
Targeting c-Myc-activated genes with a correlation
method: Detection of global changes in large
gene expression network dynamics
D. Remondini*†‡, B. O’Connell§, N. Intrator¶�, J. M. Sedivy§, N. Neretti†¶, G. C. Castellani*†‡¶**, and L. N. Cooper¶**††‡‡
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This work studies the dynamics of a gene expression time series
network. The network, which is obtained from the correlation of
gene expressions, exhibits global dynamic properties that emerge
after a cell state perturbation. The main features of this network
appear to be more robust when compared with those obtained
with a network obtained from a linear Markov model. In particular,
the network properties strongly depend on the exact time se-
quence relationships between genes and are destroyed by random
temporal data shuffling. We discuss in detail the problem of
finding targets of the c-myc protooncogene, which encodes a
transcriptional regulator whose inappropriate expression has been
correlated with a wide array of malignancies. The data used for
network construction are a time series of gene expression, col-
lected by microarray analysis of a rat fibroblast cell line expressing
a conditional Myc-estrogen receptor oncoprotein. We show that
the correlation-based model can establish a clear relationship
between network structure and the cascade of c-myc-activated
genes.

complex systems � time series � gene interaction

The availability in modern molecular biology of methods
capable of measuring the activity of thousands of genes at the

same time poses the challenge of analysis and modeling of
complex biological networks with thousands of units. Microarray
technology is producing data on the activity of significant
portions of the genome in a wide variety of cells and organisms
up to the level of the entire human genome. Several techniques
have been proposed to analyze the high dimensional data
resulting from these experiments. Artificial neural networks,
phylogenetic-type trees, clustering algorithms, and kernel meth-
ods are just a few examples (1–6).

Complex network theory has been used to characterize topo-
logical features of many biological systems such as metabolic
pathways, protein–protein interactions, and neural networks (7,
8). The application of network theory to gene expression data
has been not fully investigated, particularly regarding the time-
dependent relationships between genes occurring while their
expression level changes.

One of the key points of the network approach is the definition
of the links between its elements (nodes), namely, the gene
interactions from which all of the network properties are ob-
tained. Recently, several methods for links assessment have been
proposed, such as linear Markov model (LMM)-based methods
(9, 10) or correlation-based methods (11–13). We choose to
define links on the basis of the time correlation properties of
gene expression measurements.

In this article, we show that correlation properties of gene
expression time series measurements reflect very broad changes
in genomic activity. The problem that we address is character-
izing the gene transregulation cascade in response to c-Myc
protooncogene activation. C-myc encodes a transcriptional reg-

ulator whose inappropriate expression is correlated with a wide
array of malignancies. At the cellular level c-Myc activity has
been linked with cell division, accumulation of mass, differen-
tiation, and programmed cell death. Although the positive
influence of c-Myc on proliferation has been appreciated for a
long time, the molecular mechanisms by which these end points
are achieved are not well understood. It is now clear that Myc can
directly influence the expression of thousands of genes with
diverse functions. A significant challenge is to integrate this
wealth of information into mechanistic models that explain the
biological functions of c-Myc. This endeavor has been greatly
complicated not only by the large number of targets, but also by
the weak transcriptional effects exerted by c-Myc. Thus, the
biologically relevant downstream effectors remain to be com-
prehensively delineated.

The correlation method is more sensitive to the temporal
structure of the data than LMM and leads to biologically relevant
gene identification that is not obtained by either Markov mod-
eling or significance analysis based only on ANOVA.

Methods
Gene Expression Time Series. Two data sets of gene expression
were obtained from a set of microarray experiments using
genetically engineered rat cell lines. As described (ref. 14 and
references therein), parental Rat-1 fibroblasts were modified by
homologous recombination to knock out both copies of the
c-myc gene (c-myc�/� cells). This cell line was subsequently
reconstituted with a cDNA encoding a fusion protein of c-Myc
and the human estrogen receptor (MycER). The fusion protein
is synthesized continuously in the cells, but is biologically inactive
in the absence of a specific ligand, 4-hydroxy tamoxifen. Binding
of tamoxifen to the estrogen receptor domain elicits a confor-
mational change that allows the fusion protein to migrate to the
nucleus and act as a transcription factor. A large volume of data
from several laboratories indicates that the biological activities
of native c-Myc protein and the MycER fusion protein are
similar, if not identical. Randomly cycling, exponential-phase
cultures were used, and conditions were developed such that
cells experienced a constant environment and were in a bal-
anced, steady state of growth for significant periods of time. Two
data sets were obtained. The first data set (N data set) contains
the gene expression data of the c-myc�/� MycER cell line treated
with vehicle (ethanol) only. The second data set (T data set)
contains the gene expression data collected after the addition of
tamoxifen. Samples were harvested at five time points after the
addition of tamoxifen to the culture medium: 1, 2, 4, 8, and 16 h.
The entire experiment was repeated on three separate occasions,

Abbreviation: LMM, linear Markov model.
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providing three independent measurements for each gene and
each time point. Expression profiling was done by using the
Affymetrix (Santa Clara, CA) platform and U34A GeneChips
(8,799 probe sets; Affymetrix).

Significance Analysis and Data Preprocessing. A two-way full fac-
torial ANOVA was applied to each of the 8,799 probe sets to
identify those that significantly changed expression level in time
between the two conditions (data set N versus data set T). The
significance analysis was based on the general linear model that
describes changes in gene expression level � from the global
mean � as caused by the combination of: changes in treatment
(�), i.e., database N versus database T; changes in time (�);
interaction between time and treatment (�); plus some random
effects (�):

yijk � � � � j � � i � � ij � � ijk, [1]

where the index i refers to the data set (N or T); the index j refers
to time (j � 1, 2, 4, 8, or 16 h); and the index k refers to the
replication of the experiment for a fixed condition and time (k �
experiment 1, 2, or 3). Probe sets with a P value corresponding
to the � factor �0.05 were considered to be significantly affected
by the treatment (i.e., activation of c-myc by tamoxifen). A total
of 1,191 genes were selected with this criterion. This subset of
selected probes enhances the differences between the N and T
networks that we observe, but the results are similar even if
considering the whole data set.

The gene expression values used for the analysis were obtained
by averaging over the three experiments (yij � 1�3�kyijk) to
reduce the effects of noise in the expression level measurements.

Network Construction: Correlation-Based Model. In the correlation-
based model, the similarity measure for the expression dynamics
of two genes within the same data set is given by the correlation
between the two expression-level time series. Hence, for a given
data set, if xlj is the expression level of a gene with label l at time
j, then the similarity between two genes with labels l and r,
respectively, is given by:

clr �
� j�x lj � � l� �x rj � � r�

	 l	r
, [2]

where �l and �r are the averages in time of the expression levels
for the two genes, and 	l and 	r are their standard deviations.
The correlation approach can be motivated by the hypothesis
that genes belonging to the same activation (or inhibition)
pathway should present a similar (or opposite) expression profile
in time. The adjacency matrix characterizing the network was
obtained by considering only the clr coefficients whose absolute
value exceeded a threshold fixed between 0.95 and 0.99. The
results shown in this article were obtained for a threshold equal
to 0.98. These coefficients were set equal to 1, producing a
symmetric adjacency matrix alr. For each gene a connectivity
degree k was defined as the total number of genes it was
connected to, i.e., k(l) � �r�l alr.

Network Construction: LMM. In the LMM, the expression level of
a gene at a given time tj	1 is modeled as a linear combination of
the expression levels of all genes at the previous time tj. Because
measurements were not performed at equally spaced times, we
interpolated the time series by using a spline interpolation to
generate a total of n � 17 equally spaced points in time [an
alternative procedure would require an optimization technique
such as simulated annealing (4)]. The model can be expressed in
matrix form as follows:

�x�1 x�2· · ·x�N�
Ç

Xt	1

� M�x�0 x�1· · ·x�N�1�
Ç

Xt

, [3]

where x�j is a column vector of the expression levels for all genes
at time tj (the index i relative to the data set has been dropped
for convenience). Because the number of genes is larger than the
number of time points, Eq. 3 does not have a unique solution. A
common approach is to solve it by using the Moore–Penrose
generalized matrix inverse Xt

	 of Xt (a unique pseudoinverse
matrix obtained by including additional constrains) via its sin-
gular value decomposition (4) such that:

M � Xt	1X t
	.

Because the resulting matrix M is in general not symmetric, we
applied a symmetrization procedure by averaging the corre-
sponding off-diagonal coefficients (other symmetrization tech-
niques lead to similar results in terms of network properties).
Computation of the adjacency matrix and gene connectivity
from the symmetrized M matrix was performed in the same
manner as in the correlation-based model, but the threshold was
set as the value corresponding to the 95th percentile.

Validation. Time reshuffling was used to test the time sequence
dependence of the results obtained by the two techniques. By
randomly shuffling the time series for each gene separately, time
relationships between expression levels are broken, but the mean
and standard deviation for each gene are unaltered. Properties
of the gene network that truly depend on the expression level

Fig. 1. Correlation applied to N and T data sets. (Upper) Distribution of the
correlation coefficients for the subset of 1,191 probe sets selected by two-way
ANOVA for the N data set (Left) and the T data set (Right). (Lower Left)
Histogram of p(k) for the network obtained from the N data set. (Inset) A log
normal plot of the same distribution fitted with a Gaussian distribution of
same mean and variance. (Lower Right) Histogram of p(k) for the T data set.
(Inset) A log-log plot of the same distribution.

Table 1. Main properties of the N and T networks obtained by
the correlation method

Parameters N T

kmin 0 0
kmax 17 99
Mean, k 4.53 23.44
Standard deviation, 	(k) 2.61 23.97
Skewness �(k) 0.89 1.16
Clustering coefficient c(k) 0.43 0.45
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dynamics should be significantly affected by a random shuffling
in time.

Results
When c-Myc is activated by tamoxifen stimulation, the activity
profile of the probe sets clearly changes into a strongly correlated
regime. These findings are reflected in the histograms of the
correlation coefficients for the N and T data sets (Fig. 1) and in

the main parameters of the connectivity distributions obtained
from the corresponding adjacency matrices (Table 1). For the T
data set, the number of coefficients close to 	1 or �1 increases
significantly. This finding is an indication that many of the 1,191
genes that were affected mostly by tamoxifen stimulation in their
expression levels over time became either strongly correlated or
anticorrelated.

Both networks appear to be highly clustered (Table 1), as
compared with a random network with the same number of

Table 2. c-Myc target genes extracted from the selected 1,191
probe sets

GenBank Name Description

D13921 Acat1 Acetyl-coenzyme A acetyltransferase 1
J02752 Acox1 Acyl-coA oxidase
AA799466 Ak2 Adenylate kinase 2
M73714 Aldh3a2 Aldehyde dehydrogenase family 3,

subfamily A2
M60322 Aldr1 Aldehyde reductase 1
AI177096 Aprt Adenine phosphoribosyl transferase

transferase (APRT)
U07201 Asns Asparagine synthetase
U00926 Atp5d ATP synthase, F1 complex, delta subunit
At4g36870 Blh2 BEL1-like homeobox 2 protein
M81681 Blvra Biliverdin reductase A
AA859938 Bnip31 BCL2/adenovirus E1B 19-kDa-interacting

protein 3-like
AI178135 C1qbp Complement component 1, q subcomponent

binding protein
L24907 Camk1 Regulator of G-protein signaling 19
U53858 Capn1 Calpain 1
U53859 Capns1 Calpain, small subunit 1
D89069 Cbr1 Carbonyl reductase 1
AA891207 Cd36l2 CD36 antigen (collagen type I receptor,

thrombospondin receptor)-like 2
D26564 Cdc37 Cell division cycle 37 homolog
L11007 Cdk4 Cyclin-dependent kinase 4
AB009999 Cds1 CDP-diacylglycerol synthase
U66470 Cgref1 Cell growth regulator with EF hand

domain 1
M15882 Clta Clathrin, light polypeptide (Lca)
D28557 Csda Cold shock domain protein A
AI008888 Cstb Cystatin B
AJ000485 Cyln2 Cytoplasmic linker 2
U95727 Dnaja2 DnaJ (Hsp40) homolog, subfamily A,

member 2
U08976 Ech1 Enoyl coenzyme A hydratase 1
D38056 Efna1 Ephrin A1
U19516 Eif2b5 Initiation factor eIF-2Be
X03362 Erbb2 v-erb-b2 oncogene homolog 2
U36482 Erp29 Endoplasmic retuclum protein 29
J04473 Fh1 Fumarate hydratase 1
AI231547 Fkbp4 FK506 binding protein 4 (59 kDa)
M81225 Fnta Farnesyltransferase, CAAX box, �

AI136396 Fntb Farnesyltransferase � subunit
AA891857 Fxc1 Fractured callus expressed transcript 1
AA892649 Gabarap �-Aminobutyric acid receptor associated

protein
J03588 Gamt Guanidinoacetate methyltransferase
D30735 Gfer Growth factor, erv1-like
U38379 Ggh �-Glutamyl hydrolase
AA944423 Gm130 cis-Golgi matrix protein GM130
AA799779 Gnpat Acyl-CoA:dihydroxyacetone phosphate

acyltransferase
U62940 Grpel1 GrpE-like 1, mitochondrial
X04229 Gstm1 Glutathione S-transferase, � 1

Table 2. (continued)

GenBank Name Description

AB008807 Gsto1 Glutathione S-transferase 
 1
D16478 Hadha Hydroxyacyl-Coenzyme A

dehydrogenase�3-ketoacyl-Coenzyme A
thiolase�enoyl-coenzyme A hydratase
(trifunctional protein), � subunit

AA892036 Hdac6 Histone deacetylase 6
X52625 Hmgcs1 3-Hydroxy-3-methylglutaryl-coenzyme A

synthase 1
D14048 Hnrpu System N1 Na	 and H	-coupled glutamine

transporter
S57565 Hrh2 Histamine receptor H
AA957923 Mcpt2 Mast cell protease 2
U62635 Mrp123 Mitochondrial ribosomal protein L23
AF104399 Msg1 Melanocyte-specific- gene 1 protein
X93495 Mtap6 Microtubule-associated protein 6
M55017 Ncl Nucleolin
AF045564 Ndr4 N-myc downstream regulated
AA874794 Ngfrap1 Nerve growth factor receptor associated

protein 1
AA998882 Nopp140 Nucleolar phosphoprotein p130
J04943 Npm1 Nucleophosmin 1
M25804 Nr1d1 Nuclear receptor subfamily 1, group D,

member 1
AB015724 Nrbf1 Nuclear receptor binding factor 1
AA800679 Ns Nucleostemin
D13309 Nsep1 Nuclease sensitive element binding protein 1
X82445 Nudc Nuclear distribution gene C homolog
U03416 Olfm1 Olfactomedin-related ER localized protein
U26541 Pdap1 PDGFA-associated protein 1
M80601 Pdcd2 Programmed cell death 2
S82627 Pem Placentae and embryos oncofetal gene
AI169417 Pgam1 Phosphoglycerate mutase 1
AA998446 Pitpnb Phosphotidylinositol transfer protein, �

X71898 Plaur Plasminogen activator, urokinase receptor
L25331 Plod Procollagen-lysine hydroxylase
S55427 Pmp22 Peripheral myelin protein 22
AJ222691 Pold1 DNA polymerase delta, catalytic subunit
AB017711 Polr2f Polymerase II
Z71925 Polr2g RNA polymerase II polypeptide G
AA892298 Ppil3 Peptidylprolyl isomerase (cyclophilin)-like 3
Y17295 Prdx6 Peroxiredoxin 6
D85435 Prkcdbp PKC-delta binding protein
D26180 Prkcl1 Protein kinase C-like 1
AA891871 Prpsap1 Phosphoribosylpyrophosphate

synthetase-associated protein
D10756 Psma5 Proteasome subunit, � type 5
D10755 Psma6 Proteasome subunit, � type 6
U03388 Ptgs1 Prostaglandin-endoperoxide synthase 1
L27843 Ptp4a1 Protein tyrosine phosphatase 4a1
U53475 Rab8b GTPase Rab8b
AA956332 Rabep1 Rabaptin 5
L19699 Ralb v-ral oncogene homolog B
U82591 Rcl Chromosome 6 open reading frame 108
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nodes and average connectivity degree. The T connectivity
degree distribution is much more broad and skewed, whereas the
N connectivity degree distribution is peaked around its average
value.

Considering the change in connectivity as an index for ranking
the involvement of a gene in the c-Myc activation cascade, we
looked at the distribution of the differences in connectivity of the
probe sets (Table 2 shows a list of genes extracted from the upper
tail of such a distribution). Application of a random permutation

to the time series confirmed that this results depend on the exact
time ordering of the gene expression levels (Fig. 2). Some
features of the network structure, like the assortative mixing
property (15) and the differences between the N and T data sets,
are completely disrupted by time shuffling, leading to networks
very similar to those obtained starting from randomly generated
data of the same dimensionality, mean, and variance (data not
shown).

In comparison, the gene network constructed with the LMM
appears to be completely insensitive to the effects of tamoxifen.
The p(k) distribution for N and T follows a power-law function
p(k) 
 k�� with a very similar exponent, �N � 2.41 � 0.16 and
�T � 2.41 � 0.12, respectively. There is no evident change
between the T and N networks. Moreover, the main properties
of the N and T networks, namely the power-law exponent and
dissassortative mixing property (15), are left unchanged by time
reshuffling. Thus, even if the individual genes connectivity
degree changes from the N and T data sets, the insensitivity to
time shuffling casts some doubts on the reliability and signifi-
cance of such changes in the LMM.

Discussion
A correlation-based model was used to identify a gene interac-
tion network, based on a time series of gene expression mea-
surements, resulting from the acute activation of an engineered
c-Myc transcription factor in a c-myc null cell line. The global
properties of the resulting network were strongly affected by
c-Myc activation. The comparison between the networks ob-
tained with the different data sets led to the identification of
unique c-Myc targets. The list of genes found with this method
contains some of the genes found in ref. 14 but also contains
many genes that were not found before to our knowledge,
pointing to the possibility that the potential list of c-Myc targets
may be much larger than what was previously observed.

These network properties were disrupted by time reshuffling
of the data, confirming the hypothesis that they refer to real
information contained in gene expression dynamics.

The same analysis was performed on the gene network
obtained with a LMM, which has been proposed in the past for
the analysis of time-dependent genomic measurements. The
global features of this network did not significantly change
neither in response to c-Myc activation, nor after time reshuf-
f ling of the data, suggesting that they depend on some global
properties of the data set distribution and not on the exact details
of gene expression dynamics.

Table 2. (continued)

GenBank Name Description

X62528 Rnh1 Ribonuclease�angiogenin inhibitor
X78327 Rpl13 Ribosomal protein L13
X78167 Rpl15 Ribosomal protein L15
M20156 Rpl18 Ribosomal protein L18
M17419 Rpl5 Ribosomal protein L5
X62145 Rpl8 Ribosomal protein L8
X53377 Rps7 Ribosomal protein S7
AB002406 Ruvbl1 RuvB-like protein 1, TIP49
AA799614 Sirt2 Sirtuin 2 (SIRT2 homolog)
D12771 Slc25a5 Solute carrier family 25, adenine nucleotide

translocator, member 5
AF015305 Slc29a2 Solute carrier family 29, member 2
U60882 Hrmtl12 Heterogeneous nuclear ribonucleoprotein

methyltransferase-like 2
U68562 Hsp60 Heat shock protein 60 (liver)
M86389 Hspb1 Heat shock 27-kDa protein 1
U68562 Hspe1 Heat shock 10-kDa protein 1
X65036 Itga7 Integrin � 7
X17163 Jun v-jun sarcoma virus oncogene homolog
M75148 Klc1 Kinesin light chain 1
M19647 Klk7 Kallikrein 7
L38644 Kpnb1 Karyopherin � 1
D90211 Lamp2 Lysosomal membrane glycoprotein 2
U19614 Lap1c Lamina-associated polypeptide 1C
M69055 Lgfbp6 Insulin-like growth factor binding protein 6
AI234060 Lox Lysyl oxidase
M61177 Mapk3 Mitogen-activated protein kinase, ERK1
AA899253 Marcks Myristoylated alanine-rich protein kinase

C substrate
AI011498 Smarcd2 SWI/SNF-related, matrix-associated,

actin-dependent regulator of
chromatin, subfamily d, member 2

AF007758 Snca Synuclein, �

AI030175 Sord Sorbitol dehydrogenase
D37920 Sqle Squalene epoxidase
J05035 Srd5a1 Steroid 5 �-reductase 1
Y15068 Stip1 Stress-induced-phosphoprotein 1

(Hsp70�Hsp90-organizing protein)
D12927 Tcea2 Transcription elongation factor A2
M58040 Tfrc Transferrin receptor
M61142 Thop1 Thimet oligopeptidase 1
AB006451 Timm23 Translocase of inner mitochondrial

membrane 23 homolog
U09256 Tkt Transketolase
S63830 Vamp3 Vesicle-associated membrane protein 3
U14746 Vhl von Hippel-Lindau syndrome homolog
AA875455 Wig1 p53-Activated gene 608
U96490 Yif1p Yip1p-interacting factor
S55223 Ywhab Tyrosine 3-monooxygenase, tryptophan

5-monooxygenase activation protein,
� polypeptide

Probes were chosen as those that mostly changed their connectivity degree
between the N and T data sets.

Fig. 2. Effects of data reshuffling on LMM and correlation coefficients
distribution obtained from the 1,191 selected probe sets. Dashed lines indicate
original data. Solid lines indicate reshuffled data. (a) N data set, LMM. (b) T
data set, LMM. (c) N data set, correlation. (d) T data set, correlation.
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