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Abstract

Force-based manipulation control strategies are evolving as a primary mechanism in robotics 

for performing the fine manipulation tasks typical within manufacturing assembly. The ability 

to systematically compare robotic system performance and quantify true advancement in fine 

manipulation is of utmost importance. Accordingly, the objectives of this paper are threefold: 1) 

creation of a peg-in-hole test method with associated performance metrics and a systematic data 

analysis strategy for performance benchmarking, 2) first demonstration of a recently developed 

manipulation controller piloting a robotic hand and its paired task-level logic for completing the 

peg-in-hole test, and 3) exemplifying the performance benchmarking technique by comparing two 

approaches for robotic insertions—the previously mentioned compliant hand, stiff arm system, 

and a stiff gripper, compliant arm system. Analyses reveal that the unconventional hand system 

can perform at and sometimes above the level of the gripper system in the developed peg-in-hole 

scenario. Moreover, the hand’s active control of the peg’s full Cartesian pose reduces positional 

error sensitivity and minimizes exerted insertion forces, highlighting the strategy’s potential for 

fine manipulation tasks. Results indicate that robotic arms equipped with highly articulated and 

sensorized robotic hands can provide a truly realizable solution path for performing peg-in-hole 

tasks.
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I. INTRODUCTION

The ability to reliably perform part insertions, a relatively simple task for humans, remains 

a challenging problem for robotic systems. Two components are necessary to overcome this 

problem, including a wide adoption of benchmarks that objectively compare and contrast 

findings by active researchers in the field, and the development of innovative solutions in 

robotic manipulation.

One necessary component for performance benchmarking is a physical test with predefined 

artifacts, parameters, rules, initial conditions, and a data analysis procedure. Similar to other 

robotic benchmarks [1], [2] and robotic hand tests from the National Institute of Standards 

and Technology [3], this research effort created an easily replicable physical test with data 

analytics to help gauge the performance of robotic systems for insertion operations. This 

test is based on a peg-in-hole task, a particularly relevant task for industrial robots as 

it accounts for over 35 % of all assembly operations [4]. Others have also created peg-in-

hole benchmarking tests in the field of teleoperation [5]–[9], and human rehabilitation and 

prosthetics [10]–[12]. These existing benchmarking tests possess one or some combination 

of the following shortcomings:

1. arbitrary design of test artifacts,

2. completion time (CT) as sole performance measure,

3. prohibitive cost of designed tests through either (or both) the use of force 

measurement or custom machined parts,

4. incomplete suite of relevant statistical algorithms that can be applied to both 

continuous and discontinuous types of data, and

5. excluding preventative measures for correlated performance samples.

In contrast, the peg-in-hole test highlighted herein was designed with reference to data 

acquired from humans in performing assembly operations [13]. The artifacts are designed 

for low-cost replication through three-dimensional (3-D) printing. Both CT and probability 

of success (PS) are reported as important and inexpensively obtainable performance 

measures. Finally, a carefully selected set of nonparametric statistical algorithms is 

suggested for analyzing the performance data, while the underlying assumption of sample 

independence for valid analyses is guaranteed through applying randomly generated hole 

position errors during testing.

In terms of bestowing robotic systems with the fine motor skills required for 

insertion processes, one promising avenue includes sophisticated sensing and control 

of robotic hands. At its core, multifingered grasping and manipulation operations can 

be mathematically cast by seeking to control the Cartesian pose of an object in the 

environment. Typical approaches to this problem are either kinematic [14], [15] or kinetic 
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[16], [17] in nature. In order to test the theory that complex robotic hand technology is 

approaching readiness levels for application to real-world problems, this work presents 

experimental results on a recently developed force-based manipulation controller [18].

Two main robotic systems were assessed using the developed test method. One system 

used a compliant robotic hand with the aforementioned manipulation control strategy. 

The other system leveraged more standard solutions to peg-in-hole that involve searching 

with a rigid end-effector coupled to a compliant or force-controlled arm [19]. Since both 

approaches afford system compliance for insertion operations, the case study herein seeks 

to identify and quantify statistically significant performance differences between the two 

viable strategies. Systematic statistical analyses reveal that the approach leveraging a force-

controlled robotic hand can compete with standard approaches to peg-in-hole insertion and, 

in some circumstances, can exceed the performance of those approaches.

In order to methodically cover the important aspects of this research, the paper is organized 

as follows. Section II discusses the peg-in-hole test method, metrics, and data analysis 

routines, Section III discusses the robotic systems and strategies used to solve the peg-in-

hole test, Section IV gives an in-depth analysis of system performance, and Section V offers 

conclusive statements derived from the data analyses along with final remarks regarding the 

robotic systems.

II. PEG-IN-HOLE TEST METHOD AND PERFORMANCE ANALYSIS STRATEGY

A. Design and Setup

To represent a typical peg-in-hole assembly task, the test is set up, as shown in Fig. 1. 

The holes are spaced approximately 35 cm apart, which is the upper threshold for primary 

assembly processes (i.e., operations that directly contribute to the formation of a product) 

[20]. The pegs and holes were designed to be 3-D printable to reduce manufacturing 

costs and promote test replication.1 Acrylonitrile butadiene styrene (ABS) filament is 

recommended for its larger impact strength. The peg diameter d and hole diameter D
are chosen to give a dimensionless clearance c = (D − d)/D = 0.02. This clearance defines 

a sufficiently difficult insertion task, as it is small enough to influence a human assembly 

worker’s insertion time [13].

As a reference point, the classification tables from the Boothroyd–Dewhurst design-for-

assembly (DFA) method [13] can be used to estimate human-level performance. DFA 

methods are used to reduce the overall cost of an assembly by minimizing the number 

of discrete operations, the number of parts, and the complexity of the remaining operations. 

As part of its optimization approach, the Boothroyd–Dewhurst DFA method has developed 

classification tables that identify the fundamental operations within an assembly and 

quantify their difficulty using human CTs. These CTs represent the average time taken 

by a human to perform each operation and are based on empirical data that were collected 

over a period of years [21]. The Boothroyd–Dewhurst DFA method is the most widely 

1CAD models for the test artifacts are freely available at https://www.nist.gov/programs-projects/performance-metrics-and-
benchmarks-advance-state-robotic-assembly
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used and accepted DFA method [22], as its consideration of both handling factors (e.g., 

part size, weight, symmetry, and properties) and insertion factors (e.g., insertion symmetry, 

ease of reach, insertion resistance, alignment, positioning, holding, and fastening) enables 

the accurate estimation of overall assembly time. Accordingly, the Boothroyd–Dewhurst 

classification tables provide a means to reasonably estimate human performance without the 

need for task-specific testing and analysis. In this scenario, the classification tables identify 

the peg insertion task as a single “01” insertion operation, which yields an estimated total 

CT of 2.5s.

The test initializes with two pegs placed into two holes. The goal is to cyclically transfer a 

peg into the next available hole. The planar hole location prior to every insertion attempt is 

intentionally misaligned by adding positional offsets in both the X- and Y-directions. These 

offsets represent positional uncertainty (from control, calibration, or perception error) and 

were drawn from two Gaussian distributions: 1) zero mean and 1 mm standard deviation 

(σ1), and 2) zero mean and 2 mm standard deviation (σ2). The test was conducted with 60 

attempted insertions, where the X–Y positional error was duplicated across both systems for 

each insertion attempt.

The application of positional error is an important aspect of this test method for 

multiple reasons. First, its presence introduces stochasticity into robot’s performance data 

(many statistical tests assume sufficiently independent, uncorrelated samples). Furthermore, 

controlling the positional error allows for performance benchmarking by easily subjecting 

different robotic systems to the same positional errors, or subjecting one robotic system to 

various levels of positional error.2

B. Performance Measures

Two systemic metrics have been employed to capture the performance of a robotic system 

during this task-level assessment.

1) Completion Time (CT): The time required to successfully complete a peg insertion. 

This metric incorporates the time required to align and insert the peg. Peg acquisition and 

transportation times were constant throughout testing and are not included in the presented 

CT. This prevents the CT being subjugated by robot arm motions and provides a truer 

reflection of the performance of each insertion strategy.

2) Probability of Success (PS): The probability of a successful peg insertion. The 

PS value is calculated by relating the number of samples, the number of successes, and a 

confidence level [23]. This measure employed a 95 % confidence level, a standard setting 

used within the industry [24].

C. Comparative Statistics

The performance measures for this test involve the statistical analysis of the measured CT 

and PS across all systems.3

2The applied positional error and returned robotic performance data can be downloaded from https://www.nist.gov/programs-projects/
performance-metrics-and-benchmarks-advance-state-robotic-assembly
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1) Continuous Data: For the CT data, an autocorrelation coefficient of lag one (r1) is 

calculated to verify that the collected samples are statistically independent, an underlying 

assumption for the subsequent tests. Next, a Kolmogorov–Smirnov (KS) test is conducted 

to determine whether or not the distributions of two CT datasets are significantly different. 

Distribution tests are useful first-line indicators for detecting differences in datasets. They 

analyze the overall shape of the datasets instead of just the first or second statistical 

moments. Following, a Levene test with the Brown–Forsythe statistic is used to analyse 

the variances (σ2) of two CT datasets (ANOVA). This particular ANOVA formulation 

generalizes well as it provides robustness against non-normal data [25]. Depending on the 

outcome of the ANOVA test, the appropriate variant of the t-test is applied to determine if 

there is a difference in the sample means (μ) of two CT datasets.

2) Discontinuous Data: Since the data for calculating PS values are discrete by 

nature (number of successes and failures), the Kolmogorov–Conover (KC) algorithm [26] 

(designed for analyzing ordinal datasets) is used to determine if a statistical difference exists 

between two sets of pass–fail data. The statistical tests were conducted across the datasets at 

a 95 % confidence level.

III. ROBOTIC SYSTEMS AND SOLUTIONS

In general, robots should employ some formulation of compliance or force control when 

making contact with their environment. Therefore, two distinct force control strategies 

were compared using the defined performance benchmarking technique: 1) a 7 degree-of-

freedom, Cartesian position-controlled arm with an in-hand object Cartesian impedance-

controlled robotic hand (system 1); and 2) a 7 degree-of-freedom, Cartesian impedance-

controlled arm with a pneumatic, parallel gripper (system2), as shown in Fig.2. System 1 

achieves compliance through the robotic hand, while system 2 achieves compliance through 

the robotic arm. The same robotic arm was used, but with a different position controller.

A. System 1

1) Hand Mechanics and Sensory Suite: The robotic hand has four fingers, 

16 independently actuated joints with rotary encoders, and three 6-axis force–torque 

transducers at the fingertips (see Fig. 3). The sensing suite includes a touch-based, 6-DoF 

object pose estimation algorithm, 3-D fingertip force, 3-D fingertip normal force, and 3-D 

fingertip center of pressure. For brevity, the custom algorithms providing these sensing 

modalities are not discussed here. All sensing and control rates operated at a nominal 333 

Hz.

2) Multifingered Manipulation Controller: A key feature for system 1 is the hand’s 

ability to perform in-hand peg manipulation, not just grasping. Much like the intuition 

behind Cartesian control for existing robotic manipulators, the manipulation controller for 

the robotic hand was sculpted from the desire to control the Cartesian pose of an object. 

3Software for statistical tests is freely available at https://www.nist.gov/el/intelligent-systems-division-73500/performance-data-
analytics
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The implemented controller is a slightly modified version of the one developed in [18] and 

essentially enables impedance control of the object via finger Cartesian force control. Given 

a desired and measured Cartesian position profile for the object rcd ∈ ℝ6 × 1 and rc ∈ ℝ6 × 1, 

respectively, the tracking error signal is

e ≜ rcd − rc .

(1)

The manipulation controller calculates the desired Cartesian force profile f jd ∈ ℝ3 × 1 for 

every finger j, j = 1, …, k (k = 3 since only three of the four fingers were used) from

f jd = f njunj + f fj1ufj1 + f fj2ufj2

(2)

where f nj ∈ ℝ3 × 1 is the jth unitized contact normal force, and f fj1 ∈ ℝ3 × 1 and f fj2 ∈ ℝ3 × 1

are the jth measured friction force basis vectors. The force–torque transducers were 

calibrated to resolve 3-D contact points on the surface of the fingertip. There are many 

strategies for performing this calibration that can be analytical [27] or numerical in nature. 

Coupling the knowledge of contact location with the known geometry of the fingertip, 

one can readily calculate the directionality of the normal force at the point of contact. 

There are several options for calculating friction force basis vectors, but in this case, 

f fj1 = f nj × Z and f fj2 = f nj × f fj1, where Z is the Z-axis of the sensor’s coordinate system (see 

Fig. 4). Furthermore, unj, ufj1, and ufj2 ∈ ℝ are the signed force magnitudes in their respective 

directions, as indicated in (2). Control laws are explicitly established for Un ∈ ℝk × 1 and 

Uf ∈ ℝ2k × 1 where

Un = un1, …, unk
T

(3)

Uf = uf11, uf12…, ufk1, ufk2
T .

(4)

The control laws are

Un = γ1Sig Bn
T kpe + kdė − γ2Ik1 + γ3Ik1

(5)

Uf = Bf
T kpe + kdė

(61)
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where Bn ∈ ℝ6 × k and Bf ∈ ℝ6 × 2k are the normal and friction grasp matrices, γ1, γ2, and 

γ3 are positive control shaping scalars, kp and kd are the stiffness and damping parameters, 

Sig( . ) is the sigmoid function of vector elements, and Ik1 ∈ ℝk × 1 is a vector of ones. For 

this application, the control shaping scalars were set as γ1 = 4, γ2 = 5, γ3 = 0.35. This ensures 

that each finger emits at least 0.35 N of normal force and at most 4.35 N of normal force 

on the object, the minimum and maximum forces any one finger could reliably control 

based on finger strength and force sensing. The control gains were set as kp = 0.4 N/mm and 

kd = 0.02 N·s/mm for translational motion, and kp = 0.2 N/mm·rad and kd = 0.02 N·s/mm·rad 

for rotational motion. These values were hand-tuned for stable grasping and manipulation 

operation of the peg by the hand (although regions of stiffness and damping values for stable 

control exist). Henceforth, the performance of this system was only reported with these 

preset parameter values. Note, (6) has an accompanying projection algorithm to prevent 

issuing friction forces outside the contact friction cone. In this particular case, the coefficient 

of static friction μs was set to 0.3, a reasonable value for rubber and plastic (materials 

of fingertip and peg). Furthermore, rc is continuously estimated by the hand’s forward 

kinematics. Refer to [18] for more information on this control scheme.

Once f jd is calculated for every finger, these commands are issued to an underlying Cartesian 

force controller that operates for each finger, individually (see Fig. 5). For brevity, details 

regarding the finger force controller are not discussed here.

3) Task-Level Control Strategy: System 1 conducted the test with the hand actively 

controlling the pose of the peg using the aforementioned sensing and control technology 

while coordinating motions with the arm (see Fig. 6). All motions are commanded and force 

measurements made with respect to the hand’s coordinate system (see Figs. 3 and 6 for 

coordinate system placement). The insertion strategy is enumerated as follows.

1. Hand tilts the peg 35° about the Y-axis to increase the likelihood of a collision 

between the edge of the peg and the edge of the hole during the descent [see Fig. 

6(a)].

2. Arm translates along the positive Z-axis until a resultant force of greater than 

0.1 N is measured by calculating the magnitude of the sum of the contact forces 

across the three fingertip load cells. Upon sufficient contact, if the magnitude 

of the resultant contact force is not greater than 0.085 N in either the X- or 

Y-axes, then randomly prod within a 4 mm × 4 mm search grid until this force 

requirement is met. This ensures that the peg is sufficiently engaged with the 

hole for further guidance [see Fig. 6(b) and (c)].

3. Arm translates by steps of −2 mm in the X-axis until the force in the X-direction 

is less than −0.06 N. Meanwhile, the arm also translates by 2 mm in the positive 

Y-axis if the resultant contact force in the Y-axis is less than −0.025 N and vice 

versa. Combined, these objectives ensure the tilted peg straddles the hole such 

that a subsequent negative rotation about the Y-axis and arm translation will 

partially insert the peg [see Fig. 6(c) and (d)].
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4. Hand rotates the peg −35° about the Y-axis, while simultaneously, the arm 

translates the hand 15 mm in the X-axis and 4 mm in the Z-axis, which promotes 

a partial peg insertion state [see Fig. 6(e)].

5. Arm and hand each translate the peg 1 mm in the Z-axis until full insertion 

unless one of the following events occur. If the peg’s rotation about the X-axis is 

greater than 5° or less than −5°, then the arm translates −1 or 1 mm in the Y-axis, 

respectively. Likewise, if the rotation about the Y-axis is greater than 5° or less 

than −5°, then the arm translates 1 or −1 mm in the X-axis. Furthermore, if the 

resultant contact force is positive in the X- or Y-axes, then the arm translates 

−1.5 mm in the respective axis. Similarly, a negative contact force in the X- or 

Y-axes results in a 1.5 mm translation in the respective axis. Exploiting both 

kinematic- and kinetic-based corrections promote continual peg–hole alignment 

during insertion while also minimizing contact forces [see Fig. 6(f)].

Note, this manipulation strategy for insertion is agnostic to the number of peg–hole contacts 

(illustrated in Fig.6) since the insertion process relies solely on the resultant contact force 

and peg pose for guidance. In fact, the application of perception error and prodding by 

system 1 during the insertion process yielded a variety of contact scenarios between the 

peg and the hole. For instance, the state depicted in Fig. 6(d) yielded up to three points of 

contact.

B. System 2

1) Task-Level Control Strategy: System 2 conducts the peg-in-hole test by coupling 

the arm’s impedance properties with one of three search routines: spiral, random, and quasi-

random (see Fig. 7). During a search, the peg remains stationary within the gripper, while 

the robot arm is in Cartesian impedance control. The robot arm’s stiffness and damping 

along the Z-axis is reduced, and the robot attempts to position the peg 10 mm below the 

surface of the block. If the peg and hole are not aligned, a contact force is generated and 

maintained during each search routine until the peg and hole are aligned. At this point, 

the robot’s desired and measured positions match, and the control program identifies a 

successful insertion. The performance of system 2 was reported with a Cartesian stiffness of 

2000 N/m in the X- and Y-axes (defaults), 1000 N/m in the Z-axis, and 200 N·m/rad about 

all axes (defaults).

2) Search Region: During peg insertion, a search region is defined based on the added 

positional error. To encompass the actual hole location, the radius of the search region rs is 

set to 4σ, where σ is the standard deviation of the positional error. As the positional error 

follows a bivariate normal distribution with zero mean, this radius ensures that the hole will 

lie within the search region with a confidence level of 99.97 % [28]. Accordingly, rs for 

positional error σ1 and σ2 is 4 and 8 mm, respectively. For the random and quasi-random 

search routines, a square search region with side length 2rs is defined.

3) Spiral Search Routine: The spiral search is commonly used within the industry 

as it is an optimized search strategy for two-dimensional environment. It is particularly 

useful for Gaussian distributions, where the beginning of the spiral path coincides with 
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the distributions mean [29]. When performing this search routine, system 2 follows an 

Archimedean spiral—a curve generated by moving away from a point at constant linear and 

angular velocity. In polar coordinates, the spiral is defined by

r = aθ

(7)

where a is a real number and corresponds to the distance between successive turnings. The 

spiral search path is optimized for a peg-in-hole insertion operation by setting this distance 

to the insertion clearance c [30]. This minimizes the search path distance while still ensuring 

that the hole lies along the search path. The spiral is broken into ten motion waypoints per 

turn to accommodate command rate restrictions (see Fig. 7).

4) Random Search Routine: The random search is a particularly simple yet effective 

search strategy, as exemplified by its use by the majority of commercially available 

mobile robots [31]. When performing this search routine, system 2 attempts to insert the 

peg by moving the peg randomly within the defined search region. This is achieved by 

programming the robot to move to uncorrelated, randomly generated waypoints of uniform 

probability in both the X- and Y-directions.

5) Quasi-Random Search Routine: The quasi-random search routine utilizes a quasi-

random sequence to generate the insertion waypoints. Stated simply, a quasi-random 

sequence fills a given space more uniformly than uncorrelated random points by 

subrandomly generating points that minimize the maximum distance between all points 

[32]. For this test, the points are generated using the two-dimensional Sobol sequence. This 

sequence is generated number-theoretically so that successive points fill the gaps in the 

previously generated distribution. The code for generating the Sobol sequence is presented 

and discussed in [32].

IV. PERFORMANCE COMPARISONS

A. Cross-System Comparisons

Both systems performed the peg-in-hole test at the two defined levels of positional error, and 

numerical results are reported in Tables I and II. Analysis of performance data follows for all 

the aforementioned statistical tests. Comparisons are made between system 1 and all variants 

of system 2.

1) Autocorrelation, r1: At 60 samples and 95% confidence level, an r1 value beyond 

±0.25 indicates detectable correlation in the data. System 2 under the spiral search routine 

for σ1 exhibited the largest r1 value of 0.15, followed by system 2 (quasi-random) under 

σ2 with an r1 value of −0.11. This heightened correlation of the former is likely a result 

of the structured nature of the search routine coupled with low positional error. Despite 

this observation, all datasets are sufficiently uncorrelated with low r1 values, satisfying an 

underlying assumption for all subsequent statistical tests.
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2) Distribution, KS: The distribution of performance data for system 1 was statistically 

different from that of system 2 across all search variants for σ1 and σ2 positional error 

levels. These preliminary indicators suggest that there is an increased chance—though not 

guaranteed—of detecting a difference in sample means or variances. For example, statistical 

differences were observed in both sample means and variances between system 1 and system 

2 (quasi-random) for σ1. In contrast, no statistical differences were observed in either sample 

means and variances between system 1 and system 2 (random) for σ1.

3) Sample Means, μ: For a positional error level of σ1, the mean of CT for system 

1 was detectably higher than that of system 2 (spiral), not different than that of system 2 

(random), and detectably higher than that of system 2 (quasi-random). For a positional error 

level of σ2, the mean of CT for system 1 was detectably lower than that of system 2 (spiral), 

not different than that of system 2 (random), and detectably higher than that of system 2 

(quasi-random).

4) Sample Variances, σ2: For a positional error level of σ1, the variance of CT for 

system 1 was significantly larger than that of system 2 (quasi-random). By inspection, the 

variance of CT for system 2 (spiral) appears significantly smaller than that of system 1, but 

this is statistically not the case. For a positional error level of σ2, the variance of CT for 

system 1 is significantly smaller than that of system 2 (spiral), but also significantly larger 

than that of system 2 (quasi-random).

5) Probability of Success, PS: The probability of inserting a peg for system 1 was 

statistically equivalent to all variants of system 2 for both levels of positional error despite 

the fact that system 1 experienced four failures for σ1 and three failures for σ2, while system 

2 did not experience any failures. Based on KC, system 1 would have to fail at least 

five times to see a significant difference versus system 2 (assuming system 2 does not 

fail) at 60 samples. If one wanted to make the claim that the PS values of system 2 are 

indeed significantly different from those of system 1, then more samples would have to be 

collected.

B. Within-System Comparison for Positional Sensitivity

Another perspective for assessing peg-in-hole capabilities for a robotic system is considering 

its performance sensitivity to positional error. In theory, one should be able to execute this 

peg-in-hole test method at various magnitudes of positional error and create a response 

curve. The curve would be indicative for how robust a robotic system is at handling 

positional error for peg-in-hole problems.

The collected datasets are analyzed once more, except statistical comparisons are made 

within each system at both levels of positional error. The results are reported in Table III. 

A general remark for these results is that all systems were sensitive to positional error since 

there were detectable differences for CT sample distributions, means, and variances.

1) Sample Means, μ: All within-system comparisons yielded statistically significant 

differences in sample means across the two levels of positional error. As shown in Fig. 
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8, system 2 (spiral) is most sensitive to positional error. The mean of system 2 (spiral) 

inflates by a factor of 4.6 across positional levels. System 1 is the least sensitive to positional 

error with its sample mean inflating by a factor of 1.6. System 2 (random) and system 2 

(quasi-random) are approximately as sensitive as system 1 as indicated by the near-parallel 

lines in Fig. 8. At an inflation factor of approximately 2, these systems possess a near 1:1 

scaling in performance with positional error.

2) Sample Variances, σ2: As previously stated, all within-system comparisons yielded 

statistically significant differences in sample variance across the two levels of positional 

error. However, Fig. 8 reveals that system 2 (spiral) and system 2 (random) have the 

greatest variance sensitivity to positional error. In fact, the variance of system 2 (spiral) 

approximately inflates by a factor of 31 with twice the level of positional error. On the 

other hand, system 1 and system 2 (quasi-random) are not nearly as sensitive. The variance 

of system 1 approximately inflates by a factor of 2.6, indicating a near 1:1 scaling with 

positional error.

V. DISCUSSION

Assuming that faster CT’s are preferential, one can make the following arguments thus far 

regarding cross-system comparisons at their fixed control parameters for this peg-in-hole 

task.

1. System 1 and system 2 (random) perform indistinguishably regardless of tested 

positional error levels;

2. System 1 performs worse than system 2 (spiral) for smaller positional error;

3. System 1 performs better than system 2 (spiral) for larger positional error; and

4. System 1 performs worse than system 2 (quasi-random) regardless of positional 

error.

When making within-system comparisons, the following results hold. 1) System 2 (spiral) 

is by far the most sensitive to positional error, and 2) system 1 is the least sensitive to 

positional error (as it exhibits a near 1:1 scaling with the magnitude of positional variability.)

Although not the focus in this work, other factors worth considering are wear-and-tear and 

reconfigurability. During testing, more aggressive peg–hole interactions by system 2 were 

observed than those by system 1. In fact, visible scarring was noticed on the ABS pegs after 

testing with system 2, as shown in Fig. 9. In contrast, system 1 emitted less than 0.5 N 

of force between the peg and hole at all times during the insertion operation through force 

feedback and control. For those applications that require the preservation of surface finishes, 

robotic systems that perform similarly to system 1 are likely more attractive. Finally, since 

an element of system 1 is a dexterous, multifingered hand, it can readily be applied to 

pick-and-place or insertion operations of parts with a greater variety in size and shape 

without the costs associated with end-effector retooling. This capability is not present with 

system 2 with a stiff, parallel gripper.
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VI. CONCLUSION

A peg-in-hole test method with associated metrics was created as a performance 

measurement and benchmarking tool for robotic systems. A thorough statistical analysis 

procedure is presented to help analyze performance data across and within robotic 

systems. The first task-level application of a recently developed sensory-rich and complex 

multifingered control strategy was demonstrated. Applying the peg-in-hole test revealed 

that the hand system solved this insertion task at a comparable level to a more standard 

robot system design that leveraged a compliant or force-controlled arm and a simple gripper 

executing planar search routines. Since parallel grippers are widely used for their simplicity, 

lower costs, mechanical robustness, and effectiveness for many applications, the pathway to 

a well-performing robotic hand system begins with performing competitively with a gripper 

system—a performance point demonstrated in this study.

VII. FUTURE WORK

Future efforts will focus on the development of test methods that target a more diversified 

set of insertion, fastening, and assembly operations using standard parts when available. 

Positional errors will also be applied across full six-dimensional Cartesian space instead 

of the planar case investigated in this study. The test methods will be implemented to 

measure the performance of several force-based robot control systems, including the force-

based manipulation controller discussed herein. Performance improvements to robotic hand 

manipulation are expected as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Peg-in-hole test setup and design specifications.
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Fig. 2. 
Attempted peg insertion by (a) system 1 and (b) system 2.
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Fig. 3. 
Robotic hand of system 1.
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Fig. 4. 
Load cell coordinate system and illustration of normal and friction force basis vectors.
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Fig. 5. 
Multifingered manipulation control architecture.

Wyk et al. Page 19

IEEE Trans Robot. Author manuscript; available in PMC 2024 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 6. 
System 1 task-level insertion process illustrating contact forces.
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Fig. 7. 
Search routines used by system 2 showing first 20 waypoints: (a) Spiral search where 

turning distance equals the insertion clearance c (waypoints constant, turns enlarged for 

clarity), (b) random search (waypoints vary), and (c) quasi-random search (waypoints 

constant). Searches region radius rs derived from the positional error.
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Fig. 8. 
Performance mean and variance sensitivity to positional error.
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Fig. 9. 
Surface condition of a peg prior to testing (left) and after testing with system 2 (right).
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TABLE I

PERFORMANCE MEASURES OF ROBOTIC SYSTEMS ON PEG-IN-HOLE TASK WITH POSITIONAL ERROR σ1

Robotic system r1 KS μ (s) σ2 (s2) PS (%)

System 1 −0.07 11.70 40.57 85.4

System 2 Spiral 0.15 * 7.19* 12.79 95.2

System 2 Random −0.04 * 8.01 59.92 95.2

System 2 Quasi-Random −0.04 * 3.11* 8.84* 95.2

*
Statistically significant difference when compared to system 1.
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TABLE II

PERFORMANCE MEASURES OF ROBOTIC SYSTEMS ON PEG-IN-HOLE TASK WITH POSITIONAL ERROR σ2

Robotic system r1 KS μ (s) σ2 (s2) PS (%)

System 1 0.01 18.31 107.3 87.6

System 2 Spiral 0.07 * 37.13* 399.6* 95.2

System 2 Random −0.01 * 15.62 417.72 95.2

System 2 Quasi-Random −0.11 * 8.2* 50.25* 95.2

*
Statistically significant difference when compared to system 1.
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TABLE III

PERFORMANCE MEASURES OF ROBOTIC SYSTEMS ON PEG-IN-HOLE TASK WITH POSITIONAL ERRORS σ1 AND σ2

Robotic system Error KS μ (s) σ2 s2 PS (%)

System 1 σ1 11.70 40.57 85.4

σ2 * 18.31* 107.3* 87.6

System 2 Spiral σ1 7.19 12.79 95.2

σ2 * 37.13* 399.6* 95.2

System 2 Random σ1 8.01 59.92 95.2

σ2 * 15.62* 417.72* 95.2

System 2 Quasi-Random σ1 3.11 8.84 95.2

σ2 * 8.2* 50.25* 95.2

*
Statistically significant difference when comparing performance of each system at σ1 and σ2.

IEEE Trans Robot. Author manuscript; available in PMC 2024 April 11.


	Abstract
	Introduction
	Peg-in-Hole Test Method and Performance Analysis Strategy
	Design and Setup
	Performance Measures
	Completion Time (CT):
	Probability of Success (PS):

	Comparative Statistics
	Continuous Data:
	Discontinuous Data:


	Robotic Systems and Solutions
	System 1
	Hand Mechanics and Sensory Suite:
	Multifingered Manipulation Controller:
	Task-Level Control Strategy:

	System 2
	Task-Level Control Strategy:
	Search Region:
	Spiral Search Routine:
	Random Search Routine:
	Quasi-Random Search Routine:


	Performance Comparisons
	Cross-System Comparisons
	Autocorrelation, r1:
	Distribution, KS:
	Sample Means, μ:
	Sample Variances, σ2:
	Probability of Success, PS:

	Within-System Comparison for Positional Sensitivity
	Sample Means, μ:
	Sample Variances, σ2:


	Discussion
	Conclusion
	Future Work
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	TABLE I
	TABLE II
	TABLE III

