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Abstract 
Natural ecosystems harbor a huge reservoir of taxonomically diverse microbes that are important for plant growth and health. The 
vast diversity of soil microorganisms and their complex interactions make it challenging to pinpoint the main players important 
for the life support functions microbes can provide to plants, including enhanced tolerance to (a)biotic stress factors. Designing 
simplified microbial synthetic communities (SynComs) helps reduce this complexity to unravel the molecular and chemical basis 
and interplay of specific microbiome functions. While SynComs have been successfully employed to dissect microbial interactions 
or reproduce microbiome-associated phenotypes, the assembly and reconstitution of these communities have often been based on 
generic abundance patterns or taxonomic identities and co-occurrences but have only rarely been informed by functional traits. Here, 
we review recent studies on designing functional SynComs to reveal common principles and discuss multidimensional approaches 
for community design. We propose a strategy for tailoring the design of functional SynComs based on integration of high-throughput 
experimental assays with microbial strains and computational genomic analyses of their functional capabilities. 
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Introduction 
Soil and plants are home to an impressive number of microorgan-
isms pivotal for diverse ecosystem services, including degradation 
of pollutants, biogeochemical cycling, and supporting plant 
growth and health. A multitude of captivating natural phenom-
ena, including plant disease suppression [1, 2], plant growth pro-
motion [3, 4], and plant stress resilience [5], have been discovered 
to have a microbial basis, prompting extensive investigations 
into the intricate interactions between microorganisms, hosts, 
and environmental factors. Soil amendments that gave desirable 
phenotypes by altering soil microbial communities exemplified 
that fundamental understanding of the metabolic potential of 
microbial ecosystems can confer agronomic benefits [6, 7]. The 
development of culture-independent sequencing technologies 
and the explosion of bioinformatics tools to analyse the resulting 
meta’omic data have profoundly impacted the understanding of 
microbial communities in diverse environments. For example, 
the potential of unique microbes found in extreme environments 
can be leveraged to address challenges posed by climate change 
[8, 9]. Such methodologies have generated extensive datasets, 
offering a rich resource for generating numerous hypotheses. Still, 
it remains imperative to employ complementary experimental 
methods for rigorous testing of these hypotheses. Indeed, efforts 
to (re)construct microbial communities for applications [10-12], 
identify mechanisms and causality underlying microbiome-
associated phenotypes [13-16], and analyse microbe–microbe 
interactions [17, 18] still strongly rely on culture-dependent 

microbiology, molecular biology, and plant biology methods due 
to the necessity of isolating and studying microbial strains and/or 
communities in a controlled environment (Fig. 1). While individ-
ual strains like Bacillus amyloliquefaciens and Bacillus thuringiensis 
have been used in biological control in agriculture for decades 
[19], their efficacy to confer specific phenotypes depends on 
complex interactions with the resident microbiota and their hosts 
[20]. Therefore, the design of synthetic communities (SynComs) 
composed of prioritized strains has become a key technology 
for studying complex microbiome-associated phenotypes in 
controlled conditions [16, 21]. This calls for diverse strategies, 
either for simplifying or deconstructing (drop-out approach) 
complex communities by identifying essential candidates (top-
down) or for incrementally reconstructing a core microbial 
consortium responsible for specific phenotypes (bottom-up), 
starting from individual isolates that carry out specific functions 
[22, 23]. 

Central to the challenge of designing SynComs is the selection 
of candidates that are representative of the taxonomic and/or 
functional characteristics of a microbiome under study. One way 
to do that is by using taxonomic profiles such as high abun-
dance/representativeness across samples [24, 25], co-occurrence 
with other community members [26], or differential abundance 
between samples with contrasting phenotypes [27]. There has 
been a growing focus in the last decade to explore the microbial 
biosynthetic potential through (meta)genome mining as a com-
plementary approach to SynCom design in addition to traditional
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Figure 1. The importance of designing synthetic microbial communities to unravel microbiome-associated phenotypes. Starting often from a host 
with a phenotype of interest, bacterial strains are isolated and characterized using omics data and/or phenotypic assays. Based on taxonomic or 
functional traits, synthetic microbial communities with reduced community complexity are designed that can be used to study the mechanistic 
determinants of the phenotypes under study. Created with BioRender.com. 

laboratory screening [ 28, 29]. Another frontier in this context 
is adopting in silico approaches for the prediction of metabolic 
interactions, e.g. using genome-scale metabolic models (GSMMs) 
[30-32]. 

In this mini-review, we will discuss the pros and cons of several 
past and present strategies for SynCom design. We will highlight 
approaches for SynCom design based on functional traits and pro-
pose a novel conceptual workflow that combines the strengths of 
computational (meta)genomic approaches with high-throughput 
phenotyping. 

Strategies for the design of SynComs 
Over the last decade, multiple principles in SynCom design and 
application were employed for diverse study objectives. One 
approach that is commonly used is taxonomy-based design, 
which relies on the exploration of microbiome composition 
in diverse natural samples and the identification of a core or 
representative microbiome. Exploring microbiome compositions 
across different geographic environments [33], host genotypes 
[34], or sampling times [35], (co-occurring sets of) microbial 
taxa that are persistently present can be selected to mimic the 
structure and function of the core microbiome. This approach 
has been frequently employed for the model plant Arabidopsis 
[36] and specific crops [37], as well as in gut microbiome studies 
[38, 39]. Recently, satellite-based measurements for the global 
grassland fields meta-data collection were integrated with 
microbiome data to identify taxa that are closely related to 
plant productivity [24]. Such principles could also be used for 
restoring damaged ecosystems by identifying and reconstituting 
the microbial consortia responsible for ecological stability [40]. 
Also, combined cross-kingdom SynComs have been constructed 
based on taxonomic co-occurrence networks that were able to 
protect tomato against Fusarium wilt disease [41]. In contexts 
beyond plants, over 100 common bacterial strains in the gut have 

been engineered into a synthetic community (hCom1), serving 
as a model system for in-depth exploration of causal inferences 
and disease mechanisms in the intestinal tract of experimental 
mice [39]. By iteratively identifying additional colonizing taxa 
after SynCom introduction into the mice gut and adding these 
taxa to the community, an expanded community (hCom2) could 
be created that was more diverse and stable compared with the 
original SynCom (hCom1) . 

A variant of this taxonomy-based strategy that has been widely 
employed to design SynComs associated with particular phe-
notypes is based on comparing microbial taxa exhibiting sig-
nificant abundance differences across samples with contrasting 
phenotypes. These comparisons can then be utilized to inform 
bottom-up strategies that involve assembling communities from 
relatively small numbers of individual microbial strains or species 
with relevant functional attributes and are likely to provide good 
starting points toward reconstitution of that phenotype. As an 
illustration, Zhuang et al. assessed rhizosphere microbiome com-
positions across different growth stages, soil types, and agri-
cultural practices to identify taxa associated with growth/yield 
parameters, and used differential abundance analysis to select 
strains for the construction of a synthetic community that indeed 
conferred a growth-promoting phenotype to the host [42]. In 
a similar study analysing microbiome-mediated suppression of 
bacterial wilt, Kwak et al. could even identify a single flavobacte-
rial strain through differential abundance analysis that was able 
to largely reconstitute the protective phenotype [43]. Instead of 
basing the SynCom design on community-level phenotypes, also 
phenotyping of individual isolates can be used to guide the recon-
struction of microbial communities for disease management, as 
was successfully done to construct a SynCom of just seven strains 
suppressive against Fusarium wilt in banana [44]. In contrast, top-
down approaches focus more on manipulating existing microbial 
communities through perturbations, such as community trans-
plantation, selective heat treatment, or antimicrobials, that alter
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community composition and dynamics. This principle can be a 
helpful first step in studying functional traits of complex natural 
microbial communities. 

In addition to the foregoing principles, novel SynComs are 
increasingly established based on broad functional (metabolic) 
traits of the members of a natural community [18]. Metabolic 
interactions, including which and how efficiently microbes uti-
lize substrates present in the environment or produced by other 
community members, drive the whole community’s behavior, 
leading to various phenotypes. Such information has been used 
to construct a model consortium containing diverse taxa of chitin 
degraders and non-degraders to study the predicted and realized 
niches for each isolate; it turned out that the chitin-degrading or, 
more general, consuming behavior of microbial strains can differ 
between monoculture and mixed communities [22]. Moreover, 
predicting competition and substrate preferences by analysing 
the transcriptional and translational information allowed tar-
geted manipulation of the activity of specific microbial members 
within natural communities by adding corresponding prebiotics 
or probiotics [45]. Function-based approaches can also be com-
bined with taxonomic data associated with host phenotypes: for 
example, Carrion et al. identified taxa that were consistently 
differentially abundant between the endosphere microbiota of 
sugarbeet in disease-suppressive and conducive soils; guided by 
expression analysis of specific biosynthetic gene clusters and 
chitinase-encoding genes, they identified small SynComs that 
could largely reconstitute the disease-suppressive phenotype [28]. 

From the above, it is clear that the design of SynComs is no 
longer solely based on taxonomy but more and more involves 
selecting microbiome members that (i) show positive or negative 
interactions in vitro or in vivo, (ii) possess specific functional traits, 
and/or (iii) have complementary/similar niche preferences. How-
ever, integrating criteria such as microbial interactions, functional 
traits, and niche preferences introduces complexity, requiring 
comprehensive experimental validation and sophisticated anal-
yses. Despite these challenges, this multifaceted approach can 
enhance SynCom functionality, enabling tailored designs of Syn-
Coms with increased resilience. 

Prioritization of bioactive microbes or 
functional genes for SynCom design 
For function-based SynCom design strategies, various genomic 
traits can be considered. Examples of such traits (Table 1) 
include CAZymes, secretion systems, antifungal metabolites, met-
allophores, biofilm-formation-associated exopolysaccharides, 
plant-immuno-stimulating metabolites, phytohormones, and 
more. How to prioritize functions and microbial members within a 
complex ecosystem is essential for community re-assembly. Inter-
preting the vast data generated by high-throughput sequencing 
technologies for this purpose can be challenging [72]. For example, 
the extent to which microbial networks constructed based on co-
occurrence patterns represent the actual functional diversity in 
the spatio-temporal context of a given ecosystem is often unclear 
[73, 74]. The microbiome datasets generally only have relative (and 
not absolute) abundance data [75], and defining the roles of core 
and accessory taxa is difficult [76]. Adopting a multidimensional 
approach, through the integration of different types of ‘omics 
and/or experimental (meta)data, could potentially provide a 
more accurate depiction of microbial diversity, dynamics, and 
functions. 

A computational framework that adopts functional data for 
SynCom design was developed in 2018 and operates through 

top-down integration of metagenomic, metabolomic, and phe-
notypic datasets, enabling more reliable identification of puta-
tive mechanistic associations [77]. Relative to former approaches, 
this workflow accomplishes dimensionality reduction, filtering of 
false correlations and data integration through the standardiza-
tion of data, binning of co-expressed genes and metabolites, and 
the assimilation of a priori (micro)biological knowledge. Another 
way of approaching computationally guided SynCom design is 
through visualizing the community function landscape through 
statistical learning, identifying potential associations between 
microbes and functional traits with the aim to better understand 
the dynamics and/or ecological context of natural or designed 
microbial communities [78-81]. Based on these function land-
scape conceptions, a modeling-based iteration provides possibil-
ities to design a complex “high-function” community in silico by 
directed evolution based on carefully selected traits [82]. 

Knowledge about the spatial distribution and niches occupied 
by each community member is also an essential factor for keeping 
a stable community structure after restoration. Different ecolog-
ical modeling approaches, including the Lotka–Volterra model, 
consumer-resource model, trait-based model, individual-based 
models, as well as genome-scale metabolic network models, can 
be employed for niche prediction [83]. Moreover, experimental 
approaches such as profiling the utilization of environmentally 
relevant substrates [84] offer predictions of potential metabolic 
niches that can be used to infer competitive or cooperative micro-
bial interactions. Novel tools like TbasCO (Trait-based Compara-
tive ‘Omics) [85], focusing on expression of metabolic genes, can 
offer enhanced accuracy in capturing niche-differentiating traits 
over time. By discerning variations in the expression of genomi-
cally encoded functional traits among strains and species under 
diverse conditions, TbasCO provides nuanced insights into the 
regulation of genome-encoded functional potential in space and 
time. Indeed, utilizing combined transcriptional and translational 
information to predict competition demonstrated notably higher 
accuracy compared with inferring it from genomic data alone [45]. 
Genomic information integrated with metabolomic traits is also 
widely used to identify core genes and consortia that are related 
to essential metabolites [86]. All these strategies are expected to 
help analyse the utilization and production of primary and sec-
ondary metabolites of the host and co-occurring microbes. Specif-
ically, the primary metabolic capability for abundantly available 
substrates in the selected environment closely correlated with 
successful colonization and rapid niche occupation [87-89]. When 
discussing resilience against stressors such as plant pathogens 
and parasites, the active role of secondary metabolites appeared 
to be the prioritized criterion [90, 91]. 

Computational approaches for trait-based 
SynCom design 
A number of innovative computational approaches have been 
recently developed to address challenges in tailoring SynCom 
design based on massive (meta)genomics data, including prior-
itizing the most relevant microbial interactions, identifying key 
(ecological) functional traits, and optimizing functional commu-
nity composition in silico. Some of the genome-based tools include 
antiSMASH [92], which predicts microbial secondary metabolite 
biosynthetic capabilities, MacSyFinder for the detection of macro-
molecular systems [93], and PHI-base [94] for pathogenicity iden-
tification. For secondary metabolite biosynthetic gene clusters, 
predicting their ecological functions is crucial to consider them 
for SynCom design. For example, gene clusters encoding the
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production of metallophores, which are key functional determi-
nants in disease-suppressive soils [95], can be annotated auto-
matically through the identification of genes encoding the biosyn-
thesis of metal-ion-chelating substructures [96]. Carbohydrate-
acting enzymes involved in the breakdown of fungal cell walls 
and plant-derived polymers, can be annotated with automated 
systems such as dbCAN [97]. Additionally, gene clusters encoding 
the biosynthesis of antifungals, antibiotics, toxins, or biofilm-
associated exopolysaccharides can be identified through compar-
ison with reference biosynthetic gene clusters encoding products 
of known function, such as those deposited in the MIBiG database 
[98]. Similarly, reference databases of virulence factors (e.g. VFDB 
[99]) or secretion systems (e.g. SecReT6 [100]) can aid in the 
identification of pathogenicity-related functional traits. 

Genome-scale metabolic network models (GSMM/GEMs) have 
experienced a notable rise in microbiome studies and are 
particularly advantageous in the context of predicting functional 
interactions within microbial communities [31, 32, 101-103]. 
Moreover, alongside the rise of GSMM, graph-theoretic approaches 
offer valuable insights into microbial community dynamics, 
particularly in predicting biotic interactions and understanding 
the influence of nutrients and the environment [104, 105]. Such 
approaches were employed in identifying minimal sets of species 
for desired metabolic potential [106], and/or elucidating metabolic 
exchanges between organisms [102, 107]. An exciting study 
employed GSMMs to estimate the competitive and corporate 
potential across thousands of habitats. The results indicated 
competitive communities resist species invasion but struggle 
with nutrient shifts, while cooperative communities show the 
opposite pattern [108]. Multiple tools have been created for 
automated metabolic network reconstruction of microbial species 
as well as communities [109-114]. MiMiC is one of the most 
straightforward tools for designing functional representative 
SynComs by utilizing shotgun metagenomic data for protein 
family annotations and aims to cover a maximum number of 
functions within the community with a minimum number of 
microbial taxa [115]. Similar to MiMiC, CoMiDA identifies potential 
metabolic pathways from substrates to products instead of 
using protein families and aims to find minimal combinations 
to perform these processes [106]. However, critical factors like 
inter-member growth compatibility, exchange of metabolites, 
cross-feeding, differential regulation of metabolic traits, and co-
cultivation conditions still require incorporation within these 
algorithms. In efforts to narrow this gap, FLYCOP utilizes GEMs 
to assign metabolic potentials and COMETS (Computation 
of Microbial Ecosystems in Time and Space) [116] to predict 
microbial interactions and their dynamic flux balance to further 
simulate community dynamics thru iterative algorithms and 
identify the optimal combinations between multiple consortium 
configurations [30]. 

Artificial intelligence for SynCom design 
Machine learning (ML) and artificial intelligence (AI) are increas-
ingly used for (iterative) experimental optimization of SynComs, 
as they can help to navigate the highly dimensional combinato-
rial space of taxa and functions. For example, BacterAI, a novel 
automated science platform, allowed the design and use of an 
experimental platform to generate growth data as a “reward” 
dataset for further optimizing the model to improve the experi-
mental design. Microbial metabolic activity prediction was effi-
ciently generated through active learning on iterative designs 
without prior knowledge [117]. However, there are still challenges 

regarding the use of these approaches for tailoring SynComs 
because of the limitations of available dataset sizes and the lack of 
evaluation standards for measuring SynCom quality. Moreover, AI 
and/or ML approaches should be used with caution, since they can 
give false or invalid associations when used without validation. A 
recent study identified extremely accurate predictions of tumor 
types and presence using microbial abundance patterns [118], 
whereas these correlations were demonstrated to be fictional 
upon further analysis, thus illustrating risks due to inadvertently 
training on contamination, batch effect, or false positive clas-
sifications [119, 120]. An innovative attempt has been made to 
utilize the prediction of causal relationships between microbial 
members and host phenotypes to develop novel SynComs using 
deep learning methods [14]. Specifically, their approach involves 
characterizing the relationship between bioassays (i.e. growth 
on Arabidopsis root exudate for each strain), defining functional 
blocks by grouping the strains based on their effects on plant Pi 
content, creating partially overlapping SynComs, and utilizing a 
neural network model to design novel microbial combinations for 
predicting Pi content in plant. The experimental validation results 
suggested that nearly all of these predicted Pi content was indeed 
realized in the in planta assay. Another data-driven framework to 
identify keystone species (microbial taxa that are essential for a 
stable community structure) employed deep learning to quantify 
the importance of each species by conducting drop-out assays 
[121]. Such assays were widely used to systematically eliminate 
SynCom members and check if/how this “drop-out” affected the 
microbiome-associated phenotypes [122]. 

In an era of rapid advancements in AI, the establishment 
of community-level GEMs is poised to become increasingly effi-
cient and reliable for predicting metabolic interactions among 
microbes and how they cooperatively utilize substrates both pre-
existing and generated during microbial activities. Combined with 
AI-driven cycles between computational designs and experimen-
tal assays to iteratively validate interactions and improve Syn-
Coms, the associations generated by these tools can be further 
employed to tailor a wider range of SynComs with pre-defined 
functions. These computationally tailored SynComs may exhibit 
superior colonization capabilities and metabolic potential com-
pared with manually designed ones. 

Aspects affecting the reconstitution of 
SynComs 
The utilization of different tools for crafting microbiota communi-
ties responsible for specific (metabolic) functions in the context of 
microbiota transplantation strategies holds great promise for the 
future. Nonetheless, the ability of the predicted communities to 
successfully colonize true hosts will remain enigmatic until sub-
jected to validation in wet lab, greenhouse, and field/host exper-
iments. As the transition from the selection and combination of 
SynCom members to their reconstitution, a myriad of additional 
challenges are faced, including the need to reconcile disparate 
growth rates among microbes, the determination of the order of 
inoculation (i.e. priority effects), the amount of cell density of each 
candidate strain [123], and the evaluation of potential interactions 
that could result in the loss of certain SynCom members during 
the process. Furthermore, variations in initial concentrations for 
strains that have different growth rates may have a substantial 
impact on the ultimate structure and stability of the assembled 
community [124]. All these variations are expected to lead to 
increased functional stochasticity when employing SynComs for 
investigating interactions or causal inferences. This underscores
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Figure 2. Proposed conceptual workflow for SynCom design. (a) Computational high-throughput SynCom design and validation. Functional traits at 
both the isolate and the community level will first be identified by experimental/computational strategies. The resulting trait matrix will then be used 
for high-throughput SynCom generation and validation, using an iterative design-test-learn cycle. (b) High-throughput SynCom screening and 
ML-based analysis. The generated SynComs will be reconstituted and screened for phenotypes using automated high-throughput phenotyping 
platforms. The observed phenotyping dataset as well as correlated meta-omics, i.e. rhizosphere meta-transcriptomics data, can be used as (extended) 
training data for ML-based analysis to obtain an enhanced understanding of host-microbiome interactions and design increasingly more effective and 
stable SynComs. 



Tailoring functional microbial SynComs | 7

the necessity of monitoring the community composition and 
structural stability through low-pass metagenomic sequencing, 
qPCR data, or fluorescent markers during different stages of the 
reconstitution process. Alternatively, metabolic modeling may be 
able to predict niche complementarity and community stability 
in the future, especially if it can be fine-tuned by experimental 
data such as those mentioned above. 

Priority effects, which refer to the timing of introduction of 
the microbial taxa and the advantages to establish themselves 
in specific ecological niches (principle of “first come first serve”), 
have been studied across various host systems [125]. This phe-
nomenon has also been widely employed to modulate compe-
tition in the restoration of microbial communities [126]. When 
addressing the restoration of SynComs in the lab, a new strategy 
involves grouping microbes with similar functions or taxonomies, 
enabling the inference of interactions or associations between 
certain groups and host phenotypes by introducing or eliminating 
each separately [14]. This top-down strategy demands consider-
able lab work including high-throughput automated phenotyping 
[127, 128], as well as controlled gnotobiotic experimental sys-
tems [129, 130] that mimic natural complexity. Amidst numerous 
related endeavors, the development of EcoFABs (reproducible fab-
ricated ecosystems) stands out as a significant attempt toward 
standardizing microbial community model systems [131]. This 
system facilitates standardization of every step in the process, 
with defined microbiota, laboratory habitats, and reproducible 
protocols for cultivation and spatiotemporal analysis. 

Synergizing bioinformatics and 
high-throughput validation for Syncom 
design 
The evolution of high-throughput phenotypic platforms as well 
as the development of cloud laboratories have significantly 
mitigated the constraints associated with phenotyping. In recent 
investigations, researchers restored 136 randomly assembled 
SynComs of diverse scales into plant systems [132]. The experi-
mental data derived from these trials were employed as a dataset 
for ML, leading to the successful identification of microbial 
strains predictive of phenotypic outcomes. While traditional 
SynCom design methodologies may remain effective for specific 
functions or as a simplified model system, these novel conceptual 
frameworks are needed to process and extract meaningful 
insights from big data. We propose that computational data 
processing should encompass the integration of functional traits 
across diverse dimensions, including phenotypes from both large-
scale functional assays and in silico predictions that can be 
calibrated and recalibrated against experimental data (Fig. 2). 
This will result in a standardized trait matrix for each candidate 
microbe. Together with different SynCom design parameters, 
including the size of the communities, the desired taxonomic 
diversity among others, the generated SynComs can be evaluated 
by calculating functional traits at the SynCom level and/or 
using model-based strategies to predict SynCom functions. From 
this, multiple alternative SynComs can be constructed having 
similar functional trait compositions from different taxonomic 
origins, which allows us to explore multiple possible solutions 
in parallel. High-throughput phenotypic systems will then yield 
tractable sample information post-inoculation of such diverse 
SynComs, encompassing parameters such as plant biomass (via 
3D scanning), stress protective effects, growth form, alterations in 
plant root exudates including volatile organic compounds (VOCs), 

and gene expression differences (via meta-transcriptomics). The 
generated combinations, along with their phenotypic data, could 
then be reused as input data for AI-based tools to learn and model 
SynCom functionality and predict community-level phenotypes, 
and help select new SynCom designs to iteratively improve 
performance. In the future, it may be feasible to build databases 
for SynCom-related datasets and explore correlations based 
on massive SynCom datasets associated with different hosts 
and phenotypes to identify genotype–phenotype patterns across 
laboratories. Overall, our proposed conceptual workflow presents 
a different perspective for the design of SynComs by incorporating 
multidimensional data information from in vitro and in vivo assays 
as well as computational predictions. We anticipate that this will 
accelerate the adoption of SynComs as potent experimental tools 
in the forthcoming era of microbial ecology research. 
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