Table 1. Hyperparameter Tuning.
the hyperparameter varied in the model | varied values | value in the optimal hyperparameter set |
---|---|---|
number of nodes in the graph convolutional layer | 256, 512, 1024 | 1024 |
activation function in the graph convolutional layer | ReLU, tanh | ReLU |
number of nodes in the dense layer | 256, 512, 1024 | 256 |
activation function in the dense layer | ReLU, tanh | ReLU |
activation function in the graph gather layer | ReLU, tanh | tanh |
dropout rate | 0.0, 0.1, 0.2 | 0.0 |
learning rate | 10–4, 10–3 | 10–4 |