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The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near 
pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as 
chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and 
explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either 
encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of 
countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included 
vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the 
family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of 
human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding 
of structural mechanisms of neutralization.

Keywords. Togaviridae; Alphavirus; prototype pathogen.

Correspondence: A. M. Powers, PhD, CDC, 3156 Rampart Road, Fort Collins, CO 80521 
(apowers@cdc.gov).

The Journal of Infectious Diseases® 2023;228(S6):S414–26 
Published by Oxford University Press on behalf of Infectious Diseases Society of America 2023. 
This work is written by (a) US Government employee(s) and is in the public domain in the US.
https://doi.org/10.1093/infdis/jiac326

INTRODUCTION TO THE TOGAVIRIDAE FAMILY

Taxonomy

The Togaviridae family consists of positive-sense, single- 
stranded ribonucleic acid (RNA) viruses with only 1 genus, 
Alphavirus. The International Committee on the Taxonomy 
of Viruses (https://talk.ictvonline.org/ictv-reports/ictv_9th_ 
report/positive-sense-rna-viruses-2011/w/posrna_viruses/275/ 
togaviridae) recognizes 32 species of alphaviruses; the majority 
are mosquito-borne and cause disease in humans and/or do
mesticated animals, whereas a few are important pathogens 
of fish. One species, Eilat virus, is considered an insect-specific 
alphavirus that is completely defective for replication in verte
brates and appears to only infect mosquitoes in nature [1]. 
Although most alphaviruses cause acute febrile disease in hu
mans, infection with the Old World members is often accom
panied by severe arthralgia, whereas the New World viruses 
sometimes cause central nervous system disease, which can 
be fatal [2]. An important exception is Mayaro virus 

(MAYV), a New World arthritogenic alphavirus that is genet
ically related to the Old World viruses.

Ecology and Epidemiology

The mosquito-borne alphaviruses are zoonotic and use a wide 
range of amplifying hosts during enzootic transmission cycles, 
including rodents, birds, and nonhuman primates [2]. Human 
infection generally occurs via spillover, where enzootic or 
bridge vectors with an appropriate host range feed first on an 
infected zoonotic host, then later a human. Only 1 alphavirus, 
chikungunya virus (CHIKV), has shown sustained amplifica
tion in humans after emergence from nonhuman primate 
(NHP)-amplified enzootic cycles in sub-Saharan Africa. 
Sustained human-human transmission is mediated by perido
mestic Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albo
pictus mosquitoes, leading to major, explosive epidemics that 
travel globally via infected people [3]. Several other alphaviruses, 
including MAYV [4] and Venezuelan equine encephalitis virus 
(VEEV) [5, 6], are also capable of generating human viremia lev
els sufficient to infect A aegypti, suggesting their potential for 
emergence to near-pandemic proportions such as CHIKV. 
Ross River virus (RRV) is probably also transmitted through hu
man amplification in sustained cycles, although the vectors in 
this case are likely Aedes vigilax, Aedes camptorhynchus, and 
Culex annulirostris, which are not highly peridomestic like A 
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aegypti and have much narrower geographic distributions [7]. 
Other alphaviruses, including Eastern equine encephalitis 
(EEEV), Western equine encephalitis (WEEV), and Madariaga 
virus generate little human viremia despite being among the 
most virulent members of the family. This tendency for humans 
to be “dead-end” hosts (insufficient viremia to serve as amplify
ing hosts) is a major factor in limiting the pandemic potential for 
many alphaviruses.

Replication

The human-pathogenic alphaviruses generally enter cells via 
receptor-mediated endocytosis, with the receptors recently 
identified for several (Figure 1) [8–10]. These receptors bind 
to the E2 glycoprotein that, along with E1, forms heterotrimeric 
spikes on the surface of enveloped virions [11]. Upon 
E1-mediated endosomal fusion, the nucleocapsid disassembles 
to release the genomic RNA, leading to translation of the nonstruc
tural polyprotein open reading frame (ORF1). The nonstructural 
proteins, along with host components, form replication complexes 
on the surface of cytoplasmic vesicles, leading to the production of 
minus-strand genomic and plus-strand subgenomic (SG) RNAs; 
the latter encodes an ORF for the structural polyprotein (ORF2). 
Minus strands are then copied into plus-strand genomic and SG 
RNAs for further translation, and encapsidation signals near the 
5′ end of the genomic RNA [12] combine with capsid proteins 
to form cytoplasmic nucleocapsids. The envelope glycoproteins 
are inserted into the endoplasmic reticulum and processed through 
the secretory pathway to be embedded as E2/E1 trimers in the plas
ma membrane. These combine with nucleocapsids via a capsid- 
cytoplasmic E2-tail interaction to initiate budding of virions 
from the cell surface.

Pathogenesis

Alphavirus infections are frequently asymptomatic, or they 
manifest as general flu-like illness with rash [2]. However, al
phaviruses are often broadly categorized into 2 groups based 
on their associated pathologies, which manifest in severe infec
tions. The arthritogenic (predominantly Old World) alphavi
ruses cause systemic infection characterized by joint pain 
with swelling and myalgia, whereas the encephalitic (New 
World) alphaviruses are associated with infection of the central 
nervous system (CNS) and encephalitic disease. Although al
phaviruses typically cause acute infections that resolve within 
weeks of symptoms, long-term joint (arthritogenic viruses) 
and neurological (encephalitic viruses) sequelae have been de
scribed for many of these viruses. Details for individual alpha
viruses and pathogenic categories are found below.

GAPS IN THE KNOWLEDGE BASE

To develop countermeasures for prototype alphaviruses, which 
could also be rapidly adapted for any member of the family, a 

few important gaps in basic virology remain to be addressed. 
These include sampling the genetic and antigenic diversity of 
key members including CHIKV and the VEE complex viruses, 
as well as viruses yet to be discovered. Additional gaps include 
(1) the lack of receptor identification or confirmation for many 
human-pathogenic members and (2) high-resolution imaging 
of receptor-E2 interactions for most. The role of receptor inter
actions in determining the tropism and pathogenesis of these 
viruses is still far from understood. Structural intermediates 
that occur between receptor binding, endosomal fusion, and 
budding are also lacking. Much progress has been made in 
understanding epitopes involved in attachment of antibodies 
(including those that neutralize), the mechanisms of neutraliza
tion, and to a lesser extent identification of T cell epitopes; how
ever, most of this work has been performed on only a small 
number of alphaviruses.

Although several antiviral host factors and their mecha
nisms of action for controlling alphavirus replication have 
been elucidated (eg, PKR, IFIT1, ZAP, ISG20), there is still 
much to be discovered regarding the role of innate immune 
factors in alphavirus restriction [2]. In particular, variability 
in the resistance or susceptibility of different family members 
to antiviral factors, and the molecular mechanisms that un
derlie these differences, is lacking for many of the host factors 
described. As with virus-receptor interactions described 
above, understanding of how intracellular host factors (both 
antiviral and non-antiviral genes) contribute to cellular tro
pism is not well understood, and it has only been explored 
for a limited number of viruses. Likewise, host factors and re
sponses that determine viral tropism and pathogenesis for 
distinct niches in the host have been explored in more detail 
for some (eg, the brain and mechanisms of neuroinvasion 
and blood-brain barrier disruption) but less so for others 
(eg, the liver).

MODELS OF DISEASE

Cell culture and animal models are critical (1) for the interro
gation of disease mechanisms driven by viral infection and (2) 
for testing safety and efficacy of therapeutics before their ap
proval for use by the US Food and Drug Administration 
(FDA). The evaluation of the preclinical efficacy in a model de
pends on well defined end points such as (1) species or cell line 
selection, (2) challenge strain and dose, (3) route of exposure, 
(4) clinical endpoints that mimic human disease, and (5) route 
and timing of countermeasure administration.

Animal models for the study of arthritogenic and encephalit
ic alphavirus infection include mice, hamsters, guinea pigs, 
birds, and/or NHPs [13–18]. For alphaviruses, mice and 
NHP stand as the 2 most widely accepted models for 
proof-of-concept or preclinical evaluation of the efficacy of 
therapeutics and vaccines. For diseases with low incidence in 
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the human population, such as the neurotropic alphaviruses, 
the path to FDA approval for licensure may require validated 
animal models for Phase II and III clinical trials. Hence, al
though several elements are known about the progression of 
the host response and disease in animal models of alphaviruses, 
well characterized, validated models are not available for most 
of these viruses and represents an important gap in the field. 
Successful implementation of animal models in preclinical or 
clinical trials will also require validated in vitro assays of im
mune and clinical correlates to measure outcomes. More im
portantly, the correlates of protection must bridge the animal 
model to the human experience. These assays should be readily 
transferable across different organizations engaged in the 
efforts.

In general, validation of an animal model requires investiga
tion and justification of the viral dose administered, the viral 
strain, the route of virus administration, the animal, and the 
clinical signs and optimal endpoints in the animal model cho
sen. Validation of viruses and cells demands historical tracking 
of origin and passage history (ie, authenticating the origin of 
the cells and viruses used). The evaluation of each viral seed 
stock for its 50% infectious or lethal dose and validation of 
the viral genome by sequencing are critical for validated animal 
studies. Current recommendations in the field are to use viral 
seed stocks amplified from infectious clones to minimize seed 
stock variation and avoid selection of genotypes that impact 
phenotype (eg, glycosylation, receptor binding, and virulence). 
Cells used in preclinical and clinical studies require routine 

Figure 1. Replication cycle of an alphavirus. The start of the cycle is shown on the left with the attachment of a virion to a cellular receptor. After fusion of the viral 
envelope, disassembly of the core, and release of the genomic ribonucleic acid (RNA), replication proteins are translated and processed (bottom left). These proteins enable 
the replication of the input genomic RNA (bottom center) and translation of the subgenomic messenger RNA (mRNA) into structural proteins. Cytoplasmic assembly of ge
nomic RNA and capsid proteins produces the nucleocapsid core that associates with processed envelope glycoproteins (right) at the plasma membrane resulting in budding of 
infectious virions. Scale varies. Courtesy of Richard Kuhn with permission from the publisher [9]. ER, endoplasmic reticulum.
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testing for contamination (eg, cell, virus, and mycoplasma), 
morphology, and functionality.

Arthritogenic Alphavirus Models

The global distribution of arthritogenic alphaviruses present a 
continued threat to public health [19, 20]. The most notable of 
these include CHIKV, o’nyong-nyong virus, MAYV, and 
RRVs. To be able to generate relevant animal models, it is crit
ical to understand the patterns of infection and pathogenesis of 
each type of alphavirus. Although the timeline of incubation 
(3–13 days) and illness vary after transmission to a human, 
most infections present with fever and have a short viremia 
of a few days followed by acute and subacute phases that may 
lead to chronic illness. The chronic phase, defined as ongoing 
pain longer than 12 weeks, can last for years and can include 
inflammatory rheumatism, musculoskeletal pain, asthenia, 
and headache. Chronic conditions are generally associated 
with illness caused by CHIKV, MAYV, and RRV infections 
[20–22]. Chronic illness is associated with the inflammatory re
sponses elicited from the persistence of viral replication in 
synovial tissues. Human illness caused by arthritogenic alpha
viruses is nonlethal and typically self-limiting, albeit in some 
cases, symptoms may last for years.

After transmission via mosquito bite, arthritogenic alphavi
ruses replicate in tissue-resident myeloid cells and fibroblasts, 
then they traffic to the proximal draining lymph node [2]. 
Here, virus replicates and further disseminates via the blood 
to other peripheral organs, including the liver, spleen, and 
joints. In the joints, CHIKV replicates in fibroblasts (connec
tive tissue), myofibers (muscle cells), and macrophages. Joint 
pathology is driven by immune cell infiltration (mononuclear 
cells) into the site of infection (synovia) with robust proinflam
matory responses in the joint. Infection of the joints also leads 
to bone destruction, resulting from perturbed osteoclast/osteo
blast homeostasis. Mechanistically, this process results from 
production of interleukin 6 that stimulates production of re
ceptor activator of nuclear factor-κB ligand (RANKL) from os
teoblasts, which inhibit osteoprotegerin, leading to increased 
osteoclastogenesis and bone resorption [23]. Aside from acute 
infection, arthritogenic alphaviruses, CHIKV in particular, has 
been associated with recurring and chronic arthralgia that can 
last from months to years. Although the precise mechanism of 
chronic arthralgia is unknown (persistent viral replication vs 
immunopathology in the absence of virus), studies suggest 
that prolonged inflammatory and antibody (AB) responses 
likely contribute.

As would be expected, animal models for the arthritogenic 
alphaviruses are not lethal; however, the virulence varies across 
strains. Although mouse models are not ideal for preclinical ef
ficacy due to potential lethality, lack or involvement of neuro
logical symptoms, and limitations in arthritis at sites of 
infection, they provide useful tools for proof-of-concept studies 

[24–27]. A key endpoint in evaluation of therapeutics and vac
cines for the arthritogenic alphaviruses is joint swelling, which 
is evaluated and measured in ankles, wrists, and gastrocnemius 
muscles. Clinical signs for CHIKV and MAYV include acute bi
phasic swelling response in the ipsilateral foot and ankle that 
peaks on days 6–8 postinfection. In addition, severe inflamma
tory synovitis and myositis occur in the joints and skeletal mus
cle around the foot and are evaluated by histopathological 
scoring of hematoxylin and eosin-stained hind limb tissues 
[25, 28]. Immune-deficient mouse models of arthritogenic al
phaviruses would not be appropriate for preclinical or clinical 
testing for obvious challenges of translation of outcomes to 
healthy individuals.

The most advanced NHP model for vaccine testing is for 
CHIKV and has been in development since the 1950s [14]. 
The pathogenesis of CHIKV in both rhesus and cynomolgus ma
caques mirrors human disease, although how the route of viral 
infection impacts pathogenesis is less understood. Disease se
verity correlates with viral infection dose. Nonhuman primates 
show viremia, fever, rash, lymphopenia, and immunoglobulin 
(Ig)M antibody response during the first week of infection. Of 
these clinical signs, viremia, fever, and lymphopenia provide 
excellent endpoints for efficacy testing [29, 30]. In addition, 
CHIKV persists in the spleen in rhesus and cynomolgus ma
caques with the later having more severe disease and greater 
duration of viral persistence [25, 31]. Limitations of NHP 
models include the lack of neurological signs observed in 
humans.

Encephalitic Alphavirus Models

VEEV, WEEV, and EEEV are significant pathogens of both 
medical and veterinary importance. Human disease is high
lighted by fatal encephalitis and permanent neurological seque
lae in survivors. Of the 3 viruses, EEEV causes the most severe 
disease with human case-fatality rates of 30%–90% in those 
with neurological disease [32]. The survivors suffer from debil
itating and permanent long-term neurological sequelae at rates 
of 35%–80% [32, 33]. Despite the discovery of these viruses 
more than 80 years ago, the mechanism(s) that underlie the 
pathogenesis are not well understood. The vast majority of in
fections are diagnosed at late stages, and the virus-induced pa
thology and/or host inflammatory response are presumably 
responsible for the fatal outcome.

Similar to the arthritogenic alphaviruses during the acute 
phase of infection, the encephalitic alphaviruses replicate in tis
sue resident cells in the periphery that traffic to the draining 
lymph node where virus replicates further and disseminates 
to peripheral organs including the liver, spleen, and CNS. 
Differences in cellular tropism among encephalitic alphavi
ruses relate to the distinct pathogenic mechanisms of these 
related viruses [34]. Although VEEV predominantly infects 
myeloid cells in the periphery and lymph node leading to 
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robust production of interferon (IFN), EEEV replicates poorly 
in myeloid cells, thus circumventing robust activation of innate 
immunity [35]. Indeed, robust activation of innate immunity 
and production of IFN is thought to cause significant prodrome 
observed after VEEV infection, but which is absent in EEEV in
fections. Although several routes of CNS infection may be in
volved for different encephalitic alphaviruses, neuroinvasion 
after natural routes of infection appears to predominantly in
volve the circumventricular organs of the brain (eg, pineal 
body) and the nerves innervating the olfactory neuroepithe
lium [36]. Long-term neurological sequelae are particularly 
prevalent in EEEV and WEEV cases, and this may be an under
appreciated consequence of VEEV infection due to the higher 
prevalence of asymptomatic and undiagnosed VEEV infections 
relative to EEEV and WEEV [37].

Interferons play a key role in early restriction of alphavirus 
replication, and as with many other viruses, deficiencies in 
IFN signaling results in greater disease severity [38]. Natural in
fection and immunization typically produce robust long-term 
protective humoral immunity including neutralizing antibod
ies (NAbs) that are important for resolution of acute infection. 
T cells have also been shown to play both protective and path
ogenic roles during alphavirus infections, although different T 
cell subsets seem to be protective in different models [39, 40]. 
Protective T cell responses, in particular, are important during 
infection with encephalitic alphaviruses, which invade the CNS 
before the onset of robust IgG responses.

Two recent studies with EEEV in cynomolgus macaques pro
vide insights into the potential underlying mechanism(s) of 
pathogenesis [41, 42]. After introduction into the brain via 
the aerosol route, many critical physiological parameters under 
the control of the autonomic nervous system (ANS) such as res
piration, activity, temperature, heart rate, blood pressure, food/ 
fluid intake, circadian rhythm, sleep, and electrical activity of 
the heart and the brain were rapidly and profoundly changed 
leading to the NHPs meeting the euthanasia criteria. We 
were surprised to find that one of the NHPs met the euthanasia 
criteria by exhibiting a sudden cardiac event. A follow-up pa
thology study on the organs and tissues of the NHPs at the 
time of euthanasia demonstrated rapid virus dissemination 
throughout the brain and spinal cord including the ANS con
trol centers [43]. The virus likely spread by hijacking the axonal 
transport system, which is an essential neuronal homeostatic 
process responsible for movement of RNA, proteins, and or
ganelles within the neuron. Thirty-five virions were observed 
in a single axon of a neuron in a 160 nm section [43]. 
Consequently, this mechanism has the potential to rapidly 
transport a tremendous amount of virus throughout the 
CNS. However, despite the extensive dissemination, most brain 
and spinal cord tissues exhibited minimal or no microscopic le
sions with the cellular architecture remaining intact. In addi
tion, minimal or no host inflammatory infiltrate was 

observed in majority of the tissues. This strongly suggests 
that EEEV infection causes local and global neuronal dysfunc
tion leading to dysregulation of critical physiological parame
ters. This neuronal dysfunction likely contributes to or 
exacerbates viral and host-induced pathology to produce the fa
tal outcome. Whether these mechanisms also underlie VEEV 
and/or WEEV pathogenesis remains to be determined.

LANDSCAPE OF MEDICAL COUNTERMEASURES

There is a lack of approved human vaccines and antiviral drugs 
for public use against alphavirus infections [44]. Further re
search is needed to expand current knowledge of alphavirus 
immunity to identify safe, immunogenic, and protective med
ical countermeasures for alphavirus outbreaks including vac
cines and antibodies.

Vaccination Strategies to Prevent Alphavirus Infection or Disease

Numerous approaches to identify vaccine candidates have been 
tried or are currently being tested in ongoing clinical trials 
(Table 1). Strategies used include the use of live-attenuated vi
ruses, generation of chimeric viruses, and formalin inactivation 
of virus particles [44–50]. These vaccine candidates have been 
shown in some experiments and trials to be immunogenic and 
protective for several alphaviruses [48, 51–54]. However, some 
vaccine candidates are reactogenic, require frequent boosting, 
or their immunogenicity is disrupted by the inactivation meth
ods used [44, 47, 55–57].

Another candidate vaccination approach involves using 
virus-like particles (VLPs), which are noninfectious molecules 
that structurally resemble intact virions [58, 59]. Monovalent or 
trivalent VLP vaccines elicited immunogenic responses in non
human primates for protection and were safe and tolerable in 
Phase I clinical trials [59–61]. Yet another strategy is to use de
oxyribonucleic acid (DNA)- or messenger RNA (mRNA)- 
based antigen delivery methods, which may enhance the speed 
of candidate vaccine generation. The DNA and mRNA vaccines 
encoding some alphavirus structural proteins are immunogen
ic in animals [62–64].

Antibody-Mediated Mechanisms of Action Against Alphaviruses

In addition to vaccines, antibodies (Abs) provide an alternate 
route to medical countermeasures. Furthermore, understand
ing the Ab response can help inform rational vaccine design. 
Antibody responses are important in the protection, treatment, 
clearance, and maintenance of alphaviruses [65–68]. Passive 
transfer studies of immune animal serum or purified IgG 
from plasma samples of immune individuals highlight the abil
ity of Abs to protect mice against alphavirus infection [69, 70]. 
In addition, mRNA vectors discussed above also can express 
Abs in recipients. Expression of a potent CHIKV monoclonal 
Ab (mAb) as a lipid-encapsulated mRNA protected against 
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infection in mice, expressed well in nonhuman primates [71], 
and was safe, tolerable, and expressed in Phase I clinical 
trials [72].

Neutralizing E2-Specific Antibody Response
The E2 glycoprotein is a target for many neutralizing anti- 
alphavirus mAbs. In general, neutralization activity corresponds 
with protection [73], and virus-specific humoral responses from 
immunized mice or immune individuals are well characterized 
for several alphaviruses. Numerous Ab-binding epitopes have 
been identified within the E2 glycoprotein [74, 75], and cross- 
neutralizing E2-specific mAbs have been identified against the 
arthritogenic alphaviruses [76–78]. In contrast, a cross- 
neutralizing E2-specific mAb against the encephalitic alphavi
ruses has yet to be identified [79, 80]. Potently neutralizing 
E2-targeting Abs can interfere with different steps in the virus 
replication cycle, including virus entry, viral egress, and 
cell-to-cell spread. Blockade of virus entry can occur through 
multiple mechanisms, including virus aggregation [81], direct 
blockade of attachment to host receptors (such as Mxra8 or 
LDLRAD3), or indirect blockade through steric hindrance 
[8, 9, 82]. After attachment, mAbs can inhibit viral entry by 
blocking structural transitions [83] or inhibit viral fusion by 
structurally stabilizing the E2 glycoprotein [78, 84–86].

Protective E1-Specific Antibody Response
The E1 glycoprotein is another target for protective anti-alphavirus 
mAbs [73, 87–91]. In contrast to E2-specific mAbs, E1-specific 
mAbs are generally nonneutralizing or weakly neutralize virus in 
standard focus-forming assays [82, 90, 91]. This may be due to ob
struction by the E2 glycoprotein, because exposure of cryptic E1 
epitopes requires presentation of different conformational states 
[92–94] or pretreatment with altered conditions [88, 95–99]. 
Weakly neutralizing antibodies (NAbs) target Domain III, likely 
due to its greater exposure on mature virions [82, 100].

Several mAbs recognize the highly conserved fusion loop re
gion and exhibit broad binding to alphaviruses. The ability of 
nonneutralizing mAbs to inhibit virus egress corresponds 
with protective in vivo efficacy against homologous and heter
ologous alphaviruses [90, 91]. During the diagnostic assess
ment of infection, cross-protective anti-alphavirus mAbs 
could serve as pan-alphavirus medical countermeasure candi
dates to limit viral replication and increase the therapeutic win
dow for potent virus-specific treatments. Understanding the 
conserved epitopes recognized by these Abs can also aid in ra
tional, structure-based, pan-alphavirus vaccine design.

Fc-Mediated Antibody Functions
Because protective capability does not necessarily correlate 
with neutralization potency of anti-alphavirus mAbs, 
Fc-mediated effector functions likely play a substantial role in 
protection against alphaviruses [66, 73, 88]. In mouse models, 

optimal clearance of infection and reduction of joint swelling 
for CHIKV- or MAYV-induced musculoskeletal disease re
quired Fc-FcγR interactions, primarily on monocytes [77, 
101]. In some cases, reduced efficacy in FcγR−/− mice was ob
served, and protection depended on mAb isotype and N297 
glycosylation, which modulates effector function [77, 91]. 
Further assessment is needed to identify non-NAb-based med
ical countermeasures that are efficacious against alphaviruses.

PROTOTYPE PATHOGENS

Considerations for prototype pathogen assignments included 
importance as human pathogens, representative pathogenesis 
patterns, the availability of animal models that recapitulate hu
man disease, current knowledge of replication and pathogenesis, 
and the status of countermeasure development. Chikungunya vi
rus is by far the most important cause of human disease, with re
cent outbreaks spreading to near-pandemic proportions due to 
its propensity for human amplification and peridomestic vector 
transmission [3]. It is also one of the more heavily studied alpha
viruses, has good murine and excellent NHP models, and has 
vaccines in late stages of clinical trials [102, 103] as well as prom
ising monoclonal antibody therapies [72, 101]. Among the other 
arthritogenic alphaviruses, RRV is also well studied with some 
vaccine development reported but has not shown the potential 
for widespread epidemics beyond Australia and some Oceanic 
islands.

The second prototype selected was VEEV, for many of the 
same reasons as CHIKV. It is also relatively well studied for 
structure and replication, and it is well understood epidemiolog
ically with extensive human disease and some potential for wide
spread outbreaks (equine-amplified to date, but with potential 
for human amplification), a long history of vaccine development, 
but with limited clinical trials due in part to an underappreciated 
disease burden [104], and some therapeutic monoclonal anti
body development [91]. Compared to the arthritogenic alphavi
ruses, EEEV and WEEV are more virulent but cause less human 
disease and seem to have less pandemic potential, due to their 
lack of equine or human amplification [2]. They also have limit
ed vaccine or therapeutic antibody development.

There are important disadvantages in selecting CHIKV and 
VEEV as prototypes, most obviously their recommended bio
safety level 3 (BSL3) containment. However, reliable methods 
for alphavirus attenuation including chimerization [105–107], 
genomic deletions [108], and rearrangements that alter levels 
of gene expression [109] have facilitated generation of viruses 
that are structurally identical to these and other BSL3 alphavi
ruses [107] but that can be safely handled at BSL2.

SUMMARY AND FUTURE DIRECTIONS

Preparing for an alphaviral pandemic requires a focus on 2 pri
mary pathogen types: arthritogenic and encephalitic. Although 

Prototype Pathogen Plan for Alphaviruses • JID 2023:228 (Suppl 6) • S421



the developmental algorithm is similar for both, there are spe
cific elements that must be considered for each. Key among 
these elements are the need for appropriate models, an under
standing of the various routes of pathogenesis and host im
mune response, and data regarding the modes of action for 
the wide array of vaccines and therapeutics.

Critical to future development of any countermeasures is the 
need for better and appropriate testing models. For alphaviruses, 
although many distinct in vitro and animal models exist, they are 
not well standardized and must be refined to incorporate vari
ables such as age, microbiomes, and long-term sequelae or 
chronic conditions that are not currently considered. Cell culture 
models are extremely limited in that they do not simulate entire 
systems with complex interactions such as synovial joint tissues 
or brain parenchyma, minimizing the understanding of specific 
cell types involved in infection. In addition, cell culture models of 
neuroinvasion do not provide information on delivery across the 
blood-brain barrier. Thus, until appropriate cell models can be 
developed, relevant animal systems are critical.

Although animal models do give the most complete profile of 
pathogenesis, there remains a general lack of knowledge re
garding both early infection events and the chronic conditions 
that exist for many alphaviruses. Receptors are not typically 
identified, but there is hope that CRISPR technology could fa
cilitate this process. In addition, for the encephalitic alphavi
ruses, particularly VEEV, animal models also need to address 
the immunodeficiency that follows infection. Finally, because 
most alphavirus countermeasure development has focused on 
the bioweapon property of being infectious by aerosol, there 
is a strong need for re-evaluation of models to focus on natural 
route of infection (via mosquito bite).

A final challenge that limits extensive research on the alphavirus 
infection processes is that many key human pathogens are Risk 
Group 3 (RG3) and require BSL3 laboratory practices. Because 
these facilities are not always readily available and due to the 
risk of working with these agents, there are concerns over how 
to protect laboratorians performing the critical research.

Although several obstacles do exist to for development of 
prototype alphavirus countermeasures, much work has already 
provided a wealth of valuable information that will be critical. 
First, relatively consistent correlates of protection (NAbs) have 
been identified for several alphaviruses, which could accelerate 
vaccine development across the genera. Second, and most im
portantly, a range of vaccine platforms exist or are currently 
under development that could be rapidly applied to different al
phaviruses. This baseline knowledge provides the foundation to 
develop the alphavirus prototype pathogen profile for increased 
preparedness to respond to this group of viruses.
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