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1 | INTRODUCTION

Human milk (HM) contains numerous bioactive factors with nutritive and nonnutritive benefits to promote the health and long-
term well-being of the developing infant (Andres et al., 2023). For example, feeding human milk enhances intestinal function
and reduces the risk of necrotizing enterocolitis (Barlow et al., 1974; Boyd et al., 2007; Chowning et al., 2016; Cortez et al., 2018;
Good et al., 2015; Hair et al., 2016; Meister et al., 2020; Niilo et al., 2016; Quigley et al., 2018), promotes healthy brain development
(Belfort & Inder, 2022), and reduces the risk of chronic disorders, such as asthma or inflammatory bowel disease (Meek et al.,
2022).

Human milk is replete with extracellular vesicles (EVs), which are nanoparticle-sized structures secreted by most cells within
the human body (Théry et al., 2018). EVs, including human milk EVs (HMEVs), carry biological information between donor
and recipient cells, to confer changes in cellular function or biological activity (Dong et al., 2020; Gao et al., 2019; He et al,,
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2021; Maghraby et al., 2021; Miyake et al., 2020; Pisano et al., 2020; Tong et al., 2023; Wang et al., 2022; Zonneveld et al., 2021).
HMEVs have putative beneficial effects, as shown by a combination of in vitro and animal studies demonstrating that HMEV's
promote intestinal epithelial cell (IEC) proliferation (Dong et al., 2020; Pisano et al., 2020; Wang et al., 2022), reduce experimental
necrotizing enterocolitis (NEC), limit inflammatory (Gao et al., 2019; He et al., 2021; Miyake et al., 2020; Pisano et al., 2020; Tong
etal., 2023) or non-inflammatory damage (Martin et al., 2018; Tong et al., 2023; Wang et al., 2022), promote expression of intestinal
barrier proteins (He et al., 2021), or enhance epithelial barrier function (Tong et al., 2023; Zonneveld et al., 2021). Collectively,
these data suggest that HMEV's confer functional benefits on IECs and hold immense therapeutic promise for humans. To do so,
however, HMEVs must survive infant digestion to reach the intestinal epithelium.

Several in vitro studies indicate that HMEV's are minimally impacted by a pH of 4-4.5 mirroring that of a term or preterm
infant stomach, as well as incubation with several gastrointestinal proteases (Kahn et al., 2018; Kosaka et al., 2010; Liao et al., 2017).
More recent work shows that bovine milk EVs are intact after exposure to a pH as low as 1.3 (Tong et al., 2023). Furthermore,
existing animal studies indicate that bovine or murine milk-derived EVs survive murine digestion to reach the placenta and
embryo (Sadri et al., 2020) or intestine and brain (Manca et al., 2018; Zhou et al., 2022). Studies also demonstrate that HMEV's
confer beneficial effects within the murine intestine (He et al., 2021; Miyake et al., 2020; Tong et al., 2023), suggesting that they
too may survive murine digestion. Yet it remains unknown if HMEV's survive neonatal human digestion to functionally impact
the neonatal human intestinal epithelium. Answering this question is a critical next step for understanding the ability to orally
deliver HMEVs as therapeutics or drug carriers.

The neonatal intestinal epithelium is thought to take up macromolecules through bulk endocytosis (Gonnella & Neutra, 1984;
Wilson et al., 1987), a mechanism unique to the neonate where endocytic cargo is broken down by the lysosome. Existing data
similarly suggest that endocytosis is the primary mechanism of EV uptake, although precise mechanisms may vary depending on
the cell of EV origin and the acceptor cell type (Bonsergent et al., 2021; Mulcahy et al., 2014). Studies examining bovine milk EV
uptake in mice or human cell lines (Caco2) indicate that the FcRn receptor plays a role in the uptake of some milk EV's (Betker
etal, 2019; Roerig et al., 2021).

Studies examining HMEV uptake are limited and use transformed IEC lines, such as Caco2 (Kahn et al., 2018) or HIEC (Liao
etal., 2017) cells. Although these cell lines are commonly used to model the small intestinal epithelium (Andres et al., 2013; Miller
etal., 2004), Caco2 cells are derived from human colorectal cancer (Chantret et al., 1988; Pinto et al., 1983), while HIEC cells are
derived from 17-19 week fetal ileum (Perreault & Beaulieu, 1996). To date, the uptake of HMEVs by primary, human neonatal
IECs remains unexplored.

In this study, we hypothesized that a proportion of HMEVs in human milk survive in vivo infant digestion to reach the small
intestine and be taken up by IECs. To test this hypothesis, we utilized a rare and valuable set of fed human milk and intestinal
contents (digesta) samples isolated from infants in the neonatal intensive care unit (NICU). We optimized a relatively high-purity
EV isolation pipeline allowing for the isolation of HMEVs from 1 mL of raw human milk (RHM), pasteurized donor human milk
(PDHM), or digesta. We also developed and characterized a primary human neonatal enteroid culture system to examine digesta
EV (dEV) uptake ex vivo. Enteroids are 3D organoid cultures grown from intestinal stem cells (Mahe et al., 2013; Sato et al., 2009).
In contrast to immortalized cell lines used in previous studies (Kahn et al., 2018; Liao et al., 2017), primary neonatal enteroids
are arguably a more physiologically relevant model for studying normal IEC function (Lechuga et al., 2023) as they are derived
from normal infant intestinal stem cells and develop multiple differentiated IEC types.

Our data demonstrate for the first time that EVs can be isolated from human milk-fed infant digesta. These dEVs are readily
and robustly endocytosed by neonatal enteroids containing differentiated IECs, primarily via dynamin-dependent processes.
This study addresses a critical gap in understanding the potential role(s) of HMEVs in the infant intestine and the pipeline for
HMEYV therapeutic development.

2 | MATERIALS AND METHODS

All human studies were approved by the Oregon Health & Science University (OHSU) Institutional Review Board (IRB) IRB
#17968 and #21952. Milk and digesta samples were collected after obtaining parental informed consent; tissue was obtained via
IRB-approved processes.

2.1 | Sample collection

Human milk samples, collection, and storage are listed in Tables 1 and 2. All samples were aliquoted and frozen before processing
and every effort was taken to minimize freeze thaws. Raw human milk (RHM) or pasteurized donor human milk (PDHM)
collection was performed under OHSU IRB #17968. PDHM was obtained from the Northwest Mother’s Milk Bank (Beaverton,
OR, USA) or Prolacta (City of Industry, CA, USA).
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TABLE 1 Raw and pasteurized human milk sample demographics.

Raw human milk
Age

Pregnancy
Delivery

Mode of delivery
Weeks post-delivery
Collection Method
Pre-skimmed
Storage

Newborn

Sex

Birth weight (g)

Gestational age (wks)

Pasteurized Human Donor Milk Source

Pasteurization

Storage

TABLE 2  Matched human milk and digesta sample demographics.

Raw Human Milk
Age

Pregnancy

Delivery

Mode of delivery
Weeks post-delivery
Collection Method
Pre-skimmed
Storage

Digesta (d)

Feed

Sex

Gestational age (wks)
Collection Location
Collection Method
Pre-skimmed

Sample Storage

PPT = post-pyloric collection tube.

#1

36
3rd

3rd
caesarean

20

#2

25
3rd

3rd
vaginal

4

Hospital-grade electric pump

No

Frozen

female

885

27 3/7
Prolact HM®
Vat

Frozen

Milk (a)
30

3rd

3rd
caesarean

7

No

Frozen

male

710

24 3/7

NW Mothers Milk Bank Batch A
Holder

Frozen

Milk (b)
36

1st

1st
caesarean

11

Hospital-grade electric pump

No
Frozen
d(a)
Raw HM
Male

44 4/7
2" duo
PPT

No

Frozen

No
Frozen
d(b)
Raw HM
Male

44 1/7
4th duo
PPT

No

Frozen

#3

37

6th

15(
caesarean

18

No

Frozen

female

723

235/7

NW Mothers Milk Bank Batch B
Holder

Frozen

Milk (c)
29

1st

1st
caesarean

6

Yes
Frozen
d(c)

Raw HM
Male

40 3/7
jejunum
Ostomy
Yes

Frozen

In vivo, digested milk samples (digesta) were collected from infants in the Doernbecher Children’s Hospital NICU at OHSU
under IRB #17968. Infant inclusion criteria were: infants already admitted to the NICU, greater than 26 weeks post-menstrual
age, presence of an indwelling nasogastric or orogastric feeding tube, and tolerating full enteral feeding volumes. Infants were
excluded from the study if they had anatomic or functional gastrointestinal disorders that would affect digestion, were medically
unstable, or were non-viable. Digested milk samples were collected from three infants (Table 2). Feeds were delivered via a gastric
tube over 30 min or less. For samples (a) and (b), a post-pyloric collection tube (PPT) was placed into the duodenum or proximal
jejunum before feeding. Samples were collected via gravity flow as the digesta passed the PPT port and dripped into sterile vials,
placed on ice. The samples were aliquoted and stored at —80°C. Sample (c) was collected from a fresh, sterile ostomy bag as
the digesta exited the stoma. Stoma output was only allowed to accumulate in the bag long enough to reach a feasibly collected

volume.
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FIGURE 1 Human milk (HM) and neonatal digesta extracellular vesicle (dEV) isolation pipeline. (a) Samples were quickly thawed in a 37°C water bath
and used immediately (Kenigsberg et al., 2017; Trummer et al., 2009). One milliliter of whole HM was used for each isolation. Samples were centrifuged at 6000
X g for 10 min at 4°C to remove cream and large cell debris (Mukhopadhya et al., 2021). The supernatant was carefully collected and centrifuged again at 2000
X g for 20 min at 4°C to further remove any fat globules and/or smaller cell debris. This supernatant was then passed through Whatman™ Grade 1 filter paper
(diameter 42.5 mm) using a glass funnel before isoelectric casein precipitation. Acetic acid (1 and 10 N) was used to adjust the pH of the supernatant to 4.6
using a portable pH meter. pH-adjusted samples were incubated at room temperature for 10 min. Casein was pelleted by centrifugation at 5000 X g for 30 min
at 4°C. The supernatant was collected and passed sequentially through Whatman™ Grade 1 filter paper (diameter 42.5 mm) using a glass funnel, a 0.45 um
syringe filter, and a 0.22 pm syringe filter for casein removal. (b) Bottom-up density gradient ultracentrifugation was performed using iodixanol gradient
(Greening et al., 2015). A 45% (w/v) bottom layer contained OptiPrep™ solution with clear HM or digesta (2.25 mL OptiPrep™ 4 0.75 mL sample = 3 mL) into
a5 mL open-top thin wall ultra-clear tube. The discontinuous gradient with 40% (w/v), 30% (w/v), 20% (w/v), and 10% (w/v) solutions of iodixanol (diluted
with sterile, 0.1 um-filtered PBS) were carefully layered on top, drop by drop. Samples were spun in an ultracentrifuge at 37,400 rpm for 24 h at 4°C with zero
acceleration and deceleration. After ultracentrifugation, 500 pL fractions were carefully collected into individual Protein LoBind™ (Eppendorf) tubes from top
to bottom using a P1000 pipettor without disrupting the layers. The fractions were used immediately for downstream analysis.

2.2 | Isolation of extracellular vesicles from human milk and neonatal digesta

Samples were quickly thawed in a 37°C water bath and used immediately (Kenigsberg et al., 2017; Trummer et al., 2009). A step-
by-step illustration is depicted in Figure 1. One millilitre of RHM, PDHM, or digesta was used for each isolation. Samples were
centrifuged at 6000 X g for 10 min at 4°C to remove cream and large cellular debris (Mukhopadhya et al., 2021). The supernatant
was carefully collected and centrifuged again at 2000 X g for 20 min at 4°C to further remove any fat globules and/or smaller
cellular debris. This supernatant was then passed through Whatman™ Grade 1 filter paper (diameter 42.5 mm) using a glass
funnel before isoelectric casein precipitation.

Acetic acid (1 and 10 N) was used to adjust the pH of the supernatant (initial pH 6.8-7.4) to 4.6 using a portable pH meter
(Southern Labware, Fisher Scientific, Hampton, NH, USA). Acetic acid was added to samples <1 uL at a time, and samples
were briefly mixed after each acid addition. Once the pH was adjusted to 4.6, samples were incubated at room temperature for
10 min before final centrifugation at 5000 X g for 30 min at 4°C. The supernatant was carefully collected and was passed through
Whatman™ Grade 1 filter paper (diameter 42.5 mm) using a glass funnel, a 0.45 um syringe filter, and a 0.22 pum syringe filter to
remove casein. The residual fluid yielded clarified HM or digesta.

Density gradient ultracentrifugation using a SW Type 55 Ti swinging bucket rotor in LM-70 ultracentrifuge (Beckman Coul-
ter, Brea, CA, USA) was achieved using OptiPrep™ iodixanol solution (60% iodixanol, w/v) following the bottom-up technique
(Greening et al., 2015). A 45% (w/v) bottom layer was made by diluting OptiPrep™ solution with clarified HM or digesta sample
(2.25 mL OptiPrep™ + 0.75 mL sample = 3 mL) into a 5 mL open-top thin wall ultra-clear tube (Beckman Coulter). A discon-
tinuous gradient was made with 40% (w/v), 30% (w/v), 20% (w/v) and 10% (w/v) solutions of iodixanol (diluted with sterile,
0.1 pm-filtered phosphate-buffered saline (PBS)) carefully layered on top of the prior density, drop by drop. The ultracentrifuga-
tion was carried out at 169,522 X g (37,400 rpm) for 24 h at 4°C with zero acceleration and deceleration. After ultracentrifugation,
500 uL fractions were carefully collected into protein LoBind tubes (Fisher) from top to bottom using a P1000 pipette without
disrupting the layers. The fractions were used the same day for analysis or functional studies or else stored at 4°C. We submitted
all relevant data of our experiments to the EV-TRACK knowledgebase (EV-TRACK ID: EV230590) (Consortium et al., 2017).

2.3 | Celllines

SW480 and MCF?7 cells (western blot positive controls) were cultured in DMEM high glucose medium (Gibco, Thermo Fisher,
Waltham, MA, USA) supplemented with 10% foetal bovine serum (FBS, Cytiva HyClone™, Marlborough, MA, USA) and 1%
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penicillin/streptomycin (Gibco), and grown at 37°C in a humidified incubator with 5% CO,. Cells were lysed in radioimmuno-
precipitation assay-sodium dodecyl sulphate (RIPA-SDS) and protein concentration was quantified using a bicinchoninic acid
(BCA) reagent kit (Thermo Fisher, Waltham, MA, USA) following manufacturer instructions ahead of western blotting.

2.4 | Validation of extracellular vesicle isolation
241 | Western blotting

For validation, EV preparations and cellular controls were lysed in 6X Laemmli buffer (375 mM Tris-HCI pH 6.8, 9% SDS w/v,
50% Glycerol v/v, 0.03% Bromophenol blue w/v, 9% DTT w/v), incubated at 37°C for 30 min, and loaded onto 4%-12% Bis-Tris
mini protein gels (NuPAGE™, Invitrogen, Waltham, MA, USA, 1.5 mm). PageRuler Plus™ Prestained Protein Ladder (Thermo
Fisher, 10-250 kDa) was resolved as a molecular weight reference. Human cell lines, MCF7 (breast cancer) (ATCC) and SW480
(colorectal cancer) (ATCC) lysates were also resolved as cellular controls. The ATCC authenticates all human cell lines through
short tandem repeat analysis. All cell lines were confirmed to be mycoplasma negative every 3 weeks (MycoAlert™ Mycoplasma
Detection Kit, Lonza, Bend, OR, USA). Fifteen micrograms of total whole cell lysates (WCL) and 20 uL of EV lysate isolated from
1 mL starting volume were resolved by gel electrophoresis. The samples were stacked for 30 min at 60 V and resolved for 60 min
at 150 V in 1X NuPAGE™ MOPS SDS running buffer (Invitrogen) and transferred onto 0.45 um PVDF membrane (Immobilon,
Millipore/Merck) via a wet transfer system with 1X NuPAGE™ transfer buffer (Invitrogen) at 100 V for 60 min. Membranes were
blocked with LI-COR PBS blocking buffer (LI-COR, Lincoln, NE) at room temperature for 60 min.

MISEV 2018 guidelines (Théry et al., 2018) were used to characterize the presence of EV-specific proteins via the following
primary antibodies: (1) anti-transmembrane protein markers: anti-CD9 (rabbit, Abcam, Cambridge, UK, ab236630 1:1000); anti-
CD63 (rabbit, System Biosciences, Palo Alto, CA, USA, EXOAB-CD63A-1,1:1000); anti-CD81 (mouse, Santa Cruz Biotechnology,
Santa Cruz, CA, USA, sc-166029, 1:1000), and (2) cytosolic protein markers: anti-TSGI101 (mouse, BD Biosciences, Franklin
Lakes, NJ, USA, 612697, 1:1000) and anti-FLOT1 (rabbit, Cell Signalling Technology, Danvers, CT, USA, 3253S, 1:10,000-1:15,000).
Lactating mammary gland protein butyrophilin (BTN1A1) anti-BTN1A1l (mouse, OriGene Technologies, Rockville, MD, USA,
TA501529S 1:3000). Anti-ITGBLI, (rabbit, Cell Signalling Technology, 34971T, 1:1000) was used to identify microvesicle contamina-
tion (Lotvall et al., 2014). Anti-GMI130 (rabbit, Novus Biologicals, Centennial, CO, USA, NBP2-53420, 1:1000) was used to identify
cis-Golgi matrix protein as a marker of cellular contamination (Théry et al., 2018). Anti-LALBA (rabbit, Abcam, ab178431, 1:1000)
and anti-CSN2 (rabbit, Abcam, ab205301, 1:5000) assessed non-HMEV components from lactalbumin and casein, respectively.
All primary antibodies were diluted in 0.5X LI-COR PBS blocking bufter (LI-COR Biosciences, Lincoln, NE, USA) diluted with
1X PBS containing 0.2% tween-20.

The membranes were incubated with goat anti-rabbit labelled with IRDye 700 (1:20 000, v/v, LI-COR) and/or goat anti-mouse
antibody labelled with IRDye 800 (1:20,000, v/v, LI-COR) for 60 min before visualization on LICOR Odyssey. All secondary
antibodies were diluted in 0.5X LI-COR PBS blocking buffer diluted with 1X PBS containing 0.2% tween-20 and 0.01% sodium
dodecyl sulphate (SDS).

2.4.2 | Nanoparticle tracking analysis

All samples were diluted in 10% particle-free PBS (Genesee Scientific, Morrisville, NC, USA) to a final volume of 1 mL. Samples
were diluted to achieve 50-250 particles/frame) before injection (Mehdiani et al., 2015). Samples were analysed using a ZetaView®
Twin (Particle Metrix, Ammersee, Germany). Each sample was run in triplicate by scanning 11 cell positions under the following
settings: Focus: autofocus; Frame rate: 30; Camera sensitivity for all samples: 70 for scatter, 87 for Di8; Shutter: 100; Scattering
Intensity: detected automatically; Cell temperature: 25°C. The videos were analysed with the built-in ZetaView® Software 8.05.12
SP2 with specific analysis parameters: Maximum area: 1000, Minimum area 10, Minimum brightness: 20. Hardware: embedded
laser: 488 and 520 nm. Di-8-ANEPPS, final concentration 2 uM, (Thermo Fisher Scientific) was used to stain HMEVs as described
(Kuhn et al., 2022); camera: CMOS. EV concentration (EV particles/mL) was calculated by accounting for dilution factors.

The characteristics of fractions two and three were further validated by treating Di8-stained samples with 0.1% Triton-X100
(final concentration), 5 mM EDTA (final concentration), 50 pg/mL proteinase K (Thermo Fisher Scientific, final concentration),
or 0.1% Triton-X100 + 50 pg/mL proteinase K. Samples were incubated for 5-10 min at room temperature and particle counts
were measured on the Zetaview® using the same parameters as above. Milk sample (c) was used for the experiment.

2.4.3 | Resistive pulse sensing (RPS)

HMEYV and dEV samples were diluted 1:20 in 1% Tween-20 (v/v) in 0.2 pm filtered 1X PBS (diluent). Samples were loaded into
polydimethylsiloxane cartridges (diameter range 65 nm-400 nm, C-400) with mould ID 108H. A new cartridge was used for
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each sample. Measurements were collected using a Spectradyne nCS1™ instrument (Spectradyne, Signal Hill, CA, USA). The
instrument was primed with a cleaning cartridge prior to use. Four thousand events were collected from 4 pL of each sample.
Analysis was performed using the accompanying nCS1™ Data Viewer (Version 2.5.0.325). All data was background corrected
and peak filtering was applied using the mould ID and a diameter of 80-250 nm. Size and concentration measurements were
calibrated based on 150 nm polystyrene beads diluted 1:10,000 in diluent. Concentrations were adjusted using Microsoft Excel™
and graphs were made in GraphPad Prism® 10 (GraphPad Software, San Diego, CA, USA).

2.44 | Morphological characterization of extracellular vesicles by negative transmission electron
microscopy (TEM)

Electron microscopy was performed at the Multiscale Microscopy Core, an Oregon Health & Science University Shared Resource
facility. Briefly, EV preparations were fixed in s 4% paraformaldehyde (PFA) solution (Thermo Scientific). Five microliters of fixed
EVs were deposited onto glow discharged (60 s 15 mA, negative mode) carbon formvar 400 Mesh copper grids (Ted Pella 01822-
F) for 3 min, rinsed 30 s in water, wicked on Whatman filter paper 1, stained for 60 s in filtered 1.33% (w/v) uranyl acetate in
water, wicked and air dried. Samples were imaged at 120 kV on a FEI Tecnai™ Spirit TEM system. Images were acquired using
the AMT software interface on a NanoSprint™12S-B CMOS camera system.

2.45 | Micro BCA™ for protein concentration

Protein concentrations from fractions two and three of fed human milk and digesta were determined using a Micro BCA™ kit
(Pierce, Thermo Fisher), following manufacturer instructions.

2.4.6 | Super-resolution microscopy

EV surface proteins were observed and quantified using the EV Profiler Kit (EV-MAN 1.0, ONI, Oxford, United Kingdom) and
direct stochastic optical reconstruction microscopy (ASTORM). EV samples were affinity captured on microfluidic chips using
CD9/CD81/CD63 antibodies provided in the kit. HCT116 and MCF7 EVs were used as controls. Immobilized EVs were fixed
with F1 solution (provided in the kit) for 10 min before labelling with CD9-CF488 (excitation (ex)/emission (em): 490/515 nm)
and CD63-CF568 (ex/em: 562/583 nm) antibodies provided in the kit. Labelled EVs were again fixed with F1 for 10 min. EV
samples were imaged on the Nanoimager S Mark II microscope (ONI) with 100X oil-immersion objective, and labelled proteins
were imaged sequentially at 35% and 50% power for the 561 and 488 nm lasers, respectively, at 1000 frames per channel with the
angle of illumination set to 52.5°. dASTORM-imaging buffer was freshly prepared and added just before image acquisition. The
system was calibrated using the bead slide manual assembly (ONI) before use. Data were processed on NimOS software (version
1.19, ONI). Subpopulation analyses of EV's that express one or two markers were analysed using ONT’s online platform CODI
(https://alto.codi.bio). We used a density-based clustering analysis with drift correction and filtering to evaluate each vesicle. At
least five localizations were required to constitute a vesicle and at least 3 localizations of one protein were required to consider
the localizations a real signal.

2.5 | Enteroid cultures
2.51 | Neonatal human enteroid generation and culture

Tissue collected for enteroid generation was approved under OHSU IRB # 21952. Enteroids were generated from small intestinal
tissue isolated from the ileum of a 2-month-old participant born at 39 weeks undergoing surgery for ileal atresia. After collection,
tissue was washed in sterile PBS with 1% penicillin/streptomycin and frozen in freezing media (10% FBS; 10% DMSO; Dulbecco’s
modified Eagle medium/F12). Tissue was rapidly thawed in a 37°C water bath and then washed three times in sterile PBS with
10% FBS. Luminal pinch biopsies were collected. The biopsies were minced in sterile PBS with 10% FBS using sterile scissors and
spun at 300 X g for 3 min at 4°C. The pellet was resuspended in 500 pL of ‘working solution’: Liberase™ TH 0.1 WU/mL (Sigma,
St. Louis, MO, USA); DNAsel 50 U/mL (Roche, Indianapolis, IN, USA); Hank’s balanced salt solution (HBSS) and incubated in
a Thermomixer at 800 rpm for 10 min at 37°C. During the incubation, a 100 um strainer was washed with 8 mL of 4% bovine
serum albumin (BSA) in HBSS to prevent cells from sticking to the filter. The tissue was pelleted at 300 X g for 3 min at 4°C and
the supernatant was passed through the prepared 100 um strainer. The remaining tissue fragments were resuspended in another
500 uL of working solution and mixed in the Thermomixer® at 800 rpm for 10 min at 37°C. After incubation, the sample was
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passed through a P1000 pipettor tip 10 times and spun down at 300 X g for 3 min at 4°C. The supernatant was filtered through
the same 100 pm strainer and the tissue pellet was resuspended in 500 puL of working solution and mixed in the Thermomixer
at 800 rpm for 10 min at 37°C. The remaining tissue was passed through a P200 pipettor tip on the end of a P1000 tip 10 times.
Once the tissue was small enough, the slurry was filtered through the same 100 um strainer. The filtered cells were pelleted at 500
X g for 5 min at 4°C. The pellet was resuspended in 500 uL of 4% BSA in HBSS and counted using Trypan Blue staining (Gibco)
and a Countess cell counter (Invitrogen). The cells were seeded at a density of up to 10° live cells per 30 uL Matrigel (Corning,
Corning, NY, USA) dome (80% Matrigel). After the Matrigel solidified at 37°C, Human Intesticult™ (StemCell Technologies,
Cambridge, MA, USA) with Primocin® (20 pL of a 500X stock, InvivoGen, San Diego, CA, USA) was overlaid. Primocin® was
discontinued after the second passage and the enteroids were supplemented with Anti/Anti (Gibco). Enteroids were maintained
and expanded in Matrigel patties in the ‘basal out’ orientation.

2.5.2 | Apical-out enteroids

To access the apical/luminal surface of the human enteroids, we reversed enteroid polarity using the technique described previ-
ously (Co et al., 2019; Stroulios et al., 2021). Briefly, 1 mL of ice-cold cell recovery solution (Corning) was added directly to the
exposed Matrigel dome to break up the Matrigel patty. The enteroid/Matrigel mixture was transferred to a 15 mL conical tube and
rotated at 4°C for 1 h. The enteroids were then pelleted at 300 X g for 3 min at 4°C and washed once with advanced DMEM/F-
12 basal media (Gibco). The enteroid pellet was resuspended in the desired volume of IntestiCult complete medium (Stemcell
Technologies) and cultures were maintained in a 24-well ultra-low-attachment plate for 48 h at 37°C in a 5% CO, incubator.

2.6 | RNA isolation and qRT-PCR

To isolate RNA from enteroids, the media was removed and cell recovery solution was added to remove Matrigel. The enteroids
were pelleted, washed with PBS, and pelleted again. RNA was isolated using GeneJET™ RNA Purification Kit (Thermo Scien-
tific) or RNAqueous™-Micro Total RNA Isolation Kit (Invitrogen). High-capacity cDNA Reverse Transcription Kit (Applied
Biosystems™, Thermo Fisher) was used to synthesize cDNA.

The following primer-probe sets were used: ribosomal protein lateral stalk subunit PO (RPLP0, Hs99999902_m1), leucine-rich
repeat containing G protein (LGR5, Hs00969422_ml), a marker of proliferation KI-67 (KI67, Hs00606991_ml), proliferat-
ing cell nuclear antigen (PCNA, Hs00696862_m1l), polycomb complex protein BMII proto-oncogene (BMI1, Hs00180411_m1),
DEF6 guanine nucleotide exchange factor (DEF6, Hs00427001_m1), intracellular adhesion molecule 2 (ICAM2, Hs00609563),
bestrophin 4 (BEST4, Hs00396114_m1l), sucrase-isomaltase (SI, Hs00356112_ml), chromogranin A (CHGA, Hs00900370_ml),
mucin 2 (MUC2, Hs00159374_m1).

2.7 | EV labelling with CMTPX

Five hundred microliters dEVs were stained with 4 uL 1 mM CMTPX dye (Invitrogen) in a 37° C water bath for 1 h in the dark.
The excess dye was removed using Amicon® Ultra-0.5 100 kDa MWCO centrifugal filter (Millipore, Burlington, MA, USA), and
dEVs were concentrated to the desired volume for uptake experiments.

2.8 | Uptake of dEVs by human neonatal enteroids

CMTPX-labelled dEVs (40 pL) were added to apical-out enteroids and incubated for 1.5 h in the following conditions: at 37°C
with or without 200 uM Dynasore (Abcam), or at 4°C. After dEV treatment, enteroids were pelleted and washed one time with
1X PBS and fixed in 4% (w/v) PFA (Fisher Scientific) for 15 min at room temperature. Fixed enteroids were pelleted and then
incubated with 0.1% Triton-X for 15 min at room temperature, pelleted, and incubated with 165 nM Phalloidin (Fisher Scientific)
for 40 min, followed by 600 nM DAPI (Thermo Fisher) for 10 min at RT in the dark. Enteroids were pelleted and mounted using
Molecular Probes Prolong™ Gold Antifade Mountant (Thermo Fisher) and sealed with CoverGrip Coverslip sealant (Biotium,
Fremont, CA, USA).
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2.9 | Confocal microscopy and image processing

dEV uptake was observed using a Zeiss LSM980 confocal laser microscope with a 20X, 0.8 NA objective (Carl Zeiss Microscopy
GmbH), and lasers set at 405nm (DAPI), 488 (Phalloidin), and 555 nm (CMTPX) wavelengths. Images were acquired using
4X line averaging using GaAsP PMT and multi-alkali PMT detectors. Z stacks were taken through the whole enteroid (36.33-
77.6 um). Images were processed using ZEN™ v2.5 Blue software (Carl Zeiss Microimaging GmbH). All images were acquired
and processed using identical intensity settings unless noted. CMTPX uptake was quantified using Image] and images taken with
a Keyence BZ-X800 (Keyence, Itasca, IL, USA) using a 2X objective, 0.1 NA.

2.10 | Immunostaining

The image with immunostaining for BTN1A1 is from the Human Protein Atlas (Lactating Breast/BTN1A1/Tissue staining avail-
able from v23.proteinatalas.org [Internet] n.d.; Uhlén et al., 2005). Lactating human mammary gland tissue was stained for
BTNIAI using Atlas Antibodies (Bromma, Sweden, Cat#HPAO011126, RRID: AB_1845491; 0.1275 mg/mL; Rabbit pAb) (Lactating
Breast/BTN1A1/Tissue staining available from v23.proteinatalas.org [Internet] n.d.).

2.11 | Statistical analyses

Data were analysed with GraphPad Prism® 10. Diagrams are presented either as mean + SEM and symbols represent biolog-
ical replicates, either individual participant samples or enteroid passages. For the dEV uptake experiment, symbols represent
individual enteroids from a single experiment.

3 | RESULTS

This study utilized raw and pasteurized human milk, as well as matched milk digesta (neonatal intestinal contents) samples to
examine whether HMEV's reach the neonatal intestine in vivo to be absorbed by IECs.

3.1 | A pipeline to isolate HMEVs and dEVs from small sample volumes

Human milk (HM) is a complex and heterogeneous biological fluid containing, numerous proteins (including highly abun-
dant casein and immunoglobulins), sugars, emulsified fat globules, small molecules, electrolytes, and EVs (Andres et al., 2023).
Neonatal digesta is also a heterogenous biofluid containing a mixture of fed HM, stomach, and digestive secretions.

Isolating EVs from heterogeneous biofluids is challenging, especially when starting volumes are limited and relatively high
purity is desired. We adapted the published protocol from Mukhopadhya et al. (2021) for 1 mL sample volumes followed by
bottom-up, rate zone iodixanol density gradient centrifugation to isolate largely pure EVs from HM and neonatal digesta samples
(Figure la and b).

3.2 | Pipeline effectively isolates raw and pasteurized HMEV's

We validated our pipeline using raw human milk (RHM) and pasteurized donor human milk (PDHM), respectively (Table 1).
RHM milk sample #1 and PDHM from the NW Mother’s Milk Bank Batch A were used for Figure 2. RHM-derived EVs were
enriched in fractions (F)2 and 3, and PDHM-derived EV's were enriched in fraction 3 (Figure 2). Negative transmission electron
microscopy (TEM) illustrated the enrichment of classic cup-shaped-EV structures ~ 100-200 nm in F2-F3 of RHM and F3 from
PDHM (Figure 2a). Nanoparticle tracking analysis (NTA) using the lipid membrane dye Di-8-ANEPPS showed that F2-3 RHM
and F3 PDHM were enriched for ~200 nm-sized particles consistent with TEM data (Figure 2b). Based on NTA measurements of
F2 and F3 for RHM and F3 of PDHM, HMEYV size was not affected by pasteurization, (207.06 + 7.86 nm and 209.68 + 18.93 nm,
n =3 RHM and PDHM, respectively).

Western blotting of EV proteins followed the MISEV2018 guidelines (Théry et al,, 2018) to confirm EV enrichment and purity
based on the presence and absence of indicated marker proteins. F2 and F3 isolated from RHM (Figure 2c) and F3 isolated
from PDHM (Figure 2d) were enriched for transmembrane proteins CD9, CD63, and CD81. Cytosolic proteins TSG101 and
FLOT!1 were recovered within RHM EVs, but absent from the pasteurized samples. Our samples lack microvesicle protein ITGBI1
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FIGURE 2  Pipeline effectively isolates human milk extracellular vesicles (HMEVs) from raw (RHM) and pasteurized donor human milk (PDHM). All
data shown are from the same RHM or PDHM sample isolated using the pipeline in Figure 1. (a) Transmission electron micrographs of fractions (F) 2 and 3
from RHM and PDHM. Images represent data collected across n = 3 biological replicates obtained from three different donors and three different donor
human milk sources (Table 1). Scale bar = 100 nm. (b) Nanoparticle tracking analysis (NTA) was performed on RHM and PDHM F2-5. F1 was below the level
of detection. Data represent the average of triplicate runs for each fraction and data is smoothed using GraphPad Prism® v10. Size data represents the average
median size across triplicate runs. (c) Western blotting assessed the protein profile of isolated HMEVs. Fifteen micrograms of SW480 (colorectal cancer cells),
MCEF7 (breast cancer cells) whole cell lysates (WCL), and whole milk were loaded as positive controls. Twenty microliters of unconcentrated fractions (F) 1-5 of
RHM (c) and PDHM (d) were run on a 4%-12% Bis-tris gel, transferred to a PVDF membrane, and probed according to MISEV 2018 guidelines, including
controls for common proteins found in human milk (BTN1AL, LALBA, CSN2). Each blot represents triplicate experiments performed on three biological
replicates of RHM and PDHM. ** indicates residual CD81 signal from re-probing the membrane for CSN2 and using the same colour secondary.

(Lotvall et al., 2014). Importantly, all of our samples lack the Golgi protein GM130. The RHM sample is depleted of the whey
protein LALBA and highly abundant milk protein CSN2 (Figure 2c), while PDHM sample lacks LALBA and CSN2 (Figure 2d).
Note, the CSN2 band marked by ** in Figure 2d is CD8I signal as the blot was re-probed using the same colour secondary. True
CSN2 signal is a multi-band pattern as shown in the whole milk positive control. Additionally, the RHM and PDHM samples
also contain BTNI1AL, a protein that is prevalent in milk fat globules (Lee et al., 2018; Robenek et al., 2006), but also potentially
present in HMEVs, as demonstrated by proteomics (van Herwijnen et al., 2016) (Figure 2c & d). The western blots support the
TEM and NTA data showing EV markers in F2-3 of RHM and only F3 of PDHM. Notably, these data suggest that pasteurization
may deplete cytosolic proteins, such as TSG101 and FLOT1.

Collectively, these data demonstrate that our pipeline effectively and consistently isolates EVs from small volumes of RHM
and PDHM.

3.3 | Di8-ANEPPS-positive particles are disrupted by Triton-X

Next, we wanted to validate the specificity of our Di8- ANEPPS staining and the level of non-membranous particles in our sample
preparations. First, we determined the total number and size of all particles non-fluorescently using scatter detection mode This
includes membrane and non-membrane bound particles, as well as microbubbles. The Zetaview NTA uses scatter for particle
detection only; the sizing is measured by tracking the Brownian motion of detected particle and applying the Stoke Einstein’s
equation (Longjohn & Christian, 2022). Notably, the total number of particles detected by scatter was quite high relative to the Di8
signal, suggesting that Di8 excludes a large proportion of background particles, potentially due to the exclusion of nonmembrane-
bound particles. To further examine the ability of Di8 to detect non-membranous particle contamination (protein aggregates or
casein micelles), we tested the sensitivity of F2 and F3 to Triton-X100, EDTA, and proteinase K (Figure 3). We found that of



10 of 20 9 ISEV YUNG ET AL.
o

(@) HMEVs -F2 (b) HMEVs-F3
(x10) (x10")
2.5+ — scatter 2.5+
—— Di8 alone, baseline
HMEVs
2.0 — +0.1% Triton-X 2.0 1
| +5mM EDTA -
g ] — +50ug/mL Proteinase K g 15
a 15 — +ProK+Tritx 3 ’
© L
— ] t i
T 10 L 10
a Q.
0.5 0.5 1
0.0+ T T T 1 0.0 -
0 100 200 300 400 500 0 100 200 300 400 500
Size (nm) Size (nm)
(C)  HMEVs -F2 (d) HMEVs -F3
ng 0°) (x10°)
— Di8 alone, baseline 5-
HMEVs
4 — +0.1% Triton-X
+5mM EDTA 4
_EI —— +50ug/mL Proteinase K _EI
b 3 — +ProK+TritX % 31
o i}
2 ©
527 € 2
g 2
17 17
L':\“?;\“
0- T T T T - = 0 ’ . ’ . .
Size (nm) Size (nm)

FIGURE 3 Di8 ANEPPS detects the majority of Triton-X- solublizable EVs in fraction 3 from human milk. Fractions 2 (A, C) and 3 (B, D) were isolated
from human milk sample (c), concentrated using Amicon® concentration column (10 kDa MWCO), and labeled with Di8-ANEPPS. Aliquots of the labeled
sample were then incubated with either 0.1% Triton-X100 (final concentration), 5 mM EDTA (final concentration), 50 pg/mL proteinase K (Thermo Fisher
Scientific, final concentration), or 0.1% Triton-X100 + 50 pg/mL proteinase K before particle counts were measured by nanoparticle tracking analysis (NTA). (a
& b) show the Di8 particle measurements for comparison with scatter, while (c & d) show measurements detected with the fluorescence reading alone. Data
represent the average of triplicate runs for fractions 2 and 3 of a single milk sample. Data are smoothed using GraphPad Prism® v10.

particles labelled with Di8 in F2 and F3 the majority (>50%) are Triton-X solublizable, consistent with EVs (Osteikoetxea et al.,
2015), as seen by the reduction in particle counts with the addition of Triton-X. Importantly, each fraction contained some
particles that were sensitive to EDTA or proteinase K, which were detected by Di8 and therefore also counted in our particle
measurements. This means that when using Di8 to quantify HMEVs by NTA, the actual number detected can be augmented
slightly by non-membranous particles. Importantly, the use of Di8 excludes the vast majority of non-membrane bound or non-

specific particles detected by scatter alone. Based on this experiment, F3 seems to contain membranous/EV particles versus
F2.

3.4 | EVsnumbers decrease within the neonatal small intestine

Neonatal human digesta was collected by gravity after gastric feeding from oro- or nasoduodenal/jejunal sampling tubes or
ostomy bags from three neonates in the OHSU NICU (Figure 4a; Table 2). Infants were fed RHM and digesta was isolated from
the proximal or mid-small intestine (Figure 4b).

We isolated and validated the dEV's identically to the HMEV's described above. Negative TEM shows the greatest consistent,
enrichment of cup-shaped EV structures in F3 (Figure 4c, Figure S1). This is further supported by western blotting showing
enrichment of EV markers CD9 and/or CD8l in F3 of digesta samples (a) and (b) (Figure 4d). No EV markers were detected by
western blotting in digesta sample (c), although they are present in the fed-milk sample (Figure 4e). Western blotting followed
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FIGURE 4

Pipeline effectively isolates extracellular vesicles from neonatal human digesta (dEVs). (a) Neonatal human digesta was collected from infants
in the NICU after obtaining parental informed consent. Inclusion criteria included infants already admitted to the NICU, greater than 26 weeks corrected
gestational age with an indwelling nasogastric or orogastric feeding tube who were tolerating full enteral feeding volumes. Infants were excluded from the study
if they had anatomic or functional gastrointestinal disorders, were medically unstable, were non-viable, or had disorders that would be expected to affect
normal digestion. Before feeding, a nasal tube was placed into the proximal small intestine. Feeds were delivered via a gastric tube over 30 min or less. (b) Data
are from three participants with sampling tubes placed along the duodenum (a, b) or from an ostomy (c), as shown. (c) Transmission electron micrographs
(TEM) of fractions (F)1-5 of neonatal digesta collected from participants (a) and (b). Scale bar = 100 nm. (d) Western blotting assessed the protein profile of
isolated dEVss in the participants (a), and (b) or (e) the digesta and milk samples from participant (c). Fifteen micrograms of SW480 (colorectal cancer cells),
MCEF7 (breast cancer cells) whole cell lysates (WCL) and/or whole milk were loaded as positive controls. Each digesta fraction was concentrated over an
Amicon® concentration column (100 kDa MWCO) to allow for loading of the entire fraction volume in the gel; therefore, the data shown represent all the
proteins in the fraction from a 1 mL digesta sample. Samples were loaded on a 4%-12% Bis-tris gel, transferred to a PVDF membrane, and probed according to
MISEV 2018 guidelines, including controls for common proteins found in human milk (BTN1Al, LALBA, CSN2). LALBA and CSN2 were not detected. To
preserve the samples, membranes were re-probed for some proteins. ** indicates residual CD9 signal from re-probing the membrane for CSN2. CSN2 was not
detected in EV samples, see banding pattern in whole milk positive control in participants’ (b) and (c) blots for comparison. ITGS1 was detected by re-probing
the membrane after GM130. Both antibodies are rabbit, resulting in the smear in control WCL lanes for ITGf1. The isolated fractions were all negative. (f)
Immunostaining for BTNIAI in lactating mammary gland. Image provided courtesy of Human Protein Atlas (Uhlén et al., 2005, Lactating
Breast/BTNI1A1/Tissue staining available from v23.proteinatalas.org [Internet] n.d.). (g) Representative images of direct stochastic optical reconstruction
microscopy (ASTORM). Human milk and digesta EV samples were affinity captured on microfluidic chips using CD9/CD81/CD63 antibodies and labeled with
CD9-CF488 (excitation (ex)/emission (em): 490/515 nm) and CD63-CF568 (ex/em: 562/583 nm) antibodies for imaging on the Nanoimager S Mark II
microscope (ONI) with 100X oil-immersion objective and freshly prepared dSTORM-imaging buffer. Data were processed on NimOS software (version 1.19,
ONI). Subpopulation analyses of EVs that express one or two markers were analysed using ONI’s online platform CODI (https://alto.codi.bio). We used a
density-based clustering analysis with drift correction and filtering to evaluate each vesicle. At least five localizations were required to constitute a vesicle and at
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FIGURE 4 (Continued)

least three localizations of one protein were required to consider the localizations a real signal. Data were compiled in Microsoft Excel™ and (h) the
localizations within each sample were summarized using GraphPad Prism® v10. (i) Nanoparticle tracking analysis (NTA) was performed on matched
fed-human milk and neonatal digesta F3 isolated from participants (a)-(c) and stained with Di8-ANEPPS. Data represent the average of triplicate runs for each
sample and the data is smoothed using GraphPad Prism® v10. (j) Resistive pulse sensing measurements were performed on matched fed-human milk and
neonatal digesta F3 isolated from participants (a)-(c). EV samples were diluted 1:20 in 1% Tween-20 (v/v) in 0.2 um filtered PBS and loaded in
polydimethylsiloxane cartridges (diameter range 65 nm to 400 nm, C-400). From each 4 puL sample, four thousand events were collected using a Spectradyne
nCS1™ instrument and analyzed using the accompanying nCS1™ Data Viewer (Version 2.5.0.325). Size and concentration measurements were calibrated based
on 150 nm beads. Concentrations were adjusted using Microsoft Excel™ and graphs were made in GraphPad Prism® v10.

TABLE 3  Matched milk and digesta EV protein concentrations.

Protein (ng/uL)

sample (a) sample (b) sample (c)
Intestinal Region Proximal Proximal Middle
Fed Milk 82.83 215.77 86.47
Digesta 41.64 100.79 45.30
Fold-change 1.99 214 1.91

Note: Data is also shown in Supplemental Table 1 for comparison with F2 data.

the MISEV2018 guidelines (Théry et al., 2018) to confirm EV enrichment and purity based on the presence or absence of indi-
cated marker proteins. All the samples lacked ITGB1, GM130, and CSN2 (Figures 4d & e). The bands in the CSN2 blots marked
by ** are residual CD9 signals as the blots were re-probed for CSN2. We detected BTN1AI prominently in digesta sample (a),
faintly in digesta sample (b), and in fed milk from sample (c), suggesting that BTN1A1 may be present within some dEVs or that
isolates contain milk fat globule membrane components. Notably, BIN1ALl is only expressed in the lactating mammary gland
(Figure 4f) and nowhere else along the digestive tract, including the salivary gland, pancreas, gallbladder, or liver (Lactating
Breast/BTN1A1/Tissue staining available from v23.proteinatalas.org [Internet] n.d.), and was previously found within HMEV's
by mass spectrometry (van Herwijnen et al., 2016).

We further confirmed the EV identity of our samples using super-resolution microscopy (Figure 4g). Particles were captured
with CD9/CD81/CD63 and subsequently labelled with CD9 and CD63 antibodies. We detected single-labelled EVs in all samples
and dual-labelled EVs in all but sample (c) digesta (Figures 4g and h).

Based on these data, the minimal impact of EDTA or proteinase K on F3 EV's (Figure 3), and the higher protein levels in F3
versus F2 (Table S1), we focused on F3 as the EV-containing fraction in subsequent analyses (Table 3), NTA using Di-8-ANEPPS
lipid membrane dye (Figure 4i), and resistive pulse sensing (RPS) (Figure 4j). The dEV protein concentrations were ~2-fold lower
and particle counts by NTA were ~3-8-fold lower than the isolated HMEVs from the input milk samples (Table 3; Figure 4i).
The dEV particle counts measured by RPS were lower for samples (b) and (c), but not for sample (a) (Figure 4j).

Collectively, these data indicate that dEV's can be isolated from neonatal digestive fluid and that dEV amounts are generally
less than the input milk. Since there is no validated marker unique to HMEVs, we cannot confirm that these isolated EVs are
from human milk alone, therefore we term them digesta EVs (dEVs).

3.5 | Neonatal human enteroids take up dEVs

We established that dEVs can be isolated from infant digesta. Next, we asked whether neonatal IECs take up dEVs. To test this, we
developed a neonatal human enteroid model. Patient-derived enteroids, enteroid-derived monolayers, or gut-on-a-chip systems
are emerging models for studying neonatal intestinal physiology and pathophysiology (Burge et al., 2022; Costello et al., 2022;
Lanik et al., 2023; Liebe et al., 2023; Wilson et al., 2022). Our model is derived from intestinal epithelial stem cells isolated from
a 2-month-old participant undergoing surgery for ileal atresia.

Our neonatal enteroids were propagated in the basal-out orientation where they grow in Matrigel and the basolateral cell
surface faces the culture media (Figure 5a). For these studies, we used the apical-out enteroid model where the enteroids are
cultured in suspension in the absence of a basement membrane (Burge et al., 2022; Co et al., 2019; Liebe et al., 2023). This leads to
polarity reversal, shown by phalloidin staining (green) on the outer surface of the enteroid (Figure 5a). The apical-out orientation
allows for direct access to the apical cell surface, making the culture media effectively equivalent to the intestinal lumen and
allowing for manipulation of luminal exposures, such as dEV's. We first analysed gene expression for IEC-type specific markers,
demonstrating that our apical-out enteroids significantly downregulate markers of proliferation Ki67 and LGR5 and upregulate
more differentiated markers, such as CHGA relative to basal-out enteroids (Figure 5b), which are generally more proliferative
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FIGURE 5 Neonatal human enteroids take up neonatal digesta extracellular vesicles (dEVs) primarily by dynamin-mediated endocytosis. (a) Neonatal
human enteroids were cultured in Matrigel basement membrane where the basal cell surface faces the media (basal-out) before removing the basement
membrane to induce polarity reversal to the “apical-out” orientation for all experiments. DAPI (blue) stains nuclei and phalloidin (green) stains F-actin. Scale
bar = 20 um. (b) Polarity reversal and the apical-out orientation down-regulated expression of LGR5 and KI67 relative to basal-out controls. BEST4 was
down-regulated, whereas CHGA was increased across passages. Each dot represents a separate passage (biological replicate). Gene expression values are the
average of triplicates for each gene within each biological replicate and are normalized to the housekeeping gene RPLP0. Data are expressed at Log2-fold
change and error bars represent the standard error of the mean (SEM). *p < 0.05 was considered statistically significant. (c) dEV's were isolated from samples
(a) and (b) and stained with 10 pM CMTPX dye in a 37°C water bath for 1 hour in the dark. (d) The excess dye was removed using Amicon® Ultra-0.5 10 kDa
MWCO centrifugal filters and samples were concentrated to the desired volume for uptake experiments. Apical-out enteroids were treated with
CMTPX-stained EVs for 90 minutes at 37°C in the presence or absence of the endocytosis inhibitor Dynasore or at 4°C. The “No EV” control consisted of PBS
incubated with CMTPX dye and filtered through an Amicon® filter. (¢) EV uptake was assessed by confocal microscopy on fixed whole-mount enteroids. DAPI
(blue) marks nuclei. Phalloidin (Cy2-green) marks F-actin. CMTPX staining is shown in Cy3-red. Scale bar = 20 pm. Data represent a single experiment using
a pool of dEVs from participants (a) and (b). Images are representative of enteroids imaged across 4 slides for each treatment group. Images were acquired and
processed using identical microscope settings. Notably, the Cy2 intensity for the phalloidin staining in the xz.yz projection image for the 4°C treatment was
increased 3-fold to enable visualization of the cell surface. All other channel intensities are matched. (f) CMTPX-labelled dEV uptake was quantified using
images captured with a 2X objective on a Keyence BZ-X800 microscope. Staining intensity within each enteroid was determined using Image] and normalized

(Continues)
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FIGURE 5 (Continued)
to the enteroid area. Data represent individual enteroids across 4 slides in each treatment group from a single experiment. The inset shows box and whisker
plots of the same data. Data was analysed by one-way ANOVA with Dunn’s test for multiple comparisons. *p < 0.05 was considered statistically significant.

(Co et al., 2019). Notably, our neonatal enteroids lack Paneth cells (DEF6) at baseline, consistent with published findings (He
et al,, 2022), and down-regulate BEST4 mRNA. This suggests that our apical-out enteroids represent a more differentiated and
less proliferative intestinal epithelium.

Once established and validated, we asked whether neonatal enteroids readily take up dEVs. Since our dEVs are isolated from
participant samples, we are unable to label and track using fusion proteins, or fluorescent tags (Bonsergent et al., 2021; Toribio
et al., 2019). Instead, we developed a novel method for labelling the dEVs using CMTPX dye (Figure 5c). This dye is nonfluo-
rescent initially but readily permeates the EV lipid bilayer where it is then converted to a fluorescent derivative by glutathione-S
transferase (GST) and retained within the EV. This is important for demonstrating the specificity of EV uptake. We observed
the highest level of CMTPX staining in fraction 3 (F3) consistent with TEM, NTA, and western blot data showing the highest
number of HMEV's or dEVs in F3 (Figures 2-4).

All images were acquired using identical microscope settings. Representative images are shown in (Figure 5¢). dEV uptake was
quantified using Image] (Figure 5f). At 37°C we observe robust uptake of CMTPX-labelled dEVs by neonatal human enteroids
as indicated by a strong red signal. The specificity of the labelling and the uptake were confirmed using a dynamin-2 inhibitor
(Dynasore) to block clathrin and caveolin-dependent endocytosis and by performing experiments at 4°C to block all forms
of energy-dependent endocytosis (Bonsergent et al., 2021; Kusuma et al., 2016; Toribio et al., 2019; Weigel & Oka, 1981; Wolf
etal., 2015). Collectively, our results indicate that neonatal human enteroids rapidly take up dEV's primarily via energy-mediated
endocytic processes, while a smaller proportion of dEVs are taken up in the presence of dynamin-2 inhibition. Incubation at 4°C
inhibits nearly all uptake. Further, the data indicate that our labelling is specific and that our samples contain low to negligible
levels of unincorporated CMTPX, as the free dye would show up as labelling via diffusion in the Dynasore + 37°C or 4°C samples.

4 | DISCUSSION

HMEVs are emerging therapeutics and drug delivery vehicles (Abels & Breakefield, 2016; Colombo et al., 2014; Elliott & He,
2021; EL Andaloussi et al., 2013; Munir et al., 2023; Simeone et al., 2020; van Niel et al., 2018; Zhong et al., 2023). Cell culture
and animal model studies indicate that undigested, unmodified HMEVs may affect intestinal epithelial biology (Martin et al.,
2018; Tong et al., 2023; Wang et al., 2022), and limit damage from necrotizing enterocolitis (Dong et al., 2020; Gao et al., 2019;
He et al., 2021; Miyake et al., 2020; Pisano et al., 2020). Further studies indicate that HMEV's survive in vitro simulated digestion
(Kahn et al., 2018; Liao et al., 2017; Tong et al., 2023), may transit through an animal’s digestive tract to transfer cargo or affect
other organs, including the brain (Manca et al., 2018; Tong et al., 2023), and/or enhance cognitive performance (Zhou et al.,
2022). However, whether these nano-sized information carriers survive digestion to reach the human intestine remained an
open question. To address this knowledge gap, we obtained in vivo digested milk samples and optimized an isolation protocol
capable of isolating HMEV's from small sample volumes.

Isolating EVs from human milk is challenging due to protein complexes, such as casein micelles, immunoglobulins, and
lipoproteins that can entrap HMEVs, mask less abundant proteins, and interfere with downstream analyses, such as western
blotting or mass spectrometry (Witwer et al., 2013). Protein complexes can also mimic the appearance and size of EVs in NTA or
RPS. To circumvent these pitfalls, it is common to perform HMEYV isolations on large starting volumes, which allow for multiple
processing steps to enrich for EVs and remove other bioactive factors that may complicate data interpretation (Chen et al., 2021;
Miyake et al., 2020; Mukhopadhya et al., 2021; Tong et al., 2023; Yan et al., 2022; Zonneveld et al., 2021). This can be prohibitive if
sample volumes are limited (<2 mL). In such cases, some published studies use precipitation-based methods, such as ExoQuick®
and Eonasy® (Bickmore & Miklavcic, 2020; Kupsco et al., 2021; Soares Martins et al., 2018). Although these methods are efficient,
they can result in co-isolation of non-EV proteins (Lobb et al., 2015; Tan et al., 2021; Wijenayake et al., 2021; Zlotogorski-Hurvitz
etal., 2015). Additionally, EV fractions obtained from ExoQuick® may contain traces of biopolymers that can interfere with mass
spectrometry (Taylor & Shah, 2015).

Herein we optimized an isolation pipeline developed for large volumes of milk (Mukhopadhya et al., 2021) for use with a
1 mL starting volume of human milk or digesta. This method utilizes a combination of acetic acid precipitation and density
gradient ultracentrifugation to achieve relatively high yield and relatively high purity HMEVs. We validated our methodology
using RHM and PDHM. Our RHM samples were consistently enriched for a combination of tetraspanins CD9, CD63, and CD81
and intravesicular markers FLOTI and TSGI101 (Théry et al., 2018) and de-enriched for microvesicle marker ITGBI (Lotvall et al.,
2014), Golgi marker GM130 (Théry et al., 2018), and milk-specific proteins CSN2 and LALBA (Leiferman et al., 2019). CD63
shows up as heterogeneous in size in our HMEV samples. This is potentially due to the heavy glycosylation of milk proteins
(Holm et al., 2022). Notably, samples were also enriched for BTN1AL BTNIALI is exclusively expressed in lactating mammary
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glands (Lactating Breast/BTN1Al/Tissue staining available from v23.proteinatalas.org [Internet] n.d.) and prevalent in milk fat
globules (Lee et al., 2018; Robenek et al., 2006). It was previously detected in HMEV's by mass spectroscopy (van Herwijnen
et al,, 2016), suggesting its potential as a HMEV marker. To demonstrate that BTN1A1 is a marker of HMEV's super-resolution
microscopy or immunogold-labelled TEM is required.

To further validate our isolation pipeline, we compared raw HMEV's with those isolated from PDHM. Pasteurization most
commonly heats milk to 63° C for 30 min to reduce bacterial load (pathogenic and nonpathogenic) and is currently the standard
method of human milk processing to ensure safety (Wesolowska et al., 2019). Pasteurization, however, damages, destroys, or alters
many bioactive factors found in milk (Peila et al., 2016). This is consistent with our findings. We observed that pasteurization
resulted in a depletion of tetraspanin proteins and cytoplasmic EV protein markers (FLOTI, TSGI101). This is consistent with
the published work of others showing that pasteurization reduces CD63 protein within human (Torrez Lamberti et al., 2023)
and bovine milk EVs (Kleinjan et al., 2021). However, there may be some variation between species or with processing methods
as one study found TSGI01 in pasteurized bovine milk (Benmoussa et al., 2017). Notably, our raw and pasteurized samples are
not matched from the same parental source, limiting our ability to draw firm conclusions about the effects of pasteurization on
EV size, number, or cargo. Previously published reports indicate that size and number are unchanged by pasteurization (Torrez
Lamberti et al., 2023). Our data add to a growing body of evidence demonstrating that pasteurization could damage or destroy
some populations of HMEVs (Kleinjan et al., 2021; Smyczynska et al., 2020; Torrez Lamberti et al., 2023). Additional research is
needed to fully understand the effects of milk processing on HMEVs.

Our isolation pipeline also effectively isolated EVs from human milk-fed neonatal digesta (dEVs), enabling us to demonstrate
that EV's are present in the intestine of human milk-fed neonates. These EVs could be derived from the fed human milk, secreted
by cells within the digestive tract, or a combination of the two. In vitro-simulated digestion studies suggest that HMEVs can
survive low pH and the presence of some digestive enzymes (Kahn et al., 2018; Liao et al., 2017; Tong et al., 2023), supporting
the hypothesis that some of our dEVs may be from human milk. To define the precise source of the dEVs we need specific
markers that are exclusively present within the lactating mammary gland, such as BTN1A], or the neonatal intestinal epithelium.
This study does not directly define BTN1Al as an HMEV marker; therefore, we cannot determine the precise origin of our
dEVs. Nonetheless, our data indicate that a lactating mammary gland-specific protein is present in some dEV samples isolated
from milk-fed infants meaning that either HMEV's or other human milk components are co-isolating with the dEVs from these
participants. The absence of BTNIALI in digesta sample (c) may be due to the distal sampling location (jejunostomy) relative
to samples (a) and (b). Across the three samples examined, the level of dEV protein decreased by a factor of ~2 between fed
human milk and the intestinal digesta. The number of dEVs decreased by 3-8-fold relative to HMEV's as measured by NTA.
RPS measurements show equivalent or greater decreases in particle number for samples (b) and (c), while sample (a) measured
similarly to the input milk sample. This could be due to non-membranous particles in the digesta inflating the measurement or
a falsely low RPS measurement for the fed milk sample. Taken together, across protein concentration and multiple methods of
particle measurement, this suggests that dEVs are likely reduced within the intestinal digesta compared to the fed milk sample.

The reduction in dEV's relative to HMEV's could be due to several factors: (1) sample dilution with digestive secretions, (2) EV
destruction during transit and digestion, (3) cellular uptake, or (4) a combination. Previous work from the Dallas lab indicates that
intestinal secretions result in 1.15-1.5-fold dilution of digesta in the intestine relative to the input milk as determined by measuring
the concentration of indigestible PEG-28 in fed-human milk and infant digesta using mass spectrometry (Kim et al., 2020). This
suggests that the observed decrease in dEV's could be partly due to dilution from digestive fluids. However, the reduction that
we observe in protein concentration or particle number is greater than what would be expected with dilution alone (Table 3),
indicating that HMEV's are either rapidly destroyed or absorbed by the digestive tract. Our uptake data indicate relatively rapid
dEV uptake, suggesting that uptake may also contribute to reduced dEV numbers within the neonatal small intestine. Notably,
if neonatal intestinal EV's are present in our samples, these would only augment the signal and further suggest that HMEVS are
reduced within the digesta. Definitive EV biomarkers are needed to determine the origin(s) of the dEVs. Further research is also
needed to fully address differences between HMEV and dEV numbers, including normalization to an indigestible substance such
as PEG-28 to account for the effects of dilution.

To better understand the specificity of the Di8 labelling in our human milk samples, we tested the effects of Triton-X, EDTA,
and proteinase K on our NTA measurements. These results reveal that although Di8-labelling is an imperfect method of mea-
suring HMEVs, it is far superior than scatter alone, which detects a much higher background of non-specific signal. Although
the majority of the particles measured were Triton-X solublizable, the quantification was altered by the addition of EDTA or
proteinase K to the samples. As a result, the NTA measurements from our samples are not exact counts of EVs, but rather
an approximation of the particle concentration including HMEV's and some non-membranous particles. The number of non-
membranous particles is most readily appreciated when comparing the NTA data in (Figure 4i) with the RPS data (Figure 4j), as
well as in Figure 3 comparing scatter versus Di8 labelling in F2 and F3. F2 especially contains many non-membranous particles,
some of which are still detected by Di8 and altered with Triton-X, EDTA, or proteinase K. Each method of EV quantification
has limitations (De Sousa et al., 2023), however, having performed several different methods, protein concentration and particle
measurements via NTA and RPS, the collective data suggest that dEVs are generally reduced in number relative to the HMEV's
found within the matched milk sample.
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Once we isolated dEVs, we next asked whether they were taken up by non-transformed, primary neonatal IECs. To do this, we
used a neonatal enteroid (intestinal organoid) model for dEV uptake. These enteroids grow rapidly and express expected markers
of proliferation in the basal-out state. We utilized published protocols (Co et al., 2019; Liebe et al., 2023) to induce polarity reversal
in the enteroids allowing direct access to the apical surface from the culture media. We confirmed the apical-out orientation
with phalloidin-staining and gene expression showing a significant down-regulation in proliferative markers, consistent with
published studies (Co et al., 2019). Notably, markers of absorptive (SI) and secretory lineages (CHGA and MUC?2) were elevated,
but only differences in CHGA were statistically significant, suggesting some variability in the cell lineages present within the
apical-out enteroids.

We then used CMTPX dye to track dEVs ex vivo. Nonfluorescent CMTPX freely diffuses into HMEV double-layered mem-
branes. Once inside, it undergoes a chemical transformation mediated by GST (Fafian-Labora et al., 2020) rendering it fluorescent
and trapping it within the EV. This allows for extra-EV CMTPX to be washed away using chromatography column treatment.
Therefore, CMTPX specifically labels isolated EV's and avoids non-specific labelling of cellular or organelle membranes often
seen with lipophilic dyes, such as PKH26 (red), PKH27 (green), and C5-maleimide-Alexa633 (Fafidn-Labora et al., 2020; Takov
et al,, 2017). We observed minimal labelling when endocytosis was inhibited chemically and when all uptake mechanisms were
limited by cold temperatures, suggesting that our labelling method is specific and indicates minimal signal from passive dye
diffusion. This indicates that CMTPX may be a superior non-genetic method for labelling and tracking EVs.

Our data suggest that dEVs are rapidly taken up by neonatal enteroids in a process that depends in part on dynamin-mediated
endocytosis. This is consistent with the work of others demonstrating that bovine milk EVs are transported via endocytosis
into endothelial cells (Kusuma et al., 2016) or transformed Caco2 or IEC6 cells (Wolf et al., 2015). In our study, uptake was
further significantly decreased by incubation at 4°C, suggesting that other mechanisms may also be involved in dEV uptake
within the intestine. These could include lipid raft/caveolae-mediated endocytosis (Ros-Baro et al., 2001), phagocytosis, and/or
micropinocytosis (Mettlen et al., 2006). Importantly, our studies establish a relevant system for performing future functional
studies and build on published work in immortalized cell lines (Kahn et al., 2018; Liao et al., 2017) to show that non-transformed
neonatal enteroids readily absorb dEVs. Additional studies are needed to demonstrate that dEV uptake results in functional
changes in enteroid physiology or gene expression.

Collectively, this study demonstrates that dEV's can be isolated from infant intestinal contents post-human milk feeding. These
dEVs can then be rapidly absorbed ex vivo by neonatal IECs in a process that is partially dependent on dynamin-mediated endo-
cytosis. This study provides a modified protocol for use with small sample volumes and lays the foundation for future, in-depth
work investigating biomarkers of human milk and digesta EVs, the effects of donor human milk processing and gastrointestinal
digestion on HMEV structure and contents, and how dEVs interact with and are taken up by the neonatal intestinal epithelium.

We chose the more inclusive term extracellular vesicles (EVs) for the particles isolated in this study, as we did not directly
examine their biogenesis. However, our data suggest that they are most consistent with exosomes or small EVs based on our
density-gradient ultracentrifugation method of isolation, the particle size, and the presence of tetraspanin proteins CD63, CD8],
CD9, and ESCRT protein TSG101 (Kowal et al., 2016; Théry et al., 2018).
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