Skip to main content
. 2024 Mar 26;9(14):16311–16321. doi: 10.1021/acsomega.3c10459

Table 1. Hyperparameter Tuning.

the hyperparameter varied in the model varied values value in the optimal hyperparameter set
number of nodes in the graph convolutional layer 256, 512, 1024 1024
activation function in the graph convolutional layer ReLU, tanh ReLU
number of nodes in the dense layer 256, 512, 1024 256
activation function in the dense layer ReLU, tanh ReLU
activation function in the graph gather layer ReLU, tanh tanh
dropout rate 0.0, 0.1, 0.2 0.0
learning rate 10–4, 10–3 10–4