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ABSTRACT 

Cancer is a common complication after kidney transplantation. Kidney transplant recipients ( KTR) have a 2- to 4-fold 
higher risk of developing cancer compared to the general population and post-transplant malignancy is the third most 
common cause of death in KTR. Moreover, it is well known that certain cancer types are overrepresented after 
transplantation, especially non-melanoma skin cancer. Immune checkpoint inhibitors ( ICI) have revolutionized the 
treatment of cancer, with remarkable survival benefit in a subgroup of patients. ICI are monoclonal antibodies that block 
the binding of specific co-inhibitory signaling molecules. Cytotoxic T lymphocyte-associated antigen-4 ( CTLA-4) , 
programmed cell death protein 1 ( PD-1) , and its ligand programmed cell death ligand 1 ( PD-L1) are the main targets of 
ICI. Solid organ transplant recipients ( SOTR) have been excluded from clinical trials owing to concerns about tumor 
response, allo-immunity, and risk of transplant rejection. Indeed, graft rejection has been estimated as high as 48% and 
represents an emerging problem. The underlying mechanisms of organ rejection in the context of treatment with ICI are 
poorly understood. The search for restricted antitumoral responses without graft rejection is of paramount importance. 
This review summarizes the current knowledge of the use of ICI in KTR, the potential mechanisms involved in kidney 
graft rejection during ICI treatment, potential biomarkers of rejection, and how to deal with rejection in clinical practice. 
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NTRODUCTION 

idney transplantation is the treatment of choice for patients 
uffering from end-stage kidney disease, leading to better sur- 
ival and quality of life compared to dialysis. Long-term out- 
omes in kidney transplantation have improved significantly 
ue to better pre-transplantation matching techniques, im- 
roved surgical techniques, surveillance, and management of 
nfectious and cardiovascular complications [1 ]. However, this 
rolonged survival is at the expense of an increased prevalence 
f cancer in kidney transplant recipients ( KTR) . The cumulative 
ncidence of cancer rises according to the years after transplan- 
ation and reaches > 25% after 20 years of transplantation [2 ].
oreover, some cancer types are overrepresented in KTR with 

he greatest standardized incidence ratio observed for Kaposi 
arcoma, lip cancer, and non-melanoma skin cancer ( NMSC) [2 ].
mportantly, NMSC has a more aggressive behavior with an in- 
reased risk of metastasis and death in KTR. Transplantation as 
n independent risk factor may negatively affect survival for dif- 
erent cancer types [3 ]. Factors associated with increased can- 
er risk are older age, male gender, white ethnicity, past medical 
istory of smoking, a longer time on dialysis, and a previous his- 
ory of cancer. It is also well recognized that the type, duration,
nd dose of immunosuppression, higher panel reactive antibody 
core, higher number of HLA-DR mismatches, and deceased or- 
an donors are associated with an increased cancer risk [4 ]. Im- 
une checkpoint inhibitors ( ICI) have revolutionized the treat- 
ent of different cancer types, with remarkable survival benefit 

n a subgroup of patients [5 , 6 ]. Solid organ transplant recipients 
 SOTR) have been excluded from clinical trials owing to concerns 
bout tumor response, allo-immunity, organ rejection, and con- 
igure 1: Tumor-associated antigens are presented by APC in secondary lymphoid org
f which CTLA-4 in the most important proximally. In peripheral tissues and at tumo
ancer survival. Tumoral cells also express liver sinusoidal endothelial cell lectin ( LSE
nduce T cell anergy. Tumor survival and growth is further enhanced by the presence o

TLA-4, PD-1, LAG-3, and T cell immunoglobulin and mucin domain-containing protein
olerance within the tumoral microenvironment. 
omitant immunosuppressive therapy. Since the indications of 
CI are expected to expand, it is important to determine the risk-
enefit ratio of the use of ICI in patients with SOTR. 

mmune checkpoints inhibitors 

 lymphocytes are the critical players in antitumoral response 
nd allograft rejection. The T cell activation process involves 
ntigen presentation by major histocompatibility complex 
 MHC) molecules on the antigen-presenting cells ( APCs) or 
umor cells to the T cell receptor ( TCR) on T cells ( Fig. 1 ) .
ollowing engagement of the TCR with cognate antigen, CD28 
rovides the necessary second ( co-stimulatory) signal for T 
ell activation by binding to CD80 ( B7-[1 ]) and CD86 ( B7-[2 ]) 
n APCs. The interaction with co-stimulatory molecules is 
ightly regulated by inhibitory checkpoints to avoid collateral 
amage and autoimmunity. Indeed, activated T cells express 
ultiple co-inhibitory receptors such as lymphocyte-activation 
ene 3 ( LAG-3) , programmed cell death protein 1 ( PD-1) , and 
ytotoxic T lymphocyte-associated protein-4 ( CTLA-4) among 
thers [7 ]. Programmed cell death ligand 1 ( PD-L1) , the primary 
igand of PD-1, is expressed on different cell types, including T 
ells, B cells, tumor cells, and tumor-infiltrating myeloid cells.
nteraction of PD-1 with PD-L1 on tumor cells induces T cell 
xhaustion within the tumoral environment ( TME) , maintains 
mmune tolerance, and favors tumor escape. Relative to PD-1,
TLA-4 acts proximally at the T cell priming sites and limits 
he extent of T cell activation in secondary lymphoid organs.
TLA-4 also plays a prominent role in the regulation of regula- 
ory T cells ( Treg) within the TME [8 –11 ]. LAG-3 is a co-inhibitory
ans to T cells. Activation of T cells is tightly regulated by immune checkpoint 
ral level PD-1/ PD-L1 pathways exert an inhibitory role on T cells and promotes 
Ctin) , Galectin-3 ( Gal-3) , and fibrogen-like protein-1 ( FGL-1) that bind LAG-3 to 
f tumor-infiltrating regulatory T cells that are known to express higher levels of 

 3 ( TIM-3) and to secrete higher levels of IL-10 and TGF-beta, promoting tumoral 
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Table 1: FDA approved ICI therapy and their current indications. Adapted from Wang et al. [73 ]. 

Drug Target 

Date of 
approval by 
the FDA Indications 

Ipilimumab CTLA-4 2011 Melanoma, renal cell carcinoma, colorectal cancer, hepatocellular carcinoma, 
non-small cell lung cancer, malignant pleural mesothelioma, esophageal cancer 

Nivolumab PD-1 2014 Melanoma, non-small cell lung cancer, malignant pleural mesothelioma, renal cell 
carcinoma, classical Hodgkin lymphoma, squamous cell carcinoma of the head and 
neck, urothelial carcinoma, colorectal cancer, hepatocellular carcinoma, esophageal 
cancer, gastric cancer, gastroesophageal junction cancer, esophageal adenocarcinoma 

Pembrolizumab PD-1 2014 Melanoma, non -small cell lung cancer, head and neck squamous cell carcinoma, 
classical Hodgkin lymphoma, primary mediastinal large B cell lymphoma, urothelial 
carcinoma, non-muscle invasive bladder cancer, colorectal cancer, gastric cancer, 
esophageal cancer, cervical cancer, hepatocellular carcinoma, Merkel cell carcinoma, 
renal cell carcinoma, endometrial carcinoma, cutaneous squamous cell carcinoma, 
triple-negative breast cancer 

Atezolizumab PD-L1 2016 Non-small cell lung cancer, small cell lung cancer, hepatocellular carcinoma, 
melanoma, alveolar soft part sarcoma 

Durvalumab PD-L1 2017 Non-small cell lung cancer, small cell lung cancer, biliary tract cancer, hepatocellular 
carcinoma 

Avelumab PD-L1 2017 Merkel cell carcinoma, urothelial carcinoma, renal cell carcinoma 
Cemiplimab PD-1 2019 Cutaneous squamous cell carcinoma, basal cell carcinoma, non-small cell lung cancer 
Dostarlimab PD-1 2021 Endometrial cancer 
Relatlimab LAG-3 2022 Melanoma 
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a  
olecule expressed by cytotoxic CD8+ T cells and Treg. LAG-3 
rincipally interacts with MHC class II expressed on APC but
an also interact with liver sinusoidal endothelial cell lectin,
ibrogen-like protein–1 and galectin-3. Binding of LAG-3 to its 
igands leads to inhibition of T cell proliferation, decreased 
ytokine production, and cytolytic function [12 ]. 

ICI are monoclonal antibodies directed against the immune 
heckpoints of the immune system. To date, eight ICI have been
pproved for 17 different malignancies ( Table 1 ) [11 ]. Moreover, a
AG-3 inhibitor, Relatlimab was recently approved for the treat- 
ent of advanced melanoma [13 ]. ICI are one of the core pillars

n the treatment of cancer today, but its usage in SOTR is lim-
ted. Indeed, immunosuppressive medications act in direct op- 
osition to ICI, which are used to enhance the adaptive immune
esponse toward cancer antigens. On the other hand, activation 
f the immune system may lead to an enhanced immune reac-
ivity including autoimmunity and allo-immunity with a greater 
isk of allograft rejection. 

urrent data on the use of immune checkpoint 
nhibitors in kidney transplant recipients 

he use of ICI in SOTR and KTR is mainly based on case re-
orts, case series, and systematic reviews of the literature [14 –
1 ]. Most patients in the published reports were treated with
nti-PD-1, were suffering from metastatic melanoma and were 
tarted on ICI with a mean of 9 years after transplantation. The
ate of rejection is highest among KTR compared to liver, heart,
nd lung transplant patients and ranges from 41 to 48%. A com-
on feature in the different case reports and case series pub-

ished is the aggressiveness of the acute allograft rejection un-
er ICI. Most papers report high levels of allograft loss ( up to
3%) after rejection, with higher mortality for heart and liver 
ransplants compared to KTR. This is mainly based on the fact
hat KTR can be hemodialyzed when graft loss occurs [14 , 15 ].
hen biopsies have been performed, histological analysis re- 
eals mostly pure T cell-mediated rejection ( TCMR) or mixed T
ell and antibody-mediated rejection ( ABMR) . Although different 
egimens have been proposed ranging from corticosteroids, in-
ravenous immunoglobulins, to thymoglobulin, and ultimately 
ransplantectomy [15 , 18 ], no effective treatment has been re-
orted and response rates are poor. 
Factors associated with graft rejection are a previous history

f rejection, treatment with low-dose prednisone ( < 10 mg per
ay) , the use of anti-PD-1 compared to anti-CTLA-4 or anti-PD-
1, and combination therapy ( Table 2 ) . Within the different types
f anti-PD-1 used, pembrolizumab has the highest rejection rate,
ompared to nivolumab and cemiplimab [18 ]. Time after trans-
lantation of at least 8 years, treatment with at least two im-
unosuppressive drugs, and/or an mTOR inhibitor-based reg- 

men and grafts from deceased kidney donors are associated
ith a lower rejection rate after ICI treatment in KTR. Interest-

ngly, patients suffering from cutaneous squamous cell carci-
oma ( cSCC) have the highest cancer response rates compared 
o other cancer types. Rünger et al., showed that SOTR suffer-
ng from cSCC have 59.4% response rates, defined as partial
nd complete response. Moreover, the ideal response ( tumor re-
ponse without graft rejection) was also highest ( 50%) in this 
ubgroup of patients [20 ]. One small retrospective study with
even KTR suffering from advanced cSCC treated with cemi-
limab demonstrated a good overall tumoral response ( 43%) 
ith only one patient experiencing an allograft rejection [22 ].
anna et al . recently published the results of the CONTRAC-1
tudy. This open-label prospective study included 12 KTR suf-
ering from advanced cSCC treated with cemiplimab. Overall re-
ponse rate ( ORR) was 46% ( 90% CI, 22 to 73) and no allograft
ejection occurred during a median follow-up of 6.8 ( range 0.7–
9.8) months [23 ]. This is the first prospective study of KTR to
how encouraging results concerning the use of anti-PD-1 for
dvanced cSCC. 

Most retrospective studies showed similar response rates for
ll cancer types in KTR compared to the general population.
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Table 2: Characteristics of KTR with allograft rejection in the context of ICI [14 , 15 , 17 , 18 ]. 

Risk of rejection Up to 48% 

Diagnosis Rise in serum creatinine and kidney biopsy 
Median time to graft rejection 3 weeks 
Histology of rejected allograft TCMR or mixed TCMR and ABMR 
Response to treatment Poor with up to 70% graft loss 
Risk factors Low-dose corticosteroids, history of graft rejection, anti-PD-1 treatment or combination therapy 
Factors associated with lower risk 
of rejection 

mTOR and at least two immunosuppressants at time of ICI initiation 

KTR: kidney transplant recipients, TCMR: T cell-mediated rejection, ABMR: antibody-mediated rejection. PD-1: programmed cell death-1, mTOR: mammalian target of 
rapamycin 

Figure 2: Potential mechanisms involved in kidney allograft rejection in the context of ICI. ( 1) Reactivation of alloreactive quiescent T cells by blocking the PD-1/PD- 
L1 pathway. ( 2) Cross-reactivity between tumoral neoantigens and kidney allograft antigens. ( 3) Systemic inflammation can cause overactivation of the immune 
system, with off-target effects and potential activation of dormant alloreactive T cells. ( 4) CTLA-4 expressed on Tregs interacts with co-stimulatory molecules CD80/86 

preventing APCs from effectively stimulating effector T cells. CTLA-4 can also directly interact with CD80/86 expressed on effector T cells. PD-1 on Treg prevents 
alloreactive B cells from stimulating other T cells and can inhibit directly T effector cells expressing PD-L1. Blocking both pathways leads to loss of regulatory T cells 
function and activation of host alloimmune responses. 
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his should be interpreted with caution due to possible pub- 
ication bias. However, the prospective, phase 1 study of Car- 
oll et al. confirmed the good ORR in this patient population,
ut lacked a control group [24 ]. In a recent systematic review,
t was also demonstrated that patients with an intact graft had 
 1.7-fold higher tumor response rate compared to patients with 
raft rejection. This is a very interesting finding, but can be re- 
ated to deleterious treatment with immunosuppression for al- 
ograft rejection, the premature stopping of the ICI and possibly 
eath [20 ]. 
echanisms of allograft rejection in the context of ICI 

he mechanisms of allograft rejection in the context of ICI are 
oorly understood and not only explained by the reduction of 
aintenance immunosuppression as some studies show allo- 
raft rejection without prior reduction in immunosuppression 
 Fig. 2 ) . First, one can imagine that quiescent alloreactive T cells
re reactivated by ICI. Indeed, the PD-1/PD-L1 pathway is of 
tmost importance in maintaining peripheral tolerance in dif- 
erent experimental models of transplantation. In pre-clinical 
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ransplant models, blockade of PD-1/PD-L1 pathway in vivo with 
nti-PD-1 antibodies has been shown to lead to an accelerated 
ejection characterized by the expansion of alloreactive effector 
D8+ , Th1 differentiation of CD4+ T cells and decrease in FoxP3
D4+ CD25+ T cells infiltration in affected grafts [10 , 25 –27 ]. Inter-
stingly, APC transfected with adenovirus coding for PD-L1 are 
ble to enhance survival in fully mismatched kidney transplant 
odels in rats [28 ] Furthermore, it is known that human tubular
pithelial cells constitutively express PD-L1 and PD-L2, and that 
he expression can be upregulated by IFN- β and IFN- γ [29 ]. On
 molecular level, KTR with allograft rejection have an upregu-
ation of tissue PD-L1 mRNA compared to KTR with interstitial
brosis/tubular atrophy or BK nephropathy [30 ]. This points to a
otential protective effect of PD-L1 upregulation during immune 
ctivation. In mouse kidney transplant models, the PD-1/PD-L1 
athway was also important to prevent acute rejection imme- 
iately after transplantation, and thus was not only related to
hronic antigen stimulation of T cells [31 ]. Ex vivo perfusion of
onor kidneys with membrane-anchored-protein PD-L1 ( map- 
D-L1) in a rat model protected against acute kidney rejection 
ith a reduction in T cell graft infiltration and increase in Treg

32 ]. However, the PD-1/PD-L1 pathway is only effective when the
CR is engaged. In a pancreatic islet allograft model treated with
nti-CD3 antibody, there was a long-standing anergy of CD8+ T 
ells marked by absence of an inflammatory gene expression.
he intragraft CD8+ T cells produced transforming growth fac- 
or β ( TGF β) and expressed PD-1 and PD-L1. TGF β was important
or the expression of the inhibitory receptors as blockade of the
ytokine led to graft rejection in this model [33 ]. Not only the
xpression of PD-L1 in target tissue can protect against allograft
ejection, but overexpression of PD-1 on T cells in combination
ith CTLA-4 blockade can promote allograft tolerance as shown 

n a fully MHC mismatched cardiac transplant model [34 ]. Recent
vidence for the reactivation of pre-existing alloreactive T cells 
n ICI-mediated allograft rejection in a patient with melanoma 
as provided by Dunlap et al. The authors showed an expansion
f circulating alloreactive CD8+ T cell clones that accumulated 
n the kidney allograft during rejection while receiving anti-PD-1 
reatment, but were not present in tumor tissues. The expanded
D8+ T cells had a specific transcriptomic profile compatible 
ith an elevated activation and tissue resident-memory signa- 
ures by the expression of ZNF683, CXCR3, and HLA-DR [35 ]. 

While rejection is highest under anti-PD-1 therapy, rejection 
s also seen with the use of anti-CTLA-4. This is not surpris-
ng as CTLA-4 is an important regulator of T cell priming in the
econdary lymphoid organs and is constitutionally expressed by 
reg cells. CTLA-4 knock-out mice develop severe lymphoprolif- 
rative disease and die at a young age [36 ]. On the contrary Belat-
cept, a CTLA-4Ig, is used for maintenance immunosuppression 
n kidney transplantation [37 ]. It is notable from the immune-
ncology standpoint that the use of CTLA-4Ig was associated 
ith post-transplant lymphoproliferative disease in Epstein–
arr virus-negative patients, and it is now contraindicated for 
TLA-4Ig to be used in Epstein–Barr virus-negative KTR [38 ]. 
In ICI-induced allograft rejection, a cross-talk between 

umor-related immune response and alloreactivity cannot be 
uled out. For instance, one can imagine that KTR who reduce
heir tumor size but undergo allograft rejection after ICI might
lso develop T cell repertoires that share common antigenic 
pecificities for tumor and allogeneic peptides. Examining TCR 
pecificity of CD8+ T cells infiltrating the allograft and tumoral 
issue may provide evidence of such cross-reactivity. 

As parallelism with immune-related adverse events, one can 
magine that alteration of the local or systemic cytokine profile
an tip the balance toward inflammation leading to tissue and
otential allograft damage [39 ]. Furthermore, the loss of T regu-
atory function by inhibition of CTLA-4 or PD-1/PD-L1 pathway
an lead to loss of tolerance and activation of alloreactive T cells
n the context of transplantation. 

The tumor itself can have an immunosuppressive function
n the host by releasing adenosine, prostaglandin E2 and TGF β1
2 , 40 ]. Tumor shrinkage by ICI can therefore indirectly augment
ost responses toward the allograft. 

iomarkers of allograft rejection in the context of ICI 

everal surrogate markers predictive of either rejection or tol-
rance have been identified in KTR, but their ability to identify
high-risk’ or ‘low-risk’ patients before and during administra-
ion of ICI remains to be established [41 –47 ]. Increasing evidence
oints toward the role and involvement of granzyme B express-
ng regulatory B cells ( GZMb-Breg) and TEMRA CD8+ in kidney 
llograft survival. Based on phenotypical analyses, it has been
hown that a higher proportion of Effector Memory expressing
D45RA ( TEMRA) CD8+ T cells predict graft failure [35 , 36 ]. On the
ther hand, a unique expansion of GZMb-Breg has been identi-
ed in KTR with operational tolerance and a robust B cell signa-
ure of low-risk graft failure has been identified [41 , 44 ]. 

The ultimate search for noninvasive biomarkers to diagnose
llograft rejection has further evolved and those that have been
emonstrated to be utile are urinary mRNA levels of CXCL10,
D3 ε, 18S rRNA, chemokine concentration of CXCL9 and CXCL10
nd plasma donor-derived cell-free DNA ( dd-cfDNA) measure- 
ent [47 –50 ]. dd-cfDNA increases before the rise in plasma cre-
tinine and is monitored for early detection of allograft rejection
nd/or injury in clinical practice. Levels < 1% of total dd-cfDNA
re associated with the absence of active rejection, but levels
 1% are indicative of active rejection [51 ]. 
The use of these biomarkers in the context of allograft rejec-

ion under ICI has been poorly investigated. Moreover, allograft
ejection under ICI occurs early so biomarkers of anti-allograft
esponse or allograft injury must be detected early. Hurkmans
t al. demonstrated in a case report, the elevation of dd-cfDNA
efore clinical apparent rejection under nivolumab ( anti-PD- 
) treatment for metastatic melanoma [52 ]. The same findings
ere observed in the preliminary results of an ongoing prospec-
ive phase I study ( NCT03816332) where dd-cfDNA increases be- 
ore plasma creatinine rise in two patients with allograft rejec-
ion under cemiplimab ( anti-PD-1) treatment [53 ]. Carroll et al.
respecified an exploratory endpoint in their study and mea-
ured urinary CXCL-10 concentrations before each nivolumab 
njection. Higher levels were seen in the two patients who re-
ected their allograft. They concluded that baseline monitoring
f CXCL-10 concentration might be an early predictor of allograft
ejection [24 ]. These reports are of importance and indicate that
t least two biomarkers ( dd-cfDNA and urinary CXCL-10) can be
sed for early detection of rejection in KTR under ICI therapy.
owever, the ultimate goal is to create a risk score to predict al-
ograft rejection before ICI therapy to better inform our patients
bout the risk of allograft rejection. 

So far, the gold standard for diagnosing acute rejection re-
ains kidney biopsy. Adam et al. analyzed gene expression pro-
les on kidney biopsies of patients with ICI-induced rejection
ersus ICI-induced interstitial nephritis and showed a signifi-
ant molecular overlap. However, interferon alpha inducible pro-
ein 27 ( IFI27) , was identified as a potential biomarker of ICI-
nduced T cell mediated rejection [54 ]. Some authors suggest
nti-PD-L1 staining of the allograft before treatment with ICI, as
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Table 3: Prospective clinical trials for KTR treated with ICI. 

Study 
Nivolumab in 

transplant patients Tacrolimus and ICI CONTRAC-1 

Cancer type Any cancers ( incurable, 
metastatic solid tumors) 

Skin cancers ( melanoma, cSCC, 
BCC, Merkel cell carcinoma) 

cSCC 

Transplant Kidney Kidney Kidney 
ICI Nivolumab* Nivolumab ± Ipilimumab Cemiplimab 
Immunosuppression Keep the same dose Tac ( 2–5 ng/ml) , pred 5 mg/day mTORi + dynamic pred 
Patient # 17 8 12 
Rejection 2 ( 11.7%) 2 ( 25%) 0 ( 0%) 
ORR ( CR + PR) 53% 33% 45% 

Registry ANZCTR CA209-993ISR NCT03816332 NCT03565783 
Primary institution Royal Adelaide Hospital, 

multicenter 
Johns Hopkins Hospital, 
multicenter 

Dana Farber Cancer Institute 

Australia USA USA 

Reference Lancet Oncol ( 2022) J Clin Oncol ( 2024) J Clin Oncol ( 2024) 

cSCC: cutaneous squamous carcinoma, BCC: basal cell carcinoma, ORR: objective response rate, CR: complete response, PR: partial response, mTORi: mammalian target 
of rapamycin 
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 positive staining could be associated with a higher risk of re- 
ection after ICI [55 –57 ]. However, this implicates that a biopsy is 
erformed before treatment, with all the risks involved in this 
lready frail population of patients. 

trategies to prevent allograft rejection in the context of 
CI 

o the best of our knowledge, no guidelines nor sufficient evi- 
ence exists to support the use of specific immunosuppressants 
uring ICI therapy [58 ]. It is tempting to reduce immunosuppres- 
ion before introduction of ICI to increase tumoral response at 
he expense of a higher risk of allograft rejection. Several ret- 
ospective studies demonstrate the association of mTORi treat- 
ent and allograft preservation. A large systematic review on 

he subject shows that the ideal response ( tumoral response 
ithout allograft rejection) is highest among patients treated 
ith mTORi [20 ]. This is not surprising since mTORi have anti- 
roliferative effects and could uncouple tumoral and allograft 
esponses by maintaining Treg function without impairing the 
umber of IFN- γ secreting T cells [59 ]. 
One case report suggests the use of pre-emptive high dose 

orticosteroids with sirolimus during immunotherapy to pre- 
ent graft rejection, the so-called ‘dynamic immunosuppres- 
ion’ [60 ]. The effect of this regimen was tested in the CONTRAC- 
 study on 12 KTR suffering from advanced cSCC treated with 
emiplimab. No patient developed an allograft rejection and the 
RR remained good ( 45%) . This regimen, however, should be 
ested on a larger cohort of patients before becoming the stan- 
ard of care for KTR suffering from cSCC eligible for cemiplimab,
or do we know if it can be extrapolated for other cancer types 
61 ]. By contrast, in a prospective cohort study by Schenk et al.
n eight KTR with advanced skin cancers ( melanoma, cSCC, BCC,
nd Merkel cell carcinoma) treated with nivolumab with or with- 
ut ipilimumab the patients were maintained on the standard- 
zed immunosuppression regimen of tacrolimus ( with a target 
rough level of 2–5 ng/ml) and prednisone 5 mg daily. Out of eight 
atients enrolled, two experienced allograft rejections after ad- 
ition of ipilimumab to nivolumab, and the ORR remained 33% 

62 ]. 
Reduction of immunosuppression before or during ICI 

herapy may potentially lead to a higher risk of rejection.
his question was partially addressed by Carroll et al., who 
emonstrated that nivolumab was safe and did not impair 
umoral response in KTR without pre-emptive reduction in 
mmunosuppression [24 ]. ( Table 3 ) However, one must note that 
aseline immunosuppression in their study was already low 

nd variable. Belatacept ( CTLA-4Ig) is commonly used as im- 
unosuppression for KTR, but it is unclear whether it could 
e effectively used to prevent allograft rejection in the setting 
f ICI use. In non-transplant setting, abatacept, another CTLA- 
Ig, has been used to treat life-threatening myocarditis in pa- 
ients treated with ICI [63 ]. and its efficacy is being actively tested
n a phase 3 clinical trial ( NCT05335928) [64 ]. IL-6 is an impor- 
ant inflammatory cytokine and increased levels have been as- 
ociated with immune-related adverse events and poor tumoral 
rognosis in the context of ICI. Anti-IL-6 has been used to treat 
mmune-related adverse events without impairing antitumoral 
esponses [65 ]. Indeed, IL-6 has an important role in regulating 
he balance between Th17 and Treg cells [66 ]. To what extent 
hese results can be extrapolated to KTR requires further investi- 
ations [67 , 68 ]. To our knowledge, no specific recommendations 
or the use of these agents in KTR exist during ICI therapy. Anti-
L-6 therapy is currently being tested in randomized trials for 
he treatment of TCMR and ABMR [68 ]. It could be an interesting
arget to investigate in this specific patient population. 

Recent evidence from a primary liver cancer mouse model 
earing a cardiac allograft showed that dual treatment with a 
ET protein inhibitor ( JQ1) and anti-PD-L1 was associated with 
etter tumoral response without allograft rejection. BET protein 
nhibition downregulates PD-L1 expression on cardiac myocytes 
nd protected against allograft rejection [69 ]. These findings are 
ncouraging, but more translational research is necessary to in- 
estigate potential use of a BET protein inhibitor in cancer and 
llograft response to ICI. 

e-transplantation after complete tumoral response 

 common feature of all ICI are the long-lasting, and durable 
esponses, even in patients with metastatic solid tumors [11 ].
he question of re-transplantation in the context of complete 
umoral response after immunotherapy is challenging. Only one 
ase report of kidney re-transplantation has been published in 
he literature so far. The patient was suffering from a metastatic 
SCC and was treated with pembrolizumab ( anti-PD-1) with a 
omplete tumoral response. However, the patient developed se- 
ere TCMR of his first kidney allograft with consequent graft 
oss. The patient remained in remission 4.5 years after anti-PD- 
 treatment and was again transplanted with a kidney from a 
iving unrelated donor. Ten months after his new transplanta- 
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1  
ion there were no signs of tumoral flare nor of allograft rejec-
ion [70 ]. By contrast, less convincing evidence is derived from
iver transplant patients treated with ICI for hepatocellular car- 
inoma ( HCC) before liver transplantation. A recent review re- 
ealed a rejection rate of 24% ( 11 out of 45 patients published)
ith a 36% graft loss ( 4 out of 11 patients) . After graft loss
here is a high mortality in this patient population unless ur-
ent re-transplantation is done [71 ]. The authors postulated that
t least 6 weeks between last dose of ICI and re-transplantation
hould be considered. Whether these results are applicable in 
TR needs to be confirmed in larger studies. 
It is also unknown whether to continue or interrupt ICI

reatment in patients with prolonged responses. Current data 
n the non-transplant population is limited and long-term 

reatment with ICI may be associated with the occurrence of
ew chronic immune-related adverse events [11 ]. No data are
vailable in SOTR and we do not know how long ICI have to
e maintained for metastatic disease. Acute allograft rejection 
s an early complication, but long-term impact of ICI in SOTR
emains elusive. Prospective studies are necessary to answer 
hese important questions as metastatic cancer has changed 
nto a chronic disease. 

ONCLUSION 

TR are prone to develop malignancy post-transplantation.
he use of ICI in KTR is associated with an increased risk of
ejection, but tumor responses seem to be encouraging despite 
he concomitant use of immunosuppressants. We acknowledge 
hat most data are derived from retrospective studies and case
eports. One should carefully weigh the risk and benefit from
mmunotherapy before starting treatment. Moderate reduction 
n immunosuppression may be warranted before start of ICI,
ut at least two immunosuppressants should be used and 
onversion of tacrolimus to sirolimus in combination with 
igher dose corticosteroids may be a reasonable treatment op- 
ion to prevent rejection, without impeding tumoral response.
requent and close monitoring of kidney function is needed 
o detect early allograft rejection at the start of ICI treatment.
oninvasive monitoring of kidney rejection could allow us to 
etect patients at risk of allograft rejection before and during
CI treatment. Ideally, a risk score should be created to help us
uide ICI therapies among KTR. Finally, the use of ICI in KTR,
hould be carefully made by a multidisciplinary team to weigh
he potential benefits against the risks. 
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