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Background. Targeted surveillance allows public health authorities to implement testing and isolation strategies when 
diagnostic resources are limited, and can be implemented via the consideration of social network topologies. However, it 
remains unclear how to implement such surveillance and control when network data are unavailable.

Methods. We evaluated the ability of sociodemographic proxies of degree centrality to guide prioritized testing of infected 
individuals compared to known degree centrality. Proxies were estimated via readily available sociodemographic variables (age, 
gender, marital status, educational attainment, household size). We simulated severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) epidemics via a susceptible-exposed-infected-recovered individual-based model on 2 contact networks from 
rural Madagascar to test applicability of these findings to low-resource contexts.

Results. Targeted testing using sociodemographic proxies performed similarly to targeted testing using known degree 
centralities. At low testing capacity, using proxies reduced infection burden by 22%–33% while using 20% fewer tests, compared 
to random testing. By comparison, using known degree centrality reduced the infection burden by 31%–44% while using 26%– 
29% fewer tests.

Conclusions. We demonstrate that incorporating social network information into epidemic control strategies is an effective 
countermeasure to low testing capacity and can be implemented via sociodemographic proxies when social network data are 
unavailable.
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A key process of epidemic control of infectious disease is surveil-
lance, whereby health systems test and isolate infectious individ-
uals [1]. However, many health systems lack the resources to test 
all symptomatic individuals and must allocate resources accord-
ingly. This is especially the case for emerging infectious diseases, 
such as severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), where testing resources are unequally distribu-
ted across countries [2]. Limited testing capacity can be mediated 
by targeting surveillance of individuals or households based on 

their network characteristics, such as connectivity. The structure 
and characteristics of edges and nodes in social networks can de-
termine population transmission dynamics [3, 4], especially for 
directly transmitted diseases and respiratory illnesses that re-
quire close contact for transmission [5–9]. In a social network, 
each individual’s contribution to disease transmission is a func-
tion of their connections and location in the network, and there-
fore differs among individuals. In general, 20% of individuals are 
responsible for 80% of secondary infections [10]. By contributing 
disproportionately to disease transmission, these individuals 
represent a logical focus for targeted testing.

However, social network data are rarely available for a popu-
lation, limiting authorities’ ability to use the information to guide 
targeted surveillance. Social network characteristics of individu-
als may, however, be predicted via more commonly available 
variables. For example, a range of sociodemographic variables 
have been used to predict age-specific social contact rates across 
152 countries [11] and in marketing analytics to predict “central 
clients” that influence the purchasing behavior of others [12]. 
Thus, when it can be shown that sociodemographic variables 
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predict network centrality, it may be possible to use those vari-
ables as proxies for the risk of onward transmission in targeted 
surveillance approaches, greatly increasing the feasibility of in-
cluding network data in epidemic control.

Here, we explore the possibility of using sociodemographic 
proxies of network connectivity to implement targeted testing strat-
egies in a resource-limited context. We focus on SARS-CoV-2 as a 
case study, given its current global relevance, the role of social con-
tacts in driving transmission of the disease [13], and the existing 
past work modeling prioritized testing strategies for the disease 
[14–16]. We simulate SARS-CoV-2 outbreaks on 2 close-contact 
social networks derived from social and spatial movement data 
on individuals living in rural communities in Sambava district, 
Sava, Madagascar [17]. We then compare the effectiveness of test-
ing strategies that test randomly, that target testing based on known 
social connectivity, and that target testing guided by sociodemo-
graphic proxies of social connectivity involving age, household 
size, marital status, and educational attainment. Effectiveness is 
evaluated via the time needed to control the epidemic, the total in-
fection burden, and the number of tests needed. By comparing ef-
fectiveness, we can thus investigate whether these commonly 
available sociodemographic data effectively capture heterogeneity 
in transmission when designing testing schema.

METHODS

Social Contact Networks

We modeled SARS-CoV-2 dynamics using a susceptible-exposed- 
infected-recovered (SEIR) model simulated across undirected, 
weighted networks. Empirical contact networks contain unique 
network topologies that may be lacking from simulated networks, 
with important consequences for disease transmission [18]. To en-
sure our results were most relevant to settings with limited testing 
capacities, we simulated epidemics on 2 contact networks ob-
tained from rural communities in Madagascar, where testing ca-
pacities for SARS-CoV-2 infection have been and remain 
limited. The social contact networks were constructed using survey 
and GPS tracker data of consenting adults (over 18 years of age) liv-
ing in 2 villages in the Sava region of northeastern Madagascar, 
Mandena (estimated population 2700) and Sarahandrano (estimat-
ed population 900). While these villages have similar livelihood 
practices, Sarahandrano is closer to a larger city (Andapa). Full de-
tails on sampling and social network construction are provided in 
Kauffman et al [17] and the Supplementary Materials. The final net-
works included 120 and 318 individuals for the Mandena and 
Sarahandrano networks, respectively. Edge weights between indi-
viduals represented the time spent in contact during a week, with 
a weight of 1 corresponding to 24 hours.

Estimating Sociodemographic Proxies of Degree Centrality

We estimated proxies of degree centrality using sociodemo-
graphic variables to test the efficiency of prioritized testing 

when social network data are unavailable. While there are 
many indices of node connectivity (discussed further in the 
Supplementary Materials), we focus here on degree centrality, 
as it is the most intuitive index to explain to public health prac-
titioners and is often highly correlated with other measures of 
centrality [19, 20]. We fit a generalized linear mixed-model to 
predict each individual’s degree percentile in their respective 
network using the following sociodemographic variables: age, 
gender, household size, marital status (single vs cohabiting/ 
married), and schooling level (none, primary, secondary, high-
er). A set of models was fit exploring all potential main effects of 
sociodemographic variables and interactions with gender, and 
the final model was an average of all models within 4 Akaike 
information criterion (AIC) units of the top model [21]. The 
full details of model fitting are described in the 
Supplementary Materials. Using this model, we predicted an 
estimated degree percentile for each individual in the 2 net-
works. This estimation then served as the proxy for degree cen-
trality in the control scenarios where true network structure is 
unknown.

Epidemic Model Simulations

At each time step, equivalent to 1 day, an individual could be-
come susceptible, exposed, presymptomatic, infected (sympto-
matic and asymptomatic), or recovered (Supplementary 
Figure 2.1). For each contact event (eg, an edge between a sus-
ceptible and infected node), a susceptible individual’s probabil-
ity of becoming exposed was a function of the transmission 
probability of the infected contact and the edge weight. Each 
simulation was initiated by randomly selecting 2 individuals 
to be exposed. These exposed individuals thus started the sim-
ulation on the first day of their latent period. The number of 
susceptible, exposed, presymptomatic, infected (asymptomatic 
and symptomatic), isolated, and recovered individuals were re-
corded at each time step. Transition rates and further model 
specification are described in the Supplementary Materials.

Evaluating Control Strategies

We considered 3 different testing strategies: random testing, 
targeted testing using known degree centrality, and targeted 
testing using sociodemographic proxies. Both targeted testing 
strategies prioritized testing of well-connected individuals, as 
measured by degree centrality or sociodemographic proxies 
of degree centrality. We focused on passive surveillance, which 
tests only infected, symptomatic individuals because this ap-
proach is favored in low-resource settings where diagnostic 
supplies are limited, particularly at the beginning of an epidem-
ic, and is the approach used in Madagascar [22]. Infected indi-
viduals that were positively identified via testing were isolated 
by moving them immediately to the isolated class. We account-
ed for imperfect isolation by allowing for household transmis-
sion, at a reduced transmission rate, for isolated individuals. 
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Isolated individuals remained isolated until 7 days after symp-
tom onset, after which they moved to the recovered class.

In addition to 2 testing strategies, we considered low and 
high testing capacities, corresponding to monthly testing ca-
pacities of 25% and 100% of the total population. Low testing 
capacities corresponded to 1 test per day on the Mandena net-
work and 3 tests per day on the Sarahandrano network. We ac-
counted for imperfect surveillance and ascertainment by 
assigning a 0.75 probability of an individual being successfully 
identified for testing. Testing began on day 4 of all simulations, 
with a range of start dates explored in the sensitivity analyses. 
All strategies, including a control of no testing, were simulated 
1000 times.

We evaluated each strategy and testing capacity combination 
based on how efficiently it controlled the epidemic, using 3 
metrics to evaluate the outcomes: the duration of the epidemic, 
the cumulative number of infected individuals per capita, and 
the number of tests used. We assessed each strategy and testing 
capacity based on its ability to reduce the infection burden and 
the length of the epidemic while minimizing the tests needed.

Sensitivity Analysis

We assessed the robustness of our results by varying 3 catego-
ries of parameters in our simulations: intervention parameters 
(start date and imperfect surveillance rate), biological parame-
ters (transmission rate), and network parameters (network size 
and assortativity). Further details on these methods and results 
are reported in the Supplementary Materials.

Data Availability Statement

All code and data needed to reproduce the simulations and 
analysis are located in a figshare repository (https://doi.org/ 
10.6084/m9.figshare.19942139.v1). Individual-level sociode-
mographic variables are available upon request.

RESULTS

Estimating Degree Centrality Proxies

We focused on 5 sociodemographic variables as predictors of 
an individual’s degree centrality: age, gender, household size, 
marital status, and education level. A model including sociode-
mographic variables did a poor job of predicting degree percen-
tile across the 2 networks (R2 = 0.03). However, the model was 
able to loosely rank individuals by degree centrality (Mandena, 
Spearman ρ = 0.15, P = .09; Sarahandrano, Spearman ρ = 0.18, 
P = .002). The model distinguished high-degree individuals 
from low-degree individuals: the top 10 individuals in each net-
work had a predicted degree that was on average twice as high 
as the bottom 10 individuals (Supplementary Figure 3.3). 
Marital status was the only variable included in all models with-
in 4 AIC units of the top model, but all sociodemographic var-
iables were included in the averaged model. Specifically, 

cohabiting individuals had lower degree centrality than single 
individuals. In summary, sociodemographic characteristics 
did not accurately predict an individual’s exact degree central-
ity, but, across the population, successfully sorted individuals 
into those with higher and lower connectivity. Further details 
on the model are reported in the Supplementary Materials.

Control Efficiency

While a poor proxy for the absolute degree centrality itself, so-
ciodemographic proxies resulted in similar epidemic dynamics 
as degree centrality when used to guide prioritized testing. The 
targeted strategies resulted in the lowest daily incidence rates 
and number of tests required, particularly at the lowest testing 
capacity (Figure 1 and Figure 2). At low testing capacities, tar-
geting known highly connected individuals reduced infections 
by 31%–44% compared to random testing (Table 1). Targeted 
testing using sociodemographic proxies reduced infection bur-
dens compared to random testing, but resulted in infection 
burdens 13%–19% higher compared to targeted testing when 
the social network was known (Table 1 and Figure 2). The in-
fection burden decreased with increasing testing capacity for all 
control strategies, with no difference between using known or 
proxy degree centralities at a testing capacity of 100% 
(Table 1 and Figure 2). Notably, targeted testing was more ef-
fective on the Mandena network, where it reduced per capita 
infections by over 32%, compared to 21% on the 
Sarahandrano network.

Testing was more efficient when targeting highly connected 
individuals using known or proxy degree centralities, requiring 
less than three-quarters of the number of tests needed when test-
ing randomly at 25% testing capacity (Table 1). For example, on 
the Mandena network, 34 tests were required when testing ran-
domly, 24 tests when using targeted-known testing, and 26 tests 
when using targeted-proxy testing. Targeted testing only short-
ened the epidemic length on the Mandena network at high levels 
of testing (Table 1 and Figure 2), where it was able to stop trans-
mission chains earlier in the epidemic than random testing 
(Figure 1 and Figure 3). On the Sarahandrano network, all con-
trol strategies flattened the epidemic curve by reducing the 
number of infections, with the targeted testing strategies only 
slightly reducing epidemic length at a testing capacity of 25% 
(Figure 1 and Figure 2). While flattening the epidemic curve 
lengthens epidemics, it also reduces the daily incidence of cases 
to prevent overwhelming the health system [23]. Therefore, a 
targeted testing strategy that flattens the curve, rather than 
shortening the epidemic, can also be an effective form of epi-
demic control.

Visualizing a simulated SEIR epidemic on the Mandena net-
work illustrates how each strategy works (Figure 3). The strat-
egy of no control allowed for the highest infection burden, 
including individuals with low centrality who were infected lat-
er in the epidemic than in other strategies. Testing randomly 
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resulted in rapid, early spread, with the highest daily incidence 
of 7 cases on day 32 of the epidemic. In contrast, targeted test-
ing slowed transmission by halting transmission chains that 
would result in a high number of secondary infections 
(Figure 3); daily incidence never rose above 5 cases with using 
known degree centralities or 6 cases with proxies. Notably, 
while the 2 targeted strategies had similar overall incidence, dif-
ferent proportions of the population were infected.

DISCUSSION

In the face of global diagnostic and vaccine inequity, many coun-
tries are tasked with developing novel public health interventions 
that optimize limited diagnostic capacities to control epidemics. 
Considering social network topologies is an effective way to 
guide testing strategies when testing capacity is limited, but social 
networks are rarely known. We compared the performance of 
control strategies that prioritized testing using sociodemo-
graphic proxies of individuals’ degree centralities to those using 
known social network data, simulating SARS-CoV-2 epidemics 
in rural Madagascar as a case study. We found that strategies 
that target well-connected, infected individuals are the most 

effective, reducing overall infection burden while requiring fewer 
tests. In simulations on empirical social contact networks from 
rural Madagascar, targeted testing reduced the infection burden 
and shortened the epidemic even at a testing capacity of only 1 
test per day, equivalent to a monthly testing capacity of 25% of 
the population. These strategies were robust even when targeting 
was imperfect because the true social network was not known 
and prioritized testing was based solely on sociodemographic 
variables. Importantly, the use of sociodemographic proxies 
highlights one way to implement an otherwise theoretical 
network-based approach when social network data are not avail-
able. Our findings therefore demonstrate the benefits of consid-
ering social networks in data-driven epidemic control strategies 
even when social network data are incomplete or unavailable.

We find that strategies that prioritize testing highly connected 
individuals using either known or proxy measures of connectiv-
ity offer the most benefit in contexts with low testing capacities. 
In our simulations, this is achieved by controlling the epidemic 
before it reaches the point at which limited testing capacity can-
not contain it. However, even when the start of testing is delayed 
by 24 days, the targeted strategy can avoid on average 9 infections 
on the Mandena network, or 0.075 infections per capita 

Figure 1. Targeted testing using either known social network data or an estimated proxy reduces daily incidence while requiring fewer tests than random testing. 
Cumulative daily incidence (top row) and cumulative tests required (bottom row) for the 3 testing strategies across 2 testing capacities on the Mandena and Sarahandr-
ano networks. Testing capacities refer to ability to test a percentage of the total population monthly. The vertical dashed line represents the start of the control strategies 
at day 4. Lines represent median values from 1000 simulations.
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(Supplementary Figure 4.1). Early, aggressive testing has been 
used to successfully control SARS-CoV-2 in several countries 
[24, 25], and a similar mechanism explains why strategies that 
target highly connected individuals are so efficient in our simu-
lations. In addition to delayed testing, high transmission rates 
can result in epidemics that targeted testing is unable to control 
at limited testing capacities. Indeed, other mathematical models 
of SARS-CoV-2 have shown that the effectiveness of testing to 

control epidemics becomes limited at increasing transmission 
rates [15, 16]. This was seen in our sensitivity analyses 
(Supplementary Figure 4.3) and on the Sarahandrano network, 
where higher average edge weights resulted in higher community 
transmission than on the Mandena network. Future work that in-
corporates a range of diseases and their associated epidemiological 
parameters could identify the conditions that impact the effective-
ness of targeted testing with sociodemographic proxies.

Figure 2. Targeted testing using proxies performs better than random at low testing capacity and similar to using known degree centralities at high testing capacities. 
Testing capacities correspond to monthly testing capacities equal to testing 25% and 100% of the total population. The dashed black line represents median values from 
simulations with no testing. Raw data are represented by points and median values per strategy are represented by bold horizontal lines. The figure displays results from 1000 
simulations for each combination of testing capacity and control strategy.
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Many theoretical studies have shown the effectiveness of in-
corporating network data and topology into epidemic control 
strategies [3, 26], but the feasibility of doing so has been ques-
tioned because the true social network is almost never known. 
One alternative is occupationally targeted strategies that target 
high contact rates or high-risk environments (eg, health care 
or food service workers) [7]. However, in rural communities 
such as Mandena and Sarahandrano, there is little variation in 
occupation: nearly all community members are agriculturalists. 
To overcome this obstacle, we considered sociodemographic 
predictors of network centrality to guide targeted testing rather 
than the true values of network centrality or occupationally 
based targeting. While demographic predictors did not accurate-
ly rank individuals by degree centrality, they were able to distin-
guish between individuals with high and low contact rates, and 
they performed as well as “true” degree centrality when used 
to prioritize testing schemes in our simulated epidemics. 
Despite these predictors being poor proxies of degree centrality 
itself, they were accurate enough to guide targeted testing, sug-
gesting that even imperfect targeted testing strategies can be ef-
fective. Health authorities can implement targeted control 
strategies by taking into account easily acquired individual char-
acteristics, such as age, gender, household size, and marital sta-
tus, many of which are available in health care and 
governmental records, or can be quickly generated through sur-
veys. The exact sociodemographic variables to include will vary 
depending on local demographics and cultural practices and 
will require input from local experts. This is particularly impor-
tant to ensure prioritized testing strategies do not target already 
vulnerable groups nor lead to stigmatization.

Our study advances previous work on disease control strat-
egies configured by social networks [27–31]. In particular, our 
study is one of the few that explicitly considers limited testing 
capacities on par with those in low-income countries and pairs 
simulations with social network data from such a context. 
Madagascar tested 26 425 individuals (less than 0.01% of the to-
tal population) for SARS-CoV-2 between March and 
September 2020 [32], which is a fraction of the testing capacity 
of mass-testing campaigns that have been implemented else-
where [33]. This is further complicated by the relative remote-
ness of some communities, with more than 50% of the 
population living further than 2 hours from a hospital [34]. 
In both Mandena and Sarahandrano, for example, no 
SARS-CoV-2 testing has been available to date. While cost 
and physical access to testing are significant barriers to disease 
control in Madagascar [22], our findings suggest that, if and 
when testing is available to rural communities, targeted testing 
can mitigate the negative impact of limited testing capacity on 
epidemic control. For example, antigen-based rapid diagnostic 
testing could be implemented at a local scale via outreach teams 
of skilled health workers [35]. However, for prioritized testing 
schemes such as this to be possible, the global inequality in ac-
cess to diagnostics must first be overcome [36].

Our study had several limitations. First, our social networks 
represented realistic, but necessarily simplified, versions of true 
social networks. They assumed social contacts were static, only 
included individuals over 18 years old, were relatively small, 
and did not record all social contacts in the community. Both 
social networks were constructed based on GPS tracker data, 
with missing links between GPS-wearers imputed based on 

Table 1. Median and 95% Confidence Interval of Efficiency Metrics for 3 Control Strategies on 2 Empirical Social Contact Networks From Rural 
Madagascar

Efficiency Metric
Testing Capacity, 

%

Mandena Network Sarahandrano Network

Random 
Testing

Targeted Testing, 
Known

Targeted 
Testing, 
Proxy

Random 
Testing

Targeted 
Testing, 
Known

Targeted Testing, 
Proxy

Epidemic duration 0 44 
(13–67)

44 
(13–67)

44 
(13–67)

57 
(19–85)

57 
(19–85)

57 
(19–85)

25 46 
(11–73)

40 
(10.75–71)

42 
(11–71)

64 
(11–116)

59 
(11–106)

59.5 
(11–103)

100 48 
(11–88)

34 
(11–71)

35 
(11–69)

58 
(39–91)

57 
(16–89)

56 
(11–102)

Infections per 
capita

0 0.82 
(.03–.87)

0.82 
(.03–.87)

0.82 
(.03–.87)

0.86 
(.02–.9)

0.86 
(.02–.9)

0.86 
(.02–.9)

25 0.73 
(.02–.87)

0.41 
(.02–.78)

0.49 
(.02–.82)

0.65 
(.01–.83)

0.45 
(.01–.75)

0.51 
(.01–.78)

100 0.49 
(.02–.69)

0.22 
(.02–.57)

0.22 
(.02–.55)

0.5 
(.01–.71)

0.37 
(.01–.62)

0.37 
(.01–.64)

Tests per capita 25 0.28 
(0–.45)

0.20 
(.01–.32)

0.22 
(.01–.34)

0.35 
(.01–.51)

0.26 
(0–.4)

0.28 
(0–.41)

100 0.42 
(.02–.64)

0.15 
(.01–.39)

0.15 
(.01–.38)

0.38 
(.01–.56)

0.25 
(0–.42)

0.25 
(0–.43)

Represents median and confidence intervals from 1000 simulations. Testing capacity corresponds to monthly testing capacity, with 100% equal to the ability to test the full population monthly. 
Note that efficiency at 0% testing capacity is the same for all strategies because it represents the control strategy of no testing.
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overlapping movement patterns, a social survey with limited 
response categories, and demographic data on the individuals. 
While still small (n = 120 and 318), the resulting close-contact 
network is over 10 times as dense as the network based solely on 
survey data [17]. In addition, these network sizes are not an 
outlier in the context of other social network studies, where 
less than 100 nodes are common [19], and are necessarily lim-
ited due to the small size of communities in rural Madagascar. 
Our sensitivity analyses found that the targeted strategy was 
most effective for a variety of network sizes and assortativity 
values, evidence that our results are not simply an artifact of 
our empirical social networks. However, our networks may un-
derestimate the rate of spread of simulated epidemics 

compared to a more complete network. Second, we focused 
on only one characteristic of a social network, centrality, and 
only one measure of centrality, degree centrality. Other indices 
that consider indirect, higher-degree connections, such as be-
tweenness or closeness centrality, may contain more informa-
tion relevant for onward transmission and could be even 
more effective at controlling epidemics. Third, we only consid-
ered the testing of symptomatic individuals because that is 
most relevant in extremely resource-limited contexts. 
However, active surveillance strategies are common in high- 
income settings and future research should evaluate whether 
sociodemographic proxies perform similarly for these strate-
gies. Finally, as with any targeted public health intervention, 

Figure 3. Targeted testing most efficiently reduces disease spread across social networks, whether using known degree centralities or proxies. Final epidemic spread of 1 
simulation on the Mandena network for 3 different control strategies and 1 strategy of no control. Nodes are represented by points, colored based on day of infection, and 
sized according to their degree centrality. Nodes that were never infected are white. All control strategies used a monthly testing capacity of 25%.
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there is a risk that those targeted by the intervention will be stig-
matized. Local experts should assess the risk of stigma and how 
this could exacerbate existing inequalities before implementing 
prioritized testing strategies. In certain contexts, this could rep-
resent a significant obstacle to the implementation of targeted 
testing.

By using empirical social contact networks, we included re-
alistic social networks that more accurately represent exposure 
risk in rural Madagascar than simulated networks or networks 
based on studies from the Global North, which is the source of 
the majority of social networks used in infectious disease sim-
ulations. A recent meta-analysis found only 4 social contact 
studies, less than 7% of those included in the meta-analysis, in-
corporated data from sub-Saharan Africa [37]. Expanding so-
cial network data collection outside of the Global North 
would allow for more realistic and context-specific estimates 
of disease dynamics on social networks globally.

Incorporating social network data into testing strategies 
greatly increases their efficiency under limiting testing capaci-
ties. Prioritized control strategies were effective even when in-
dividuals’ true degree centralities were unknown and testing 
was prioritized using only common sociodemographic vari-
ables. This theoretical study focused on testing to control epi-
demics at the population level, and assumed that diagnostics 
were not tied to treatment. In practice, control strategies should 
also consider factors such as the severity of disease in different 
age groups to ensure equitable distribution of diagnostics. As 
social network data becomes more widely available, consider-
ing social network information and structure is a promising 
method for allocating limited resources during public health 
crises. We demonstrate data-driven control strategies are effec-
tive even when social network data are missing, overcoming 
one of the major barriers to implementing this currently theo-
retical approach.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy-
edited and are the sole responsibility of the authors, so ques-
tions or comments should be addressed to the corresponding 
author.
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