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Various linear and nonlinear vibrational and electronic spectros-
copy experiments in liquids are usually analyzed within the sec-
ond-cumulant approximation, and therefore the fundamental
quantity of interest is the equilibrium time-correlation function of
the fluctuating transition frequency. In the usual approach the
‘‘bath’’ variables responsible for the fluctuating frequency are
treated classically, leading to a classical time-correlation function.
Alternatively, sometimes a quantum correction appropriate for
relatively high temperatures is included, which adds an imaginary
part to the classical time-correlation function. This approach, al-
though appealing, does not satisfy detailed balance. One can
consider a similar correction, but where detailed balance is satis-
fied, by using the harmonic quantum correction factor. In this
article, we compare these approaches for a model system and
two realistic examples. Our conclusion is that for linear spectros-
copy the classical result is usually adequate, whereas for nonlin-
ear spectroscopy it can be more important to include quantum
corrections.

dynamics � liquids

Spectroscopy is a powerful experimental tool for obtaining
information about molecular dynamics in condensed phases,

since the frequency at which a molecule absorbs light (be it an
electronic or vibrational transition) is perturbed by its local
environment, and as this environment changes in time the
frequency of the molecule fluctuates accordingly. In the limit
that these fluctuations are relatively fast (the homogeneous
limit), then one can extract some information about their
dynamics by simply measuring the width of the absorption line
shape (1, 2). On the other hand, when these frequency fluctu-
ations occur slowly (the inhomogeneous limit), then the line
shape contains no dynamical information, and in fact is simply
proportional to the distribution of frequencies (2). In this limit
experiments such as the three-pulse echo are particularly useful,
as they allow one to recover dynamical information absent in the
line shape (3).

Even within the two-level approximation (the molecule is
considered to have only a ground state and a single vibrational
or electronic excited state), the interpretation of experiments
such as the three-pulse echo is difficult. The theoretical expres-
sion that describes the echo response is quite complicated and
involves averages of exponentials of integrals of the fluctuating
frequency operator (3, 4). To make progress, one typically uses
a truncated cumulant expansion (3–5). Although this approxi-
mation is uncontrolled [which is sometimes accurate and some-
times not (6–9)], it allows one to express the echo response as a
function only of the equilibrium frequency time-correlation
function (FTCF). One of the main goals of echo experiments,
then, is to extract this FTCF.

In general, the FTCF should be calculated quantum mechan-
ically, and as such it is, of course, complex (10). To simplify
matters, one often assumes that the system is classical enough
that the real part of the quantum FTCF can be replaced by the

classical FTCF, and the imaginary part can simply be neglected
(8, 11–21). Alternatively, one can include the imaginary part of
the quantum FTCF approximately (3, 4, 22–26) since in the
high-temperature limit it is proportional to the time derivative of
the classical FTCF (27, 28). The important point is that in either
case the echo response depends on a single real function of time.
One can assume a functional form with several adjustable
parameters for this classical FTCF, and then obtain the param-
eters by fitting the measured spectroscopic observables (4, 12, 14,
18–21, 24, 26).

If the system is sufficiently classical (that is, the temperature
is high enough compared with the relevant characteristic fre-
quencies), then either neglecting the imaginary part of the
quantum FTCF, or using its high-temperature approximation,
will be adequate. On the other hand, if the system is not
sufficiently classical, then these approximations may be quite
inaccurate. Recently, several approaches to calculating quantum
time-correlation functions have appeared in the literature and
for certain problems and applications are very promising (29–
32). In general, however, it is still not possible to perform
accurate calculations of general quantum time-correlation func-
tions, especially those involving operators that are nonlinear in
coordinates or momenta. Nevertheless, simple (but ad hoc)
prescriptions for obtaining approximate quantum time-
correlation functions from their classical counterparts do exist
and involve what are known as quantum correction factors
(QCFs) (10, 28, 33–38). These QCFs are somewhat similar in
spirit to the high-temperature approximation discussed above,
but would appear to be superior in that they obey detailed
balance (whereas the high-temperature approximation obeys
detailed balance only to first order in –h).

Many different QCFs have appeared in the literature (10, 28,
33–37), and these different QCFs can lead to quite different
approximations for quantum time-correlation functions. These
differences become especially apparent in the frequency domain
at high frequency (28, 39). By comparing to exact model
problems (28) or approximate but presumably quite accurate
semiclassical calculations (40) one can obtain some intuition and
experience about which QCFs are most appropriate for a given
type of problem. For example, for the problem of vibrational
energy relaxation, where the rate constant is proportional to the
Fourier transform of a certain quantum time-correlation func-
tion, for large vibrational energy gaps between initial and final
states we have found the harmonic-Schofield QCF to be useful
(28, 34). For vibration–vibration energy transfer in liquids we
have suggested some QCFs that involve products of the har-
monic and harmonic-Schofield forms (34). For certain problems
in the time domain, such as the velocity time-correlation function
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for a neat fluid, the harmonic QCF can be quite accurate
(30, 40).

So the question remains, for vibrational and electronic spec-
troscopy in condensed phases, and especially in liquids, are the
usual classical or high-temperature approximations to the
FTCFs adequate, or is the situation typically quantal enough so
that one should instead pursue other approaches such as those
involving QCFs? To get a rough answer to this question, consider
that from both simulation and experiment it appears that at room
temperature aqueous solution produces the fastest FTCF decays,
which are on the order of 40 fs (6, 26, 41–43). Thus, the
characteristic (angular) frequency �c is the inverse of this time
or 2.5 � 1013 s�1, which is 133 cm�1, or somewhat less than kT
at room temperature (205 cm�1). Since in this instance –h�c � kT,
it suggests that quantum effects, although possibly significant,
will not be enormous.

The primary goal of this article is to answer the above question
more quantitatively; that is, to determine whether and when it is
necessary to include quantum effects related to the FTCF in the
calculation of line shapes and the three-pulse echo response. We
are aware of only one calculation along these lines in the
literature, by Kwac and Cho (44), in which the amide I line shape
for N-methylacetamide in water was calculated with and without
the standard and harmonic QCFs. We will begin by considering
a simple analytic model for the classical FTCF and calculate the
line shape and integrated three-pulse echo peak shift (3PEPS) in
the classical limit, the high-temperature approximation, and
using the harmonic QCF, for different values of the two relevant
dimensionless parameters (see below). The results allow us to
understand, in a quite general sense, when quantum effects are
important. Even though the harmonic QCF represents an un-
controlled approximation, and therefore the conclusions we
reach based on this approximation cannot be quantitatively
accurate, we believe they are still qualitatively useful.

We will then consider two specific examples: the vibrational
FTCF for the OH stretch of HOD in liquid D2O, which comes
from simulation (42), and the electronic FTCF for coumarin 343
in water from time-resolved Stokes shift experiments (43). In
both cases we find that quantum effects for the line shape are
really very modest. For the integrated 3PEPS, we find that for
the vibrational problem quantum effects again are quite small,
whereas for the electronic case they are more significant.

Theoretical Preliminaries
We begin by considering a two-level electronic or vibrational
problem, with Hamiltonian

H � H0�0��0� � H1�1��1�. [1]

�0� and �1� are the ground state and relevant excited state,
respectively, and H0 and H1 are the associated quantum-
mechanical Hamiltonians for all other (‘‘bath’’) degrees of
freedom. Within the condon (the transition dipole operator is
independent of these bath coordinates), semiclassical, and cu-
mulant approximations, the absorption line shape is given by
(1, 3, 45–47)
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�
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dtei�������te�g�t�� , [2]
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d��t � ��C���, [3]

and C(t) is the quantum FTCF C(t) � ���(t)��(0)�. Since C(t)
is complex, so is g(t).

In general, the three-pulse echo response for a two-level
system is given by a sum of four terms, commonly denoted
Ri(t3, t2, t1) for i 	 1 � 4 (3). In the limit of infinitely short
excitation pulses, only the so-called rephasing terms R2 and R3

contribute (3, 4). Performing the cumulant expansion for each
of these terms, truncating at second order, and adding, yields
(3, 4)

R�t3, t2, t1� � exp(�g*� t1� � g� t2� � g*� t3� � g*� t1 � t2�

� g� t2 � t3� � g*� t1 � t2 � t3�)

� exp��g*� t1� � g*� t2� � g� t3� � g*� t1 � t2�

� g*� t2 � t3� � g*� t1 � t2 � t3�� . [4]

In this work we will consider one particular echo observable, the
integrated 3PEPS (7, 25, 48, 49). In this experiment one mea-
sures the time-integrated intensity

I�t2, t1� � �
0

�

dt3 �R�t3, t2, t1��2. [5]

The peak shift, t*1(t2), is defined as the value of t1 that maximizes
I(t2, t1) for a particular value of t2.

First, consider the classical limit of the above. In this case the
quantum FTCF is replaced by its classical analogue Cc(t), which
is real, leading to a real line-shape function g(t). Thus, for
example, (unlike in the general quantum-mechanical case) the
line shape is symmetric. Also, in the third-order response
function the two terms in Eq. 4 are identical and real.

One can easily include the effects of quantum mechanics as a
high-temperature correction to this (infinite-temperature) clas-
sical limit (3). One can derive this correction very simply by
considering the symmetry relation between the real and imag-
inary parts of the quantum FTCF (27, 28):

Im�C� t� � tan� �–h
2

d
dt
	Re�C� t� . [6]

At high temperature, the argument of the tangent is small, and
so the function can be expanded in a Taylor series:

Im�C� t� �
�–h
2

d
dt

Re�C� t� � · · · . [7]

Re[C(t)] can then be expanded in powers of –h: the zeroth-order
term gives the classical FTCF Cc(t), and the first correction is of
order –h2 (50). Therefore, to first order in –h we have

C�t� � Cc�t� � i
�–h
2

d
dt

Cc�t� . [8]

In this case, the line-shape function, from the second equality in
Eq. 3, is given by the familiar expression (3)
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g�t� � �
0

t

d� �
0

�

d�
Cc��
� �
i�–h
2 �

0

t

d� �Cc�0� � Cc����.

[9]

Note that the symmetry relation between the real and imaginary
parts of the quantum FTCF in Eq. 6 is very closely related to the
detailed balance property Ĉ(��)	e��h– �Ĉ(�), which must be
satisfied by any quantum time-correlation function (10, 28). In
the above, Ĉ(�) is the Fourier transform of the quantum FTCF:
Ĉ(�) 	 ���

� dt ei�tC(t). Since the high-temperature result of Eq.
8 comes from the first-order (in –h) expansion of Eq. 6, it follows
that this high-temperature expression for the quantum FTCF
satisfies detailed balance only to first order in –h.

In a similar spirit one can consider other useful approxima-
tions, which are also simple to apply, but satisfy detailed balance
exactly (that is, to all orders in –h). These approaches involve
so-called QCFs (10, 28, 33–37). In most cases, the QCF, Q(�),
is defined by Ĉ(�) 	 Q(�)Ĉc(�), where the Fourier transform of
the classical FTCF, Ĉc(�), is defined as above. In other words,
within this simple approach, to obtain the quantum FTCF C(t)
from the classical FTCF Cc(t), one Fourier transforms the latter,
multiplies by the QCF, and then inverse Fourier transforms. By
construction Q(�) is chosen so that Ĉ(�) satisfies detailed
balance. Still, there are many different possible choices for the
QCF. One interesting choice, introduced �40 years ago by
Schofield (51) is Q(�) 	 e�h– �/2. This result follows from the
approximation C(t) 	 Cc(t � i�–h�2), which when expanded to
first order in –h gives precisely Eq. 8. It turns out, however, that
the Schofield QCF does not generally provide an accurate
approximation to quantum time-correlation functions (28). On
the other hand, one that does appear to be generally more useful
(28, 34, 40) is the harmonic QCF, given by (28, 35, 36, 39) Q(�) 	
�–h��(1 � e��h– �). This QCF is exact when the relevant operator
(in this case ��) is a linear combination of harmonic (hence the
name) coordinates. In this situation Im[C(t)] 	 (�–h�2) dCe

(t)�dt
holds exactly (28). Therefore, in the harmonic QCF approach the
imaginary part of the FTCF is the same as in the high-
temperature approximation of Eq. 8. But since the harmonic
QCF approach in general gives Re[C(t)] � Cc(t) (which, of
course, is correct), the harmonic QCF approximation to g(t) is
not the same as the high-temperature approximation in Eq. 9. In
fact, presumably this harmonic QCF leads to a better approxi-
mation, since detailed balance is satisfied exactly.

Results for a Model Classical FTCF
Despite the widespread use of the classical approximation, with
or without the high-temperature correction, we have not found
any discussion in the literature of whether or not these approx-
imations are generally valid. Nor, with the single exception of the
work of Kwac and Cho (44), have we found any attempt to apply
QCFs to this problem. To address these two issues, we first focus
on a simple analytical model for the classical FTCF: Cc(t) 	 �2

sech(�t�2�). This model has the attractive features that it gives
the correct quadratic behavior at short times and decays expo-
nentially at long times. It is characterized by the rms frequency
fluctuation �, and correlation time � [defined by � 	 �0

� dt
Cc(t)�Cc(0)]. Thus, the model FTCF is determined by two
‘‘frequencies,’’ � and 1��. In the classical (infinite-temperature)
limit only these two parameters are relevant, and in fact their
dimensionless ratio �� determines whether the line shape is in
either of the homogeneous (�� �� 1) or inhomogeneous (�� ��
1) limits (2). At finite temperature a third frequency 1�–h� enters
the problem, and thus there are now two relevant dimensionless
ratios. Since the general problem of quantum effects is motivated
by considering the ratio of temperature to the characteristic
frequencies associated with the bath dynamics, a natural choice

for the second dimensionless ratio is therefore �–h�� (rather than
�–h�). For a given ��, then, as �–h�� tends to zero we recover the
classical result.

For the analytic model described above we evaluated both the
line shape and the 3PEPS for a range of values of the two
dimensionless ratios �� and �–h��. The line shape was calculated
from Eq. 2, and the peak shift was calculated from Eqs. 4 and 5.
In both cases in the classical limit g(t) is obtained from the first
term in Eq. 9. In this section our goal is to assess when the
classical limit ceases to be accurate. To this end, since the har-
monic QCF result is presumably more accurate than the high-
temperature approximation, we compare the classical result with
the former. For the harmonic QCF approach g(t) is obtained
from Eq. 3.

For the line shape we first focus on the full width at half
maximum line width, and in particular on deviations between the
classical line width �c, and the harmonic QCF line width �. The
normalized deviation (� � �c)��c is shown in Fig. 1, as a function
of �� and �–h��. The contours show percent deviation. One first
sees that when �–h�� is �1, the deviation is �10% (that is, the
classical approximation is quite good), for any value of ��. One
also sees that as �� gets small, the classical approximation works
well even for larger values of �–h�� (lower temperatures).

Certainly it is to be expected that as �–h�� gets small this
deviation disappears. What is a little surprising is that when �–h��
is as large as 1, the deviation is still �10%. In contrast, consider
a different but related application of the harmonic QCF: the
Fourier transform of the quantum velocity time-correlation
function for neat neon at 30 K (40). In this case, the characteristic
frequency can be determined from the peak in the Fourier
transform of the classical velocity time-correlation function,
which is at �17 cm�1 and gives �–h�� � 0.8. Except for at zero
frequency, where the harmonic QCF approach is constrained to
give the classical answer, for this neon system in general the
deviations between the harmonic QCF and classical results are
a factor of two or more. Thus for the current line-shape problem,
it must be that the line width is dominated by the low-frequency
behavior of Ĉ(�) and hence is similar to the classical result. In
fact, this observation also explains the surprising (at first glance)
result that for small �� there is little deviation between the
harmonic QCF and classical results even when �–h�� � 1. This
agreement occurs because when �� �� 1 one is in the homo-
geneous limit (2), in which case one can take the long-time limit
of Eq. 3, which gives g(t) � t �0

� d� C(�). The imaginary part of

Fig. 1. Contour plot showing the percent deviation for the normalized line
width (� � �c)��c as a function of the two dimensionless ratios, �–h�� and ��.
The Xs mark the estimated locations in this phase diagram of the two systems
discussed in Two Examples.
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the quantum FTCF produces a frequency shift (which does not
affect the line width), whereas the real part gives tĈ(0)�2, which,
since it is the zero-frequency Fourier transform, is the same as
the classical result.

We next consider the line shift. To do so we first set ��� 	 0.
In the classical limit the line shape is symmetric, and so the
maximum occurs at � 	 0. For the harmonic QCF approach the
line shape is in general asymmetric, with a maximum at some
frequency �p. As a measure of the deviation between the
classical and harmonic QCF peak frequencies, we consider the
dimensionless ratio �p��c, which is plotted in Fig. 2. Again, we
find that at higher temperatures (in this case when �–h�� � 0.4),
there is little difference between the classical and harmonic QCF
approaches. And in contrast to the line width, here we see that
for large �� the classical result is accurate even for lower
temperatures. This result is also relatively easy to understand,
since for �� �� 1 (the inhomogeneous limit) (2), one can take
the short-time limit of Eq. 3, which gives g(t) � t2C(0)�2, and
since the initial value of the quantum FTCF is real, there is no
line shift.

Finally, we compare classical and harmonic QCF results for
the integrated 3PEPS. This peak shift is a function of the delay
time t2, and so to quantify the deviations between these two
results we consider

�
0

�

dt2 �t*1�t2� � t*1�t2�c�

�
0

�

dt2 t*1�t2�c

. [10]

The results are shown in Fig. 3. Here again we find that as long
as �–h�� � 0.6 (and also in this case as long as �� is not too much
larger than 1), we find that the classical result is accurate. For
lower temperatures the classical result is a uniformly poor
approximation regardless of the value of ��.

Our general conclusion, then, is that for high enough tem-
peratures such that –h�c�kT � 0.4, 0.6, and 1, for the line shift,
the echo peak shift, and the line width, respectively, the classical
result is adequate.

Two Examples
Armed with these general results, we now consider the application
of these ideas to real systems. There are two questions: (i) For
room-temperature liquids where does one typically fall in the above
2D phase diagrams? (ii) For real systems where the FTCF decays
on multiple time scales, are these general conclusions still valid?

To answer these questions we will consider two examples: the OH
stretch vibrational transition of HOD in liquid D2O and the lowest
singlet-singlet electronic transition of coumarin 343 in water. The
results that we will use for the classical FTCFs come from simu-
lation (42) and time-resolved fluorescence experiments (43), re-
spectively. The FTCFs for both of these systems have a relatively
fast initial decay of �40 fs, which (as discussed in the Introduction)
would lead one to believe that quantum-mechanical effects could
be important, and which is the rationale for choosing these systems.
The HOD�D2O simulation of the SPC�E water model gives � 	
141 cm�1 (42), and considering only the short-time decay with � 	
40 fs, leads to �� � 1. The electronic transition of the coumarin
system has a much larger value of � � 615 cm�1 [which we obtain
from the computer simulation estimate of 1,850 cm�1 for the Stokes
shift (43), �S, and using the linear response result (3, 47) that kT�S
	–h�2]. Again taking � 	 40 fs gives in this case �� � 5. Both systems
are at room temperature, giving a value of �–h�� � 0.6. The values
of �–h�� and �� for these two systems are indicated in the phase
diagrams of Figs. 1–3. From Figs. 1–3 our conclusion is that for
HOD�D2O the classical approximation should be good for the line
width and fair for the line shift and the echo peak shift, whereas for
coumarin the classical approximation should be good for both the
line width and line shift, but show substantial error for the echo
peak shift.

We next consider the HOD�D2O system quantitatively. In Fig.
4 we show the classical FTCF obtained from computer simula-
tion using the SPC�E model (42). Note, of course, that the
classical FTCF has no imaginary part. We also show the real and
imaginary parts of the approximate quantum FTCF obtained by
using the harmonic QCF approach. We see that the real part of
the quantum FTCF is almost identical to the classical result,
whereas the imaginary part is demonstrably nonzero up to �100
fs. Also note that in the high-temperature approximation dis-
cussed above, the real part is given by the classical FTCF,
whereas the imaginary part is identical to that in the harmonic
QCF approximation. Thus in this case one can anticipate that the
high-temperature and harmonic QCF results for the spectro-
scopic observables will be very similar.

Fig. 2. Contour plot showing the percent deviation for the normalized
(peak) line shift �p��c as a function of the two dimensionless ratios, �–h�� and
��. The Xs mark the estimated locations in this phase diagram of the two
systems discussed in Two Examples.

Fig. 3. Contour plot showing the percent deviation for the normalized
integrated 3PEPS (see text) as a function of the two dimensionless ratios, �–h��

and ��. The Xs mark the estimated locations in this phase diagram of the two
systems discussed in Two Examples.
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We next calculated line shapes (data not shown), from the
classical, harmonic QCF, and high-temperature approximations
[for the latter we use Eq. 9 for g(t)]. As anticipated, the harmonic
and high-temperature approximations are nearly identical and
give the same line width as the classical result, but have a small
line shift of �14 cm�1 or �5% of the classical width. We also
performed analogous calculations for the echo peak shift. We
found that the high-temperature approximation agrees well with
the classical result, whereas the harmonic QCF approach is
slightly different (�8% deviation as defined above). Even the
small difference between the high-temperature approximation
and the harmonic QCF result is somewhat surprising in light of
the above.

Looking at Figs. 1–3, we find that these results are more or less
consistent with the predictions of the analytic model. For the
HOD�D2O values of �� and �–h��, the model predicts that the
classical result would make no significant error in the line width,
but a �12% deviation from the harmonic QCF approach for the
line shift and a 10% deviation for the 3PEPS. As the simulation
FTCF for water is more complicated than the simple analytic
function, this qualitative agreement with the above is about as
accurate as one could anticipate.

Next, we turn to the electronic transition of coumarin in water.
In this case the classical FTCT can be represented as a sum of
a Gaussian and two exponential components (43). Comparison
of the classical and harmonic QCF result for the FTCF (data not
shown) indicates that the situation is qualitatively very similar to
that in Fig. 4. Comparing the classical, high-temperature, and
harmonic QCF line shapes (data not shown), we found that these
three results are very similar; the deviation of the classical result
from the harmonic QCF approach for the width is �2%, and the
harmonic QCF line shift is �38 cm�1, which normalized by the
classical width results in a deviation of �3%. In Fig. 5 we show
the corresponding results for the echo peak shift. Here, the
high-temperature and harmonic QCF approaches are similar,

but differ from the classical result by �32%. Once again, the
qualitative predictions of the simple analytical model that the
deviations for both the width and shift are quite small (�4% and
2%, respectively), but that the deviation in the peak shift is
�20%, are borne out by these more detailed calculations.

Conclusion
In this article we have addressed the question of if and when
quantum corrections are necessary in the calculation of linear
and nonlinear vibrational and electronic liquid-state spectros-
copy. Naive frequency- and time-scale estimates suggest that
they will indeed be important. Our conclusions are based on the
use of the harmonic QCF to approximate quantum effects. As
this approximation is uncontrolled it will never have quantitative
accuracy. Nonetheless, given that the harmonic QCF is at least
correct to first order in �–h� (28), it seems likely that our
conclusions about when quantum effects are important will have
general qualitative validity.

Consideration of a simple model problem shows that quantum
effects for real systems should actually be quite modest. This
suggestion is bolstered by detailed calculations on two specific
systems. We find that quantum effects are most important for
nonlinear spectroscopy, such as the integrated 3PEPS. In the
case of strongly inhomogeneously broadened systems like the
electronic spectroscopy of coumarin in water, for example,
quantum effects lead to an �30% correction to the simple
classical result. Much of this correction is captured by the
commonly used high-temperature approximation. However, for
a presumably more accurate approach (and one that at least
obeys detailed balance), we suggest the use of the harmonic
QCF.
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