSF10, 
contributing to the overall immune cell recruitment potential 
(Figure 5C, Supplementary Figure 5D). Correspondingly, the levels 
of antitumor immune cells, including M1 macrophages, B cells 
and tumor infiltrating lymphocytes (TILs), were significantly 
higher in high-Pr TNBCs, while immunosuppressive immune 
cells, such as regulatory T cells, showed the opposite trend 
(Figure 5D, Supplementary Figure 5E). To validate our findings, 
we assessed TILs within tumor regions using hematoxylin-eosin 
staining, and found that TILs infiltration was positively correlated 
with Pr (Figure 5E, Supplementary Table 5). Furthermore, we 

observed a higher density of CD8+ cells within tumor tissues with 
high Pr compared with those with low Pr (Supplementary Fig-
ure 5F, Supplementary Table 5). We also performed gene set 
enrichment analysis (GSEA) to explore the enriched pathways 
in high-Pr TNBCs (Supplementary Table 6). A series of immune 
response pathways were upregulated among samples with 
high Pr (Figure 5F), including lymphocyte migration (normalized 
enrichment score, NES = 2.48, NOM P value = 0.001), mononuclear 
cell migration (NES = 2.50, NOM P value = 0.001) and response to 
chemokines (NES = 2.48, NOM P value = 0.001). In addition, high-Pr 
patients showed lower exclusion score (Supplementary Figure 5G). 
To summarize, TNBC patients with high Pr HLA-I alleles exhibit 
increased expression of chemokines and cytokines in response to 
the large peptide repertoire breath, thereby possessing a remark-
able ability to attract immune cells and stimulate antitumor 
immunity.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
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Figure 5. Pr is positively correlated with the recruitment of immune cells in TNBCs. (A) Schematic view of a seven-step cancer-immune cycle, including 
release of cancer cell antigens, cancer antigen presentation by antigen presenting cells to immune cells, priming and activation of immune cells, 
trafficking of immune cells to tumors, infiltration of immune cells into tumors, recognition of cancer cells by T cells through TCR-antigen-MHC I, and 
killing of cancer cells. (B) The different levels of anticancer immunity across the seven-step cancer-immunity cycle in TNBCs with low and high Pr. 
Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers represent 1.5 × 
interquartile range. Wilcoxon test P value was shown. (C) Volcano plots of enriched chemokines (upper) and cytokines (bottom) in TNBCs with high 
Pr compared with those with low Pr. (D) Single-sample GSEA scores of immune cell abundance were calculated and compared between the high- and 
low-Pr TNBC groups. Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers 
represent 1.5 × interquartile range. Wilcoxon test P value was shown. (E) The correlation between TIL levels and Pr. (F) Cleveland plot showing the top 
20 enriched pathways ordered by NES in the high Pr group. Abbreviations: Pr, promiscuity; TILs, tumor infiltrating lymphocytes; sTIL, stromal tumor 
infiltrating lymphocyte; iTIL, intratumoral tumor infiltrating lymphocyte; NES, normalized enrichment score; MHC, major histocompatibility complex; 
TCR, T cell receptor. See also Supplementary Figure 5. 

Mismatch repair deficiency enriched in TNBCs 
with low Pr 
As an exploratory analysis, we investigated whether genomic 
alterations might drive the poor prognosis in low-Pr samples. 
There were no distinct differences in somatic mutations detected 

between tumors with high Pr and low Pr (Supplementary Fig-
ure 6A). CNV analysis demonstrated that the loss of DNA 
fragments 3q21 and 12q24, where several genes associated 
with mismatch repair (MMR) were located, including ALDH2, 
ALKBH2, ARPC3, MBD4, MCM2 and RAD9B was more frequent in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
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Figure 6. MMR deficiency is enriched in TNBCs with low Pr. (A) Comparison of the CNVs between the high- and low-Pr groups. The upper plot illustrates 
the frequency of the amplification, gain, loss and deletion of each gene in each group, and the lower plot illustrates the -log10 P value of each gene when  
comparing the frequency of loss or deletion or gain or amplification between the high- and low-Pr TNBC groups. (B) MMR-related genes at GISTIC peaks 
were compared between TNBCs with high Pr and those with low Pr. Fisher’s test P value was shown. (C) Heatmap showing the contribution of breast 
cancer-related mutational signatures to TNBCs with high and low Pr. (D) Cleveland plot showing the top 20 enriched pathways ordered by NES in the 
low Pr group. (E) The enrichment score of the top-enriched pathway MMR in the low Pr group from GSEA. (F) The correlation between Pr and HRD score. 
Abbreviations: Pr, promiscuity; LOH, loss of heterozygosity; HRD, homologous recombination deficiency. See also Supplementary Figure 6. 

low-Pr TNBCs ( Figure 6A–B, Supplementary Table 7). Of the breast 
cancer-related mutational signatures, only signature 26, which 
is related to the defective DNA mismatch repair (dMMR), was 
dominant in low-Pr tumors (Figure 6C). These results all revealed 
that a worse prognosis in low-Pr TNBCs might be explained by an 
impaired ability of MMR. 

To confirm the findings above, we scrutinized the top enriched 
pathways in low-Pr TNBCs (Figure 6D, Supplementary Table 6). 
Pathways associated with chromosomal abnormalities during 
DNA replication were upregulated in patients with low Pr. We  
also observed that the MMR pathway was enriched in low-Pr 
samples (NES = −1.8, NOM P value = 0.005, Figure 6E). In addition,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae151#supplementary-data
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homologous recombination deficiency (HRD) scores, representing 
the extent of genomic instability, showed a negative association 
with Pr (Figure 6F). In particular, we further explored the relation-
ship between MMR and immunological characteristics. Based on 
the enrichment score, we categorized TNBC patients into high-
and low-MMR groups, and we observed a higher abundance of 
antitumor immune cells and upregulated expression of immune 
molecules in low-MMR patients than in high-MMR patients 
(Supplementary Figure 6B–C). Therefore, the impaired capacity 
of MMR may mainly lead to the immunosuppression and worse 
prognosis in TNBCs carrying low Pr. Synthetic lethal strategies 
targeting MMR deficiency may be suited for these patients with 
dMMR. For example, Werner syndrome ATP-dependent helicase 
(WRN) has been identified as a synthetic lethal target in dMMR 
cancers [23, 24]. 

DISCUSSION 
HLA class I is a pivotal factor engaged in antitumor activity. In this 
study, we systematically evaluated the portrait of HLA-I diversity 
(including classical HLA-I mRNA expression level, HLA-I LOH, HED 
and Pr) in a large number of breast cancer samples, and further 
revealed their impact on clinical outcomes and immunological 
properties. In particular, we uncovered the prognostic power of 
Pr for TNBC patients and identified MMR as a genomic driver 
contributing to the poor prognosis in low-Pr TNBCs. 

As far as we know, our research is an inaugural exploration to 
comprehensively assess the clinical value of HLA-I diversity com-
prising somatic changes and germline variations. Among the four 
HLA-I-related indicators we included, the classical HLA-I expres-
sion level was associated with improved survival in whole breast 
cancer samples, while HLA-I non-LOH and higher Pr indicated 
better prognosis in TNBCs. No conclusive association between 
HED and the prognosis of breast cancer samples was identified in 
our research. A recent study also reported a similar lack of associ-
ation between HED and outcomes of patients who did not receive 
immunotherapy treatment [7]. Specifically, there was no reported 
association between HLA-I Pr and survival among patients with 
non-small cell lung cancer [19]. Notably, differences in the genetic 
ancestry of our research participants compared with those in 
previous reports arose due to our focus on a population of Chinese 
patients. Given the acknowledged effect of genetic ancestry on 
various biological processes, it is reasonable to consider that 
these differences can contribute to the variations in the obtained 
results. It is also conceivable that the association between HLA-
I-related indicators and clinical outcomes does not manifest in 
breast cancer but can be detected in other specific tumor types 
owing to the distinct biological properties and clinicopathologic 
features among different tumor types [25, 26]. Future evaluations 
of the impact of HLA-I diversity should be refined by taking these 
factors into consideration. Notably, in the analyses of outcomes in 
patients with melanoma and non-small cell lung cancer treated 
with immune checkpoint inhibitors, higher HED was significantly 
correlated with better survival, whereas higher Pr yielded worse 
prognosis, suggesting the influence of HLA-I variations on the 
response to immunotherapy [7, 9, 19]. The role of HLA-I diversity 
in sensitivity to immunotherapy in breast cancer needs further 
exploration in prospective clinical trials. 

Intriguingly, we found that MMR pathways were enriched in 
TNBC samples with low Pr. DNA MMR is a highly conserved 
biological process that plays a fundamental role in maintaining 
genome integrity and stability during DNA replication and recom-
bination [27, 28]. Defects in MMR genes and the resulting high 

microsatellite instability elevate the risk of cancer development. 
Tumors exhibiting DNA MMR deficiency demonstrate abundant 
neoantigen accumulation, triggering an activated immune 
response [29]. However, approximately half of the colorectal 
cancer patients with MMR deficiency displayed a low level of T-
cell infiltration [30]. Downregulation of the cGAS-STING pathway, 
which was reported as a contributor to reduced T cell infiltration 
into tumors, was correlated with poor survival in MMR-deficient 
cancers [31, 32]. In addition, an association has been identified 
between reduced CD8+ T-cell infiltration and increased glycolysis 
in tumors with high microsatellite instability, indicating a possible 
mechanism behind impaired T-cell infiltration [33]. Here, our 
findings have led to the hypothesis that MMR deficiency could 
act as a genetic barrier to high HLA-I Pr, potentially correlated to 
reduced immune cell presence and poorer prognosis in TNBCs. 
Reactivation of certain immune signals inside the TME might 
improve the clinical outcome of TNBC patients. Besides, synthetic 
lethal interactions have been discerned in MMR-deficient cancers. 
Therefore, synthetic lethal approaches hold the promise of novel 
therapies for dMMR tumors [23, 24]. 

There are some limitations in our research. First, we note 
that the sample size of TNBC cases included in our study was 
relatively small, particularly among patients with Pr score. Thus, 
we rigorously tested our results from multiple dimensions to fully 
validate our findings. Second, HLA diversity has been suggested 
as a biomarker of response to immunotherapy in previous stud-
ies. But still, we continue to have an absence of HLA-I-related 
data from a comprehensive immunotherapy trial carried out in 
breast cancer. Here, we predicted the immunotherapy response 
of patients in our breast cancer cohort by the Tumor Immune 
Dysfunction and Exclusion website and subsequently tested the 
influence of Pr on sensitivity to immunotherapy [34]. Finally, 
the breast cancer cohort with comprehensive HLA genotyping 
data is scarce, which limits the external validation of our find-
ings. Future assessment of the performance of both germline 
and somatic HLA-I diversity in forecasting the efficacy of can-
cer immunotherapy for breast cancer samples warrants careful 
consideration. 

Taken together, with our large-scale cohort, we identified the 
prognostic value of HLA-I variations in breast cancer. To be spe-
cific, low-Pr TNBC patients exhibited MMR defects and worse 
survival, providing hints for further precision treatment strategies 
in TNBC. 

Key Points 
• The exploration of characteristics among breast cancer 

patients with distinct HLA-I status could provide hints 
for precision treatment. 

• This research provided an overview of HLA-I indicators 
in breast cancer utilizing a large multiomics cohort, 
which will be a valuable resource for the public. 

• This research highlighted the prognostic value of Pr in 
TNBC and revealed its correlated genomic features. 
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