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A general methodology for calculating the equilibrium binding
constant of a flexible ligand to a protein receptor is formulated on
the basis of potentials of mean force. The overall process is
decomposed into several stages that can be computed separately:
the free ligand in the bulk is first restrained into the conformation
it adopts in the bound state, position, and orientation by applying
biasing potentials, then it is translated into the binding site, where
it is released completely. The conformational restraining potential
is based on the root-mean-square deviation of the peptide coor-
dinates relative to its average conformation in the bound complex.
Free energy contributions from each stage are calculated by means
of free energy perturbation potential of mean force techniques by
using appropriate order parameters. The present approach avoids
the need to decouple the ligand from its surrounding (bulk solvent
and receptor protein) as is traditionally performed in the double-
decoupling scheme. It is believed that the present formulation will
be particularly useful when the solvation free energy of the ligand
is very large. As an application, the equilibrium binding constant of
the phosphotyrosine peptide pYEEI to the Src homology 2 domain
of human Lck has been calculated. The results are in good agree-
ment with experimental values.

free energy perturbation � molecular dynamics � Src Homology 2 domain

A problem of central importance in computational biology is the
quantitative determination of absolute binding affinities in

diverse and complex systems. Predicting the binding free energy of
ligands to macromolecules can have great practical values in
identifying novel molecules that can bind to target receptors and act
as therapeutic drugs (1). Furthermore, molecular recognition phe-
nomena involving various kinds of binding modules linked to cell
surface receptors play an essential role in a wide variety of
intracellular signal transduction pathways (2–5).

Approaches at different levels of complexity and sophistication
have been used to calculate binding free energies in complex
biomolecular systems. Screening of large molecular databases of
compounds to identify potential lead drug molecules typically relies
on very simplified scoring schemes to achieve the needed efficiency
(6). The binding free energy may be estimated on the basis of a
continuum solvent approximation assuming quadratic fluctuations
around a unique configuration (7, 8). The Molecular Mechanics�
Poisson–Boltzmann (PB) and Surface Area (MM�PB-SA) method
is a popular approach that relies on a mixed scheme combining
configurations sampled from molecular dynamics (MD) simula-
tions with explicit solvent, together with free energy estimators
based on an implicit continuum solvent model (9). MM�PB-SA
shares some similarities with the linear interaction energy method,
which also uses averages calculated from explicit solvent simula-
tions within a linear response framework (10). Despite their use-
fulness, such approximate schemes can be limited, and how to
improve the results is unclear because they do not offer a rigorous
route to compute the equilibrium binding constant.

In principle, treatments based on MD free energy perturbation
(FEP) simulations with explicit solvent molecules offer the most
powerful and promising approach to estimate the binding free
energies of ligands to macromolecules (11). Nonetheless, although
previous studies have provided many of the fundamental elements

necessary for the calculation of binding free energy by means of MD
(12–17), the computations so far have been limited mostly to fairly
small and rigid ligands [e.g., rare gas atom (12, 15), water (14),
camphor (13), benzene (15), and a single amino acid (16)], and
some aspects require further considerations. The challenges that lie
ahead are well illustrated by considering the association of peptide
ligands to Src homology 2 (SH2) domains. SH2 domains are highly
conserved noncatalytic proteins of �100-aa residues, which can
bind phosphotyrosine-containing polypeptide sequences with high
affinity and specificity. They are found in a wide variety of
intracellular signal transduction pathways involving tyrosine kinases
(18–22), and inappropriate cellular signaling caused by malfunc-
tions of SH2-mediated process has been linked to many pathologic
conditions (e.g., cancer, autoimmune diseases, asthma, allergies,
etc.). SH2 domains are highly selective toward the sequence phos-
photyrosine-Glu-Glu-Ile (pYEEI) (23), with dissociation constants
ranging from micromolar to nanomolar ranges (19, 24; for a review,
see ref. 25). These values correspond to an absolute binding free
energy in the range of approximately �8 kcal�mol. The determi-
nants of the phosphopeptide selectivity of SH2 domains have been
characterized previously by using various empirical approaches (22,
26, 27).

Our ability to understand many aspects concerning the specificity
of SH2 domains for phosphotyrosyl peptides of particular se-
quences would benefit from all-atom MD�FEP computations,
although a straightforward application of current approaches ap-
pears to be problematic for a number of reasons. First, the sheer
magnitude of the electrostatics interactions arising from the doubly
charged phosphotyrosine side chain (28) suggests that the standard
FEP technique used to compute absolute binding free energies,
which consists of reversibly decoupling the ligand from its sur-
rounding (12–17), is essentially impractical. Furthermore, addi-
tional difficulties are expected to arise from the significant confor-
mational flexibility of the unbound peptide ligand in solution.
Although such difficulties may at first appear to be merely technical,
the truth is that available methods to compute a binding constant
from simulations with explicit solvent are inadequate or prohibitive.
Clearly, some significant extension to the present computational
methodologies is needed to tackle the more complex situations that
invariably are encountered in biological systems.

Our goal is to address these issues and design an efficient
approach for calculating the binding constant of a flexible ligand to
a protein. Below, the equilibrium binding constant is derived
directly on the basis of configurational ensemble averages. This
derivation, which differs from the traditional arguments based on
chemical potentials and standard states, is particularly advanta-
geous because of its simplicity and clarity. For instance, various
computationally convenient expressions can be obtained readily
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from the fundamental expression for the equilibrium binding
constant. In the present case, the absolute binding free energy is
rigorously expressed as the sum of separate contributions corre-
sponding to a step-by-step process describing the association of the
ligand with the receptor. The formulation relies on potential of
mean force (PMF) techniques designed to avoid the problems
associated with large free energies involved in the standard FEP
decoupling schemes (12–17). As an illustration of the present
treatment, the absolute binding free energy of the phosphotyrosyl
peptide Ace-pYEEI to the SH2 domain of Lck kinase is computed.
The result of the computations is found to be in good agreement
with experimental estimates.

Theoretical Developments
Let us consider a dilute solution in thermodynamic equilibrium
comprising receptor proteins and flexible ligands able to associate
in a bimolecular fashion. Classically, the equilibrium binding con-
stant Keq of the process L � Pº LP is defined as a function of the
concentrations of each species, [LP], [L], and [P], as Keq �
[LP]�[L][P]. Let p0 and p1 be the fraction of protein receptor with
no ligand or one ligand bound, respectively. Two distinct regions of
configurational space can be clearly distinguished without ambigu-
ity: the binding ‘‘site’’ and the ‘‘bulk’’ unbound regions, and [P] �
p0[P]tot and [LP] � p1[P]tot, where [P]tot is the total concentration
of the receptor in the system. By normalization, there can either be
zero or one ligand L bound to the receptor protein P, thus, p0 � p1 �
1. It follows that the binding constant can be expressed as

Keq �
p1�P� tot

�L�p0�P� tot
�

1
�L�

�
p1

p0
. [1]

Assuming that the receptor concentration is sufficiently low, it is
possible to consider a single one with its center of mass held fixed
at the origin surrounded by a solution of ligands without loss of
generality. As will be shown below, the logarithm of the ratio
(p1�p0) is related to the reversible work needed to take one
ligand molecule from the bulk and carry it to the binding site. Eq.
1 can be written as

Keq �
1

�L�
�

N� site d1�bulk d2 · · · �bulk dN�dX e��U

�bulk d1�bulk d2 · · · �bulk dN�dX e��U

�
1

�L�
�

N� site d1�dX e��U

�bulk d1�dX e��U , [2]

where U is the total potential energy of the system, 1�� � kBT is the
Boltzmann constant times temperature, and {1, 2, . . . N, X} are the
degrees of freedom of the N ligand molecules and the remaining
atoms (solvent or protein), respectively. The subscripts site and bulk
in the integrals indicate the relevant spatial regions of the config-
urational space to be included in each integration, representing the
bound and unbound states. In Eq. 2, the ligand molecule ‘‘1’’ has
been chosen arbitrarily to occupy the binding site, and the factor N
accounts for the fact that any ligand could have been chosen.
Because the bulk region is isotropic and homogeneous, we have

Keq �
1

�L�
�

N� site d1�dX e��U

Vbulk�bulk d1��r1 � r*1	�dX e��U , [3]

where r1 is the position of the center of mass of ligand 1 and r*1 is
some arbitrary (fixed) location in the bulk region, far away from the
receptor. [The integrals over the (N � 1) remaining ligands have
been omitted for the sake of simplicity, assuming low concentration
and absence of ligand-ligand interactions.] Because [L] � N�Vbulk,
the equilibrium binding constant Keq is

Keq �
� site d1�dX e��U

�bulk d1��r1 � r*1	�dX e��U . [4]

The denominator and the numerator of Eq. 4 each represent initial
and final states of the binding process: the ligand bound to the
receptor and the ligand with its center of mass at r*1 in the bulk,
respectively (note that all coordinates are expressed relative to the
center of mass of the receptor).

The fundamental expression Eq. 4 serves as the cornerstone to
develop various computational strategies. In particular, it can be
rewritten as

Keq �
1

8�2�
site

drd� e��W�r,�	, [5]

where W(r, �) is the protein-ligand solvent-averaged PMF as a
function of the relative translation and orientation r� and �

e��W�r,�	 �
�d1�dX��r1 � r	���1 � �	 e��U

�bulk d1�dX��r1 � r	���1 � �	 e��U , [6]

(by definition W3 0 in the bulk). Although the utility of Eq. 5 is
severely limited in all-atom MD simulations with explicit solvent, it
is helpful to clarify the significance of approximations based on
implicit solvent models such as MM�PB-SA (9). Assuming qua-
dratic fluctuations in the bound state, the dominant contribution to
the binding constant may be approximated as

Keq �
1

8� 2 
�
Ve��Wmin, [7]

where Wmin corresponds to the minimum of the PMF in the bound
state, and (
��8�2) and 
V represent the orientational freedom
and translational volume of the bound ligand, respectively (7). In
MM�PB-SA (9), a statistical ensemble of configurations of the
bound ligand is generated from all-atom MD simulations, and Wmin

is estimated from the average value of the interaction free energy
calculated by using an implicit continuum solvent model; the
quantities 
� and 
V are estimated from the root-mean-square
(rms) fluctuations by using quasiharmonic approximation (29, 30).

The design of a computational method relying on FEP simula-
tions with explicit solvent molecules consists of inserting interme-
diate states in Eq. 4 such that each individual contribution can be
easily calculated. Here, the intermediate states are constructed by
introducing various restraining potentials, which are designed to
bias the ligand–protein complex toward the configuration it adopts
in the bound state. It is useful to first establish a local frame of
reference from three centers in each binding partner (Fig. 2), in
which the position of the center of mass of the ligand relative to the
receptor r1 can be specified by (r1, �1, 	1) in spherical coordinates,
and its orientation can be specified from the three Euler angles (�1,
�1, 1). To restrain the ligand orientation as in the bound complex,
we introduce the potential uo(�1, �1, 1). We also introduce the
potential ua(�1, 	1), designed to restrain the ligand position along
a specific axis as in the bound complex. Lastly, we introduce the
potential uc, designed to restrain the conformation of the ligand
around the average conformation that it adopts when it is bound to
the receptor. Although other choices are possible, a simple poten-
tial can be constructed on the basis of 
, the rms deviation (rmsd)
of the ligand relative to its average conformation. With these
definitions, the equilibrium binding constant Keq in Eq. 4 can be
written as

Keq �
� site d1�dX e��U

� site d1�dX e���U�uc� �
� site d1�dX e���U�uc�

� site d1�dX e���U�uc�uo�

�
� site d1�dX e���U�uc�uo�

� site d1�dX e���U�uc�uo�ua�
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�
� site d1�dX e���U�uc�uo�ua�

�bulk d1��r1 � r*1	�dX e���U�uc�uo�

�
�bulk d1��r1 � r*1	�dX e���U�uc�uo�

�bulk d1��r1 � r*1	�dX e���U�uc�

�
�bulk d1��r1 � r*1	�dX e���U�uc�

�bulk d1��r1 � r*1	�dX e��U . [8]

Most of the terms in Eq. 8 are dimensionless ratios of configura-
tional integrals corresponding to free energy differences that can be
calculated from a standard application of the FEP simulation
technique,

e��Gc
site

�
� site d1�dX e���U�uc�

� site d1�dX e��U � �e��uc� �site,U	 [9a]

e��Go
site

�
� site d1�dX e���U�uc�uo�

� site d1�dX e���U�uc� � �e��uo� �site,U�uc	

[9b]

e��Ga
site

�
� site d1�dX e���U�uc�uo�ua�

� site d1�dX e���U�uc�uo	 � �e��ua� �site,U�uc�uo	

[9c]

e��Go
bulk

�
�bulk d1��r1 � r*1	�dX e���U�uc�uo�

�bulk d1��r1 � r*1	�dX e���U�uc�

� �e��uo� �bulk,U�uc	
[9d]

e��Gc
bulk

�
�bulk d1��r1 � r*1	�dX e���U�uc�

�bulk d1��r1 � r*1	�dX e��U � �e��uc� �bulk,U	.

[9e]

One may note that the delta function involving r*1, when it appears
both in the numerator and denominator, does not affect the
calculated free energies in the bulk region because it is invariant to
translation. The free energy Go

bulk in Eq. 9d can be calculated
directly, as an angular integral, because the bulk is isotropic.
However, the fourth term in Eq. 8, which involves a ratio of
configurational integrals with the bound ligand (numerator) and
the ligand held with its center of mass at r*1 in the bulk by a delta
function, requires special attention because it does not correspond
to a free energy difference like the other terms. It can be reex-
pressed as (see Supporting Text, which is published as supporting
information on the PNAS web site)

�site d1�dX e���U�uc�uo�ua�

�bulk d1��r1 � r*1	�dX e���U�uc�uo� � S*I*, [10]

where S* is an integral over the angles �1 and 	1,

S* � �r*1	2�
0

�

sin��1	d�1�
0

2�

d	1e��ua��1,	1	, [11]

and I* is a one-dimensional (1D) integral over r1

I* � �
site

dr1e���W�r1	�W�r*1	�, [12]

defined in terms of the PMF W(r1) calculated in the presence of the
configurational and orientational restraints uc, uo, and ua (see Eq.

3 in Supporting Text). It follows that the binding constant can be
expressed as

Keq � S*I*e���Gc
bulk�Go

bulk�Ga
site�Go

site�Gc
site�. [13]

By definition, Keq has the units of volume (e.g., Å3). Bimolecular
equilibrium binding constants are normally expressed in inverse
moles per liter, and it is customary to define an absolute binding
free energy Gbind � �kBT ln[KeqC°] by assuming a standard state
concentration C° of 1 mol�liter (� 1�1,661 Å3).

Computational Methods
The crystallographic structure of the AcpYEEI peptide in complex
with the human p56lck SH2 domain from ref. 21. was used as the
initial structure for the bound state (Fig. 1). The phosphotyrosine
was assumed to be doubly charged as determined experimentally
(28). The complex was solvated and equilibrated for 0.7 ns. The
resulting structure was used for the PMF calculations and as the
reference conformation for the rmsd restraint of the ligand. All MD
simulations were generated by using the CHARMM program (31).
The PARAM27 force field (32) was used with the TIP3P water
potential (33). The trajectories were generated with periodic
boundary conditions in the isobaric-isothermal ensemble at con-
stant pressure of 1 atm (1 atm � 101.3 kPa) and temperature of 300
K. Electrostatic interactions were treated with a particle-mesh
Ewald method (34); a grid with roughly one point per Å was used
for all systems. Potassium and chloride ions were added both to
neutralize the overall systems and simulate an aqueous salt solution
at 150 mM.

The coordinate system for specifying the overall relative position
and orientation of the ligand with respect to the protein was
constructed by choosing three groups of atoms within the protein
and in the ligand (see Fig. 2). The three centers, P1, P2, and P3, for
the SH2 domain were given by the center of mass of (H208),
(D171), and (I183, L202, L205, L165), respectively. The three
centers, L1, L2, and L3, for the peptide were given by the center of
mass of (pY1, E2, E3, I4), (pY), and (I4), respectively. The spherical
coordinate system to establish the position of the ligand relative to
the protein comprises, the P3–L1 distance r1, the P2–P1–L1 angle
�1, and the P3–P2–P1–L1 dihedral angle 	1. The Euler angles
needed to define the orientation of the ligand relative to the protein
are the P3–L1–L2 angle �1, the P2–P1–L1–L2 dihedral angle �1,
and the P1–L1–L2–L3 dihedral angle 1.

Fig. 1. Crystallographic structure of the p56lck SH2 domain in complex with
a pYEEI peptide (21).
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The primary tools for the calculation of all of the components in
Eq. 13 are FEP simulations (11, 35), umbrella sampling simulations
(36), and the weighted histogram analysis method for unbiasing the
data from multiple simulations (37–39). Harmonic biasing poten-
tials used are the conformational restraint uc, the orientational
restraint uo, and the axis restraint ua. The conformation of the
peptide was restrained by using the potential uc(
) � kc(
[1;1ref])2,
where 
 is the rmsd of the ligand relative to its average conformation
in the bound state 1ref, which is used as a reference. A force constant
of kc � 1.192 kcal�mol�Å2 was used. The orientation of the ligand
peptide was restrained by using the harmonic potential uo(�1, �1,
1) � ko[(�1 � �1

ref)2 � (�1 � �1
ref)2 � (1 � 1

ref)2], where (�1
ref,

�1
ref, 1

ref) corresponds to the average orientation of the bound
ligand. The ligand peptide also was restrained to lie along the 1D
axis r1 by using the harmonic potential ua(�1, 	1) � ka[(�1 � �1

ref)2

� (	1 � 	1
ref)2], where (	1

ref, �1
ref) corresponds to the average values

for the bound ligand. The force constants were ko � ka � 100
kcal�mol per rad2.

The PMF along the 1D axis r1, W(r1), was calculated by using
umbrella sampling simulations. The system was solvated by using a
preequilibrated orthorhombic box of water molecules (approximate
dimension of 76 � 56 � 56 Å) followed by 200 ps of equilibration
before collecting statistics of the distance r1. Umbrella sampling
window configurations then were generated in the presence of the
biasing radial potential ur � kr(r1 � r�1)2; 28 windows were simulated
with interwindow spacing of 1 Å, and 10 additional windows
separated by 0.5 Å for the short distances where the PMF was seen
to vary most. Harmonic window potentials kr(r1 � r1

(i))2 were used
with force constant values of 0.5 and 5 kcal�mol�Å2. The total
umbrella sampling simulation is slightly longer than 3 ns. The
integral in Eq. 10 was calculated numerically by using r*1 � 40 Å as
a reference.

The free energy Gc
bulk, corresponding to the restriction on the

conformation of the ligand free in solution, was obtained by means
of a direct integration of the Boltzmann factor after calculating the
PMF wc

bulk(
) as a function of 
, the rmsd relative to the reference
conformation 1ref,

e��Gc
site

�
�d
e���wc

bulk�
	�uc�
	�

�d
e��wc
site�
	

. [14]

A similar expression was used for Gc
site with a PMF wsite(
).

Harmonic window potentials, kc(
 � 
(i))2, with a force constant kc
� 1.0 kcal�mol�Å2 were used. The PMF in the bulk was calculated

from 20 umbrella sampling simulations separated by 0.5 Å, for a
total of 2 ns; a cubic system with 897 water molecules (30 � 30 �
30 Å) was used. The PMF in the bound state was calculated from
20 umbrella-sampling simulations separated by 0.2 Å, for a total of
0.8 ns; a cubic system with 5,490 water molecules (56 � 56 � 56 Å)
was used.

The free energy terms Go
site and Ga

site, corresponding to the
orientational and axial restriction in the binding site, respectively,
were calculated from Eqs. 9b and 9c by using FEP with 10
intermediate values of the thermodynamic coupling parameter �
between 0 and 1, for a total of 0.5 ns. A cubic system with 5,490
water molecules (56 � 56 � 56 Å) was used. The free energy term
Go

bulk was calculated from Eq. 9d by direct numerical integration
over the three Euler angles. The surface element S* was calculated
by direct numerical integrations of Eq. 11. The electrostatic con-
tribution to the solvation free energy of the peptide ligand was
calculated by using FEP with 10 intermediate values of the ther-
modynamic coupling parameter � between 0 and 1, for a total of 1
ns. The peptide was solvated by using the Spherical Solvent
Boundary Potential (SSBP) with 421 water molecules (40).

For the MM�PB-SA approximation, the value of Wmin in Eq. 7
is approximated by the average net interaction free energy between
the protein and ligand 
GLP � GLP � GL � GP � 
ELP, where GLP,
GP, and GL are the total electrostatic (PB) solvation free energies
of the bound complex, isolated protein, and isolated ligand, respec-
tively, and 
ELP is the direct (bare) ligand–protein electrostatic
interaction energy. Each energy term was obtained by averaging
�40 equilibrium configurations extracted from a MD trajectory of
the bound complex. The finite-difference PB calculations were
performed with a grid of 0.4 Å by using the PBEQ module of the
CHARMM program (31) with the optimized atomic Born radii (41).
The dielectric constants of the solvent and protein were 80 and 1,
respectively. The salt concentration was taken as 0.15 mM. The
binding free energy then was estimated as Gbind � �kBT ln[
��
8�2] � kBT ln[C°
V] � 
GLP, where 
� and 
V are the typical
Euler angle and volume of the orientational and translational
fluctuations of the ligand in the bound complex.

Results and Discussion
Table 1 summarizes the calculated values of the various contribu-
tions to the absolute binding free energy. In Table 2, the calculated
binding free energy Gbind is compared with experimental values
taken from refs. 24 and 42. It is observed that the result of the
calculation is within �1 kcal�mol from experimental estimates for
closely related sequences (there may be some uncertainty about the
experimental value for the AcpYEEI peptide, which was estimated
on the basis of a IC50). Given the complexity of the system and the
magnitude of the molecular interactions involved, such a good
agreement is very satisfying. The dominant contribution to the error
in the overall binding free energy arises from the PMF involved in
the factor I* given by Eq. 12; all other errors are correspondingly
much less important. The error on the radial PMF was estimated by
using different fractions of the overall time-series data collected

Fig. 2. Schematic representation of the local reference frame used to define
the position and orientation of the ligand relative to the receptor protein and
construct the restraining potentials. The spherical coordinate system estab-
lishing the position of the ligand relative to the protein are the P3–L1 distance
r1, the P2–P1–L1 angle �1, and the P3–P2–P1–L1 dihedral angle 	1. The Euler
angles needed to define the orientation of the ligand relative to the protein
are the P3–L1–L2 angle �1, the P2–P1–L1–L2 dihedral angle �1, and the
P1–L1–L2–L3 dihedral angle �1.

Table 1. Computation of the absolute binding free energy

Component Value

Gc
bulk 3.70 kcal�mol

Gc
site 1.43 kcal�mol

Go
bulk 5.35 kcal�mol

Go
site 0.04 kcal�mol

Ga
site 0.40 kcal�mol

S* 22.17 Å2

I* 3.12 � 1013 Å
Keq 4.13 � 109 Å3

Keq 2.49 � 106 M�1

Kd 0.40 M
Gbind �8.8 kcal�mol
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over the course of umbrella sampling simulations (4 � 1�4 of the
total). This estimate suggests that the error on the binding free
energy is on the order of 2–3 kcal�mol (see also Fig. 5, which is
published as supporting information on the PNAS web site). For the
sake of comparison, the binding free energy also was calculated
according to the MM�PB-SA scheme (9). In this approximation, an
ensemble of representative configurations of the bound protein–
ligand complex is generated for which the Poisson–Boltzmann
continuum electrostatic calculations are performed to obtain the
electrostatic free energies of the protein–ligand complex, protein,
and ligand only. The overall binding free energy obtained from
MM�PBSA is approximately �80 kcal�mol (see Table 3, which is
published as supporting information on the PNAS web site) nearly
an order of magnitude larger compared with both the experimental
values and the result from the free energy simulations with explicit
solvent (Table 2). Applications of MM�PB-SA often ignore the
translational�orientational factor in Eq. 7 and consider exclusively
the ligand–protein interaction free energy, although this treatment
is incorrect (see refs. 7 and 29 for discussions). Here, those factors
were estimated from the rms fluctuations of the Euler angles and
the center of mass of the peptide in the bound state MD trajectories
in the harmonic approximation as 
� � 0.045 rad, and 
V � 5.35
Å3, yielding an orientational free energy contribution of �kBT
ln[
��8�2] of 4.5 kcal�mol, and a translational free energy con-
tribution of �kBT ln[C°
V] of 3.4 kcal�mol, for a total of 7.9
kcal�mol. Clearly, the large inaccuracy arises from the continuum
solvent approximation used to compute the interaction free energy
and not from those smaller contributions.

One previously undescribed aspect of the present formulation is
the introduction of the conformational restraint uc based on the
rmsd relative to a reference structure (here the average conforma-
tion of the bound ligand). Fig. 3 shows the PMF calculated both in
the binding site and in the bulk. Together, these two PMFs help
quantify the free energy ‘‘cost’’ arising from the loss of conforma-
tional freedom of the ligand when it must adopt a specific confor-
mation in the binding site. Whereas a single specific average
conformation of the peptide is strongly favored in the bound state
(Fig. 3A), a wide range of conformational states differing from the
bound conformation is allowed in the bulk (Fig. 3B). The most
frequent conformations of the isolated peptide in solution are �4
Å in rmsd relative to the average bound conformation. A closer
examination reveals that those correspond to a range of widely
different conformations rather than a uniquely identifiable struc-
ture, which is indicative of the significant conformational freedom
of the peptide in solution. One may note the steep rise in both PMFs
at very small rmsd (
 � 1 Å). This rise is related to the impossibility
of quenching all of the thermal fluctuations away from a given
reference structure, which is akin to an effective Jacobian associ-
ated with the rmsd volume element d
 in the multidimensional
configurational space. With the PMF as a function of 
, the free
energies [Gc

bulk and Gc
site] can be calculated by direct integration of

the Boltzmann factor. The ligand conformation is restrained while
it is in the bulk and released once it is in the binding site, yielding
the total free energy cost associated with the loss of conformational
freedom of the flexible peptide, Gc

bulk � Gc
site.

Fig. 4 shows the PMF W(r1) as a function of the distance r1 along
the radial axis. The free energy rises steeply near the immediate
vicinity of the sharp minimum at 12 Å, the stable bound state, and
becomes nearly flat for r1 � 30 Å (continuum electrostatic calcu-
lations based on PB confirms that the interactions between the
peptide and the SH2 domain are essentially screened out at this
distance). The dominant contribution to the overall binding free
energy, on the order of �18 kcal�mol, clearly arises from the PMF
W(r1), corresponding to the interactions gained as the peptide
moves from the bulk solution into the binding pocket. The integral
of the PMF in Eq. 12 is dominated by the contribution from the
immediate vicinity of the free energy minimum near 12 Å. For this
reason, the results are not affected by the precise definition of the
bound state. The strong favorable interaction in W(r1) is counter-
balanced by unfavorable contributions. Regrouping the various
contributions according to their physical significance, one finds that
the overall free energy cost associated with the loss of orientational
freedom upon binding, [Go

bulk � Go
site], is on the order of 5 kcal�mol.

Similarly, the free energy cost associated with the loss of internal
conformational freedom, [Gc

bulk � Gc
site], is �3 kcal�mol. The

magnitude of these unfavorable contributions is significant com-
pared with the value of Gbind. The total cost of the conformational
restriction of the peptide is, in fact, slightly overestimated because
the rmsd restraining potential is not accounting for the existence of
physically equivalent isomers. For example, the Tyr side chain with
its phosphate group could adopt other equivalent rotameric states
(3 and 2, respectively) that are treated as distinct states by the rmsd
restraint. In the bulk, six equivalent rotameric states of the pTyr side
chain can be visited, and the PMF wbulk(
) overestimates the free
energy cost for the reference conformation by kBT ln(6) � 1.07
kcal�mol. In the bound state, these states are not easily sampled
because the side chain is tightly surrounded by the protein, and
there is no correction.

Fig. 3. Calculated PMF w(
) of the ligand conformational degrees of free-
dom as function of the rmsd 
 in the bound (A) and bulk (B) states.

Fig. 4. Calculated PMF W(r1) as a function of the radial distance r1 between
the ligand center of mass relative to the protein.

Table 2. Binding free energy

Peptide ligand Gbind, kcal�mol

AcpYEEIP* �9.5
pYEEIP* �8.2
pYEEI* �7.6
AcpYEEI† �7.1
AcpYEEI‡ �8.8

*Ref. 24.
†Ref. 42 based on IC50.
‡This work.
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In the present calculations, the binding constant was expressed
as a step-by-step reversible process, and the ligand-receptor PMF
reporting the reversible work to translate the ligand from the
bulk solution to the bound state is a central quantity. The
alternative ‘‘double-decoupling’’ scheme (12–17, 43) augmented
by various restraining potentials is particularly advantageous for
computing the binding constant of a ligand bound inside a pocket
located deeply in the interior of a protein because it does not
require any consideration of the pathway leading from the bulk
to the binding site. Nonetheless, this method is nearly impractical
when the absolute solvation free energy of the ligand is very large
because the binding free energy then is computed as the (small)
difference between two very large numbers. In such cases, the
limited statistical precision of the FEP computations becomes a
major hurdle, which is particularly problematic in computing the
binding constant of a highly charged ligand such as the pYEEI
peptide. The electrostatic contribution to the total solvation free
energy of the ligand in bulk water, calculated by using FEP
simulation with explicit solvent molecules, is of the order of
�773 kcal�mol. This large number contrasts with the binding
free energy, which is of the order of �8 kcal�mol (Table 2). Even
if the statistical uncertainty of the FEP calculation was only �1%
of the total solvation free energy, that would still translate into
an error that is of the same order of magnitude as the quantity
of interest itself. Attempts to compute the binding free energy
of the pYEEI peptide with the SH2 domain by using a double-
decoupling scheme based on Eq. 20 exhibited errors on the order
of 75 kcal�mol (data not shown). To avoid such problems, the
binding constant was expressed in terms of the ligand-receptor
PMF, without involving the decoupled state.

The idea of estimating binding constants directly from the
ligand-receptor PMF is not novel; for example, a radial bimolecular
PMF was used in ref. 44. However, an approach based on the true
unbiased ligand-receptor PMF would be of little use in practice
because sampling over the entire range of possible motions of the
ligand, receptor, and solvent would be computationally prohibitive.
The present development shows that such extensive sampling is not
needed and that the problem of computing the equilibrium binding
constant can be rigorously formulated in terms of the PMF of the
ligand restrained along the 1D axis r1. The computational efficiency
also is improved by introducing the conformational and orienta-
tional restraining potentials, uc and uo, which further contribute to
reduce the amount of configurational space that needs to be
thoroughly sampled. Those two restraining potentials help signifi-
cantly in the statistical convergence of the restrained PMF calcu-
lated along the 1D radial axis r1.

Conclusion
We have presented an efficient PMF-based computational method
for calculating the equilibrium association constant between a
flexible ligand and a protein receptor from MD simulations with
explicit solvent. The result of the calculation is within �1 kcal�mol
from experimental estimates. Such a good agreement may be partly
fortuitous, although it is very encouraging and suggests that accu-
rate computations of absolute binding free energies from all-atom
simulations is an achievable goal.

The present PMF-based approach avoids the double-decoupling
scheme (12–17), which can lead to significant difficulties in the case
of highly charged ligands. Exact and computationally advantageous
expressions for the equilibrium binding constant were derived
directly from configurational ensemble averages. The derivation is
straightforward and has the advantage of avoiding arguments based
on chemical potentials invoked in the traditional framework (16,
45). Precision of the results is only limited by the computational
requirements for the adequate sampling of configurations, with no
uncontrollable approximations or assumptions.

One of the previously undescribed aspects of the present method
is the configurational restriction potential based on the rmsd
relative to the average structure of the bound state. The introduc-
tion of the rmsd into the formulation of the equilibrium binding
constant permits a rational and quantitative discussion of the free
energy cost associated with the loss of conformational freedom of
the ligand to adopt a given bound conformation. From a practical
point of view, the rmsd restraining potential essentially transforms
a flexible ligand into a relatively rigid one, thereby reducing
significantly the difficulties associated with the sampling of a
multitude of conformations. In the present case, the configurational
restriction was only applied to the flexible pYEEI ligand. Because
the SH2 domain is fairly rigid, one expects that its small atomic
fluctuations will be readily sampled spontaneously during unbiased
MD simulations. Nonetheless, some receptor proteins are known to
undergo significant conformational changes upon ligand binding,
e.g., the HIV protease (46). The present approach, based on the
PMF of the rmsd relative to a reference structure, could be
generalized to quantify the importance of conformational flexibility
of the receptor.
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