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Abstract

Single-cell RNA sequencing (scRNA-seq) is widely used to reveal heterogeneity in cells, which 

has given us insights into cell–cell communication, cell differentiation, and differential gene 

expression. However, analyzing scRNA-seq data is a challenge due to sparsity and the large 

number of genes involved. Therefore, dimensionality reduction and feature selection are important 

for removing spurious signals and enhancing the downstream analysis. We present Correlated 

Clustering and Projection (CCP), a new data-domain dimensionality reduction method, for the 

first time. CCP projects each cluster of similar genes into a supergene defined as the accumulated 

pairwise nonlinear gene–gene correlations among all cells. Using 14 benchmark data sets, we 

demonstrate that CCP has significant advantages over classical principal component analysis 

(PCA) for clustering and/or classification problems with intrinsically high dimensionality. In 

addition, we introduce the Residue-Similarity index (RSI) as a novel metric for clustering and 

classification and the R-S plot as a new visualization tool. we show that the RSI correlates with 

accuracy without requiring the knowledge of the true labels. The R-S plot provides a unique 

alternative to the uniform manifold approximation and projection (UMAP) and t-distributed 

stochastic neighbor embedding (t-SNE) for data with a large number of cell types.
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1. INTRODUCTION

Single cell RNA sequencing (scRNA-seq) reveals heterogeneity within cell types, leading 

to an understanding of cell–cell communication, cell differentiation, and differential gene 

expression. With current technology and protocols, more than 20,000 genes can be 

identified. Numerous data analysis pipelines have been developed to help analyze such 

complex data.1-6 Despite improvements in technology that allow for a more accurate reading 

of genes, the analysis of gene readings remains challenging. Causes of this challenge 

include dropout event-induced zero expression counts, low sequencing depth leading to low 

reading counts, general noise, and the high dimensionality of the original data.7 As a result, 

dimensionality reduction and feature selection are important for downstream analysis such 

as removing spurious signals.

Numerous dimensionality reduction and feature selection methods have been proposed 

for the scRNA-seq data. One such method is ScRNA by non-negative and low-rank 

representation (SinLRR), which assumes that scRNA-seq has an inherently low rank and 

attempts to find the smallest rank matrix that captures the original data.8 Numerous 

non-negative matrix factorization (NMF) methods with different constraints have also 

been developed, where the low-dimensional representation of scRNA-seq is a linear 

combination of the original data and acts as meta-genes.9-14 Single-cell interpretation 

via multikernel learning (SIMLR) utilizes multiple kernels to learn a cell–cell similarity 

metric that generalizes to different biological experiments and experimental procedures.15 

In addition, more traditional approaches, such as principal component analysis (PCA)16 and 

its derivatives,17,18 and visualization techniques, such as uniform manifold approximation 

and projection (UMAP)19 and t-distributed stochastic neighbor embedding (t-SNE),20 have 

been heavily utilized for scRNA-seq data. Furthermore, deep learning has also been used for 

dimensionality reduction.21-26
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Although numerous techniques have been developed, PCA is the most commonly used 

method for downstream analysis of scRNA-seq data.27 PCA is a linear dimensionality 

reduction method, where its goal is to compute the principal components as new features 

that maximize the variance. The first principal component is a feature that maximizes 

the variance of the projected data, and each ith principal component is orthogonal to the 

i − 1 principal component that maximizes the variance of the projected data.28 Single-cell 

consensus clustering (SC3)29 utilizes PCA and the eigenvectors of the graph Laplacian 

induced by Euclidean, Pearson, and Spearman distances and performs a consensus on 

k-means results obtained from different dimensions using the CSPA algorithm to obtain 

the final cell clustering result. CellChat30 utilizes the low-dimensional representation of 

scRNA-seq alongside known interactions between ligands, receptors, and cofactors to 

predict cell–cell communication, and a user can perform dimensionality reduction prior 

to utilizing CellChat. DEEPsc31 is a deep learning method that predicts the probability of 

a cell belonging to a reference atlas by projecting scRNA-seq to the PCA space of the 

reference atlas, which can then be used to predict cell types. The popular package Seurat32 

utilizes supervised PCA (SPCA) which finds the projection that captures the weighted 

nearest neighbor graph of the reference data set for its downstream analysis. In addition to 

cell clustering, semisupervised and supervised learning methods have been used to classify 

cell types according to their reference cells by projecting unknown cells to the PCA space of 

the reference cells.33,34

PCA has many advantages, such as computational efficiency and ease in projecting new data 

into the principal components. However, PCA lacks concrete interpretability and loses the 

non-negativity of the read-count data. In contrast, the components of NMF are all positive 

and can be considered metagenes, where metagenes are linear combinations of the original 

genes. Nonlinear dimensionality reduction methods, such as UMAP, t-SNE, and Isomap, 

have great performance for low dimensionality that can capture the local structure of the 

data, but they also lack interpretability due to matrix diagonalization. Moreover, both PCA 

and traditional nonlinear reduction methods are unstable when the data are reduced to higher 

dimensions, which is unfavorable for machine learning and deep learning tasks that typically 

require a large number of features.

We propose a computationally efficient and interpretable dimensionality reduction algorithm 

for scRNA-seq data called correlated clustering and projection (CCP).35 CCP begins by 

clustering genes based on their similarity and then uses the flexibility rigidity index 

(FRI)36 to nonlinearly project each gene cluster into a supergene, which is a measure of 

accumulated gene–gene correlations among cells. Unlike traditional nonlinear reduction 

methods, CCP bypasses matrix diagonalization, allowing users to select the number of 

supergenes, which is beneficial for machine learning and deep learning tasks. Furthermore, 

similar to NMF’s meta-genes, supergenes are all nonnegative and highly interpretable. 

We validated CCP’s performance on 14 scRNA-seq data sets by varying the number of 

supergenes and conducting support vector machine classification and k-means clustering.

Additionally, we have validated the performance of a novel evaluation metric for 

dimensionality reduction, called the Residue-Similarity index (RSI).35 The RSI evaluates 

the intracluster similarity of cell types or clusters and compares it to their intercluster 
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residual score. As the RSI only requires one set of labels, which can be computed from 

k-means, it can measure the performance of dimensionality reduction for both clustering 

and classification tasks, without requiring knowledge of the true labels. Furthermore, by 

analysis of the relationship between samples, the RSI allows for a deeper understanding of 

the quality of the dimensionality reduction algorithm. We have verified the effectiveness of 

the RSI alongside CCP on both clustering and classification tasks and introduced the R-S 

plot as a novel visualization technique for data containing multiple cell types.

2. METHOD

2.1. Correlated Clustering and Projection (CCP).

The CCP procedure consists of two steps: gene partitioning and gene projection. Let 

Z ∈ ℝM × I be the log-transformed scRNA-seq data, where M is the number of samples 

(cells), and I is the number of genes.

2.1.1. Feature Partitioning.—The original CCP method used a modified k-medoids 

algorithm for gene clustering; however, we replaced it with a modified k-means algorithm 

for a more stable clustering result. The details of the modified k-means clustering method 

can be found in Section S1.1 of the Supporting materials.

Let Z = {z1, …, zi, …, zI be the rows of Z or the gene vector, and zi ∈ ℝM. CCP implements 

k-means clustering described in S1.1, but the clustering is done on the genes. Hence, we get 

clusters Z1, …, ZN, Z = ⊎n = 1
N Zn, N ≪ I.

Let S = {1, …, I} be the enumeration of the original genes. Then, we can partition 

S = {S1, …, SN}, using the k-means clustering results, by setting Sn = {i ∣ zi ∈ Zn}, i.e., Sn is 

the number of genes in the nth cluster.

2.1.2. Feature Projection.—With the gene partitioning, we define zm
Sn ∈ ℝSn

 as the Sn

genes in the mth cell. These genes are projected into a supergene xm
n using the flexibility 

rigidity index (FRI). Denote zi
Sn − zj

Sn  as some metric between cell i and cell j for the 

cluster of Sn genes, and the gene–gene correlation between the two cells are defined by 

Cij
Sn = Φ( zi

Sn − zj
Sn ; ηSn, τ, κ), where Φ is the correlation kernel, and ηSn

, τ and κ > 0 are 

parameters. Commonly used metrics include the Euclidean, Manhattan, and Wasserstein 

distances. In addition, the correlation kernels satisfy the following conditions

Φ( zi
Sn − zj

Sn ; ηSn
, τ, κ) 0, as zi

Sn − zj
Sn ∞

(1)

Φ( zi
Sn − zj

Sn ; ηSn
, τ, κ) 1, as zi

Sn − zj
Sn 0

(2)
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Commonly used kernel functions are the radial basis functions. In particular, we use the 

generalized exponential function

Φ( zi
Sn − zj

Sn ; ηSn
, τ, κ) = e− zi

Sn − zj
Sn

ηSn
τ

κ

zi
Sn − zj

Sn < rc
Sn

0, otherwise

(3)

where rc
Sn is the cutoff distance, and ηSn

 is the scale, which are defined by the data. κ is the 

power, and τ is a scale parameter.

Pairwise gene–gene correlation matrix CSn
= {Cij

Sn} reveals cell–cell interactions and can 

also be viewed mathematically as the weight of the edges in a weighted graph, given the 

cutoff rc
Sn. The cutoff rc

Sn is taken as the 2-standard deviations of the pairwise distances. ηSn

can then be viewed as the algebraic connectivity, which is defined as the average minimal 

distance between the cluster of genes

ηSn
=

∑m = 1
M minzjS

n zm
Sn − zj

Sn

M

(4)

Using the correlation function, we can project Sn genes into a supergene using the FRI for 

the ith sample

xi
n = ∑

m = 1

M
Φ( zi

Sn − zj
Sn ; ηSn

, τ, κ)

(5)

By performing the projection of all gene clusters, we get the lower dimensional supergene 

representation for the ith sample (cell) xi = (xi
1, …, xi

N)T .

2.2. Evaluation Metric.

In this section, we introduce the Residue Similarity Index (RSI) and its scores. Details on 

the Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), Balanced Accuracy 

(BA), and Silhouette score can be found in Section S1.2 of the Supporting materials.

2.2.1. Residue-Similarity Index and Scores.—We present the residue score (R 

score), similarity score (S score), and R-S index (RSI).35 Let the data be represented as 

{{(xm, ym) ∣ xm ∈ ℝN, ym ∈ ℤL, 1 ≤ m ≤ M}}, where xm is the mth gene vector, ym is the label or 

the cluster assignment, and L is the number of classes or clusters. Assume that there is a 

partition of data X according to the labels or cluster assignments. That is, Cl = {xmX ∣ ym = l}
and ⊎0

L − 1 Cl = X.
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The R score is defined as the interclass sum of distance. For a given data X with assignment 

ym = 1, the R-score is defined as

Rm = R(xm) = 1
Rmax

∑
xj ∉ Cl

‖xm − xj‖

(6)

where Rmax = max
xm, xm ∈ X

Rm. The similarity (S) score is defined as the intraclass average of 

distance, defined as

Sm = S(xm) = 1
∣ Cl ∣ ∑

xj ∈ Cl

1 − ‖xm − xj‖
dmax

(7)

where dmax = max
xi, xj ∈ X

‖xi − xj‖, and ∣ Cl ∣ is the number of data in class Cl. Both Rm and Sm are 

bounded by 0 and 1, and the larger the better for a given data set.

The class residue index (CRI) and the class similarity index (CSI) can then be defined as 

the average of the R-score and S-score of each of the classes. That is CRIl = 1
∣ Cl ∣ ∑m Rm, and 

CRIl = 1
∣ Cl ∣ ∑m Sm. Then, the residue index (RI) and the similarity index (SI) can be defined 

as RI = 1
LCRIl and SI = 1

LCRIl, respectively.

Using the RI and SI, the residue similarity disparity can be computed by 

taking RSD = RI − SI, and the residue-similarity index (RSI) can be computed as 

RSI = 1 − ∣ RI − SI ∣.

3. RESULTS

CCP was benchmarked against PCA on 14 data sets, and the data set details can be found 

in Table 1. The data was normalized using either reads per kilobase of transcript per million 

(RPKM), transcript per million (TPM), or counts per million (CPM). For each data set, CCP 

was used to obtain the number of supergenes as N = 50, 100, 150, 200, 250, and 300. The 

parameters κ and τ of the exponential kernel were searched over κ = 1, 2 and τ = 1, 2, …, 6 

and set to τ = 6 and κ = 2 for the exponential kernel. To test the reduction, 20 random seeds 

were used for CCP and PCA, and for each reduction, 30 random initializations of k-means 

were used to obtain cluster labels. After the cluster labels were obtained, the ARI and NMI 

were computed by comparing the results to the labeled cell types, and the averages were 

visualized. For each figure, the red and blue lines represent CCP and PCA, respectively, and 

the star and dotted markers indicate the ARI and NMI, respectively.
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3.1. CCP Benchmark.

Figure 1 shows the performance of CCP and PCA on three data sets, GSE67835, GSE75748 

time, and GSE59114 data. For GSE67835, CCP outperforms PCA in all of the dimensions 

we have tested. For GSE75748 time, CCP outperforms PCA for 50 supergenes and above. 

GSE75748 time shows an increase in performance as the number of gene dimensions 

increased. PCA exhibits instability as N increases, which is noticeable from their decrease 

in performance from N = 50 to 150 for both data sets. CCP does not perform well on 

GSE59114 because both ARI and NMI are less than 0.3 for all the dimensions we 

have tested. CCP’s performance may be poor due to the low intrinsic dimensionality of 

GSE59114. In other words, the number of gene clusters is inherently small, leading to 

redundant clusters. GSE59114, in particular, only has 8,422 genes, whereas other data have 

over 15,000 genes.

In order to verify CCP’s performance, the residue similarity index (RSI) was calculated for 

the k-means clustering result of the gene partitioning in CCP. Figure 2 shows the RSI of the 

k-means clustering on the genes at various numbers of cell clusters (k). The top row shows 

the clustering result for GSE59114, which had poor CCP performance, and the bottom row 

shows the clustering result for GSE67825, which had good CCP performance. For each 

number of clusters, 10 random initializations were used for the k-means clustering, and the 

averages of the RI, SI, and RSI were obtained. The red, blue, and green lines correspond to 

the RI, SI, and RSI, respectively. The RSI can be used to check the quality of the clustering, 

where the peak in the RSI suggests the optimal number of clusters and, in the case of CCP, 

the intrinsic dimensionality of the data. The right column shows the 2D visualization of the 

genes using t-SNE. The samples were colored according to their cluster labels. The t-SNE 

visualization of GSE59114 shows the k-means clustering result when k = 8 was selected. 

The t-SNE visualization of GSE67835 shows the k-means clustering result when k = 64 was 

selected. Seven of the 64 clusters were colored, and the points colored in green are the rest 

of the genes.

Notice that in GSE59114, there is a noticeable peak in the RSI score at k = 8 clusters, 

whereas in GSE67835, the peak is flat and occurs at about k = 32 − 64 clusters. This suggests 

that the intrinsic dimensionality is about 8 for GSE59114, which is unfavorable for CCP. 

On the other hand, the intrinsic dimension of GSE67835 is much higher, which is more 

suitable for CCP. Notice that the clusters have distinct boundaries, supporting the relatively 

low dimensionality of the data. On the other hand, the GSE67835 data are not well-clustered 

even at k = 64. Notice that the orange and blue genes have some outliers, and the purple 

genes are not well-clustered. This suggests that the number of optimal gene clusters is larger, 

which suggests high gene dimensionality and favors CCP.

3.2. Residue-Similarity Index Comparison.

The residue-similarity index (RSI) has been shown to correlate with classification accuracy 

in ref 35. In this section, we use the RSI for classification and clustering on the 14 data sets 

from Table 1. We use CCP to process each data set with the same parameters as the previous 

section with 20 random initializations. For classification, we use 5-fold cross-validation with 

10 random seeds and the support vector machine to predict cell types. We used balanced 
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accuracy (BA) to measure the performance of the classification. Then, using the same 5-fold 

cross-validation, we calculate the RSI, where we obtain the RI, SI, and RSI from the test 

set, similar to ref 35. For clustering, we compute the RSI for PCA and CCP using the 

k-means clustering labels and the true labels. Additionally, using the k-means clustering 

labels, we compute the Silhouette score to compare the results with the RSI. Full details of 

the benchmark procedure can be found in S2.1 of the Supporting Materials.

In general, we have found no correlation between the Silhouette scores and RSI 

for clustering results. Additionally, we have found that BA and the RSI correlate in 

classification results.

We found that the RSI correlates with the classification accuracy in many of our tests. Figure 

3 shows the RSI for classification and clustering problems for GSE67835, GSE75748 time, 

and GSE82187 data. CCP was used to reduce the original data using τ = 6 and κ = 2 for 

the exponential kernel. The top row corresponds to classification results, and the bottom 

row corresponds to clustering results. Notice that for classification results, all three data 

sets show a correlation between BA and the RSI. The RSI on classification results for 

GSE67835 shows a plateau at about 150 supergenes, which corresponds to the plateau of 

the BA. This suggests that the optimal dimension is about 150. The RSI on classification 

results for GSE75748 shows a plateau at about 200 supergenes, even though BA plateaus 

at about 150 supergenes. Even though the accuracy plateaued earlier, this suggests that the 

optimal dimension is 200 gene clusters. In addition, since GSE75748 time observes cell 

differentiation at different times, it is possible that some cells are at different stages in their 

cell cycles, as suggested in the literature.43 This suggests that there are many intermediate 

stages in the cell differentiation. The RSI on classification results on GSE82187 shows 

a small decrease as the number of supergenes increases. This suggests that the optimal 

dimension is smaller than those of the GSE67835 and GSE75748 time. Lastly, the RSI 

decreases for all three data sets when PCA is utilized, which corresponds to the decrease in 

BA.

For the clustering results, the RSI using the k-means labels and the true cell types are 

similar. Even though the ARI and NMI of PCA decrease as the number of gene clusters 

increases, the RSI remains consistent. This suggests that PCA cannot differentiate clusters at 

higher dimensions. CCP, on the other hand, shows a correlation with both of the RSI scores.

Additional examples of utilizing the RSI on classification and clustering problems can be 

found in Section S2.2 of the Supporting materials.

Figure 4 shows the overall clustering performance of CCP and PCA. The bars show the 

mean ARI and NMI values across the different numbers of components. Notice that for both 

ARI and NMI, CCP significantly outperforms PCA.

Figure 5 shows the overall classification performance of CCP and PCA. The bars show 

the mean BAs across different numbers of dimensions. Notice that for the mean BA, CCP 

significantly outperforms PCA.
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4. DISCUSSION

4.1. CCP.

Like other dimensionality reduction algorithms, CCP has its advantages and disadvantages. 

CCP nonlinearly projects each cluster of similar genes into a supergene. Supergenes are 

highly interpretable: each supergene represents a measure of a cluster of genes’ accumulated 

pairwise nonlinear correlations with the same cluster of genes in all other cells for a given 

cell. Similar to NMF, supergenes are non-negative, which is important for downstream 

analysis such as differential gene expression analysis.

Since CCP is a data-domain method, it bypasses matrix diagonalization. One limitation of 

many dimensionality reduction algorithms is their dependence on matrix diagonalization. In 

scRNA-seq data, the number of genes is typically larger than 5,000, which gives rise to the 

“curse of dimensionality”. When the number of features is large, every sample may appear 

to be equidistant from one another, which makes many machine learning algorithms unable 

to find meaningful clusters in the data. CCP, on the other hand, partitions the genes into 

clusters and computes the pairwise gene–gene correlations across all cells, which avoids the 

curse of dimensionality.

Even though CCP has shown success in many scRNA-seq data sets, it does have limitations. 

CCP does not perform well for data sets with a low intrinsic dimension. As shown in Figure 

2, GSE59114 and GSE94228 have a low intrinsic dimension, and as a result, their clustering 

results also suffered.

In addition, many scRNA-seq data sets are sparse due to low signal-to-noise ratio and 

dropout events. Therefore, CCP will most likely benefit from data imputation.

4.2. RSI.

The RSI is a useful tool for assessing the performance of dimensionality reduction for both 

clustering and classification problems. In the following section, we compare the RSI to the 

traditional clustering metrics, ARI and NMI, and also to the Silhouette score. Then, we 

discuss the RSI and its connection with classification accuracy.

4.2.1. RSI for Clustering.—Compared with the ARI and NMI, which measure the 

similarity between two sets of labels, the RSI evaluates the performance using only one set 

of labels. In this study, the ARI and NMI were used to compare the true labels with the 

clustering labels. However, in practice, such true labels are not available. The RSI, on the 

other hand, can evaluate the effectiveness of clustering without the need for original labels. 

This is similar to the Silhouette score, which measures the separations between clusters. 

However, when there are multiple clusters, the Silhouette score becomes difficult to interpret 

because it measures whether a sample belongs to its current cluster assignment or to the 

nearest neighboring cluster. Therefore, it is often used to evaluate the optimal number of 

clusters rather than evaluating different parameters while fixing the number of clusters. 

The RSI can evaluate the effectiveness of different parameters while fixing the number of 

clusters.
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4.2.2. RSI for Classification.—Using the RSI for cell types, we have shown that the 

RSI correlates with classification accuracy. Additionally, the RI and SI indicate how well 

the clusters separate from each other. The Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC) is a metric commonly used to evaluate classification effectiveness. 

However, the AUC-ROC is a better metric for binary classification problems, and its 

interpretation is more challenging for multiclass problems. The RSI, on the other hand, can 

handle problems with more than two cell types. Lastly, the RSI uses the features and labels 

to compute the scores; therefore, it can also demonstrate the effectiveness of dimensionality 

reduction algorithms in conjunction with classification problems.

The RSI can also be utilized for visualizing each class or cluster, which we have called 

a residue-similarity (R-S) plot. In order to showcase the R-S plot, we compare it with 

traditional visualization techniques used in scRNA-seq data, namely, t-SNE and UMAP. 

CCP was used to reduce the dimensionality. The 5-fold cross-validation was used to divide 

the data into 5 parts, where 4 parts were used to train the support vector machine classifier 

and 1 part was used to test the classifier. Then, residue and similarity scores were computed 

for each sample and plotted according to their true cell type. Samples were then colored 

according to their predicted labels from the support vector machine classifier. The x-axis and 

y-axis correspond to residue and similarity scores, respectively. Both residue and similarity 

scores range from 0 to 1, where 1 is the most optimal, and the top-right corner indicates 

well-separated and clustered reduction. However, it is important to note that having a 

balance of both scores is important, as shown in Hozumi et al. (2022).35 For t-SNE and 

UMAP, the original data were log-transformed, and genes with variance less than 10−6 were 

removed prior to the reduction. Samples were then plotted and colored according to their 

cell types.

Figure 6 shows a comparison between the R-S and 2D plots of UMAP and t-SNE for 

the GSE75748 time data. CCP was used to generate 200 supergenes with τ = 6 and κ = 2. 

For the UMAP and t-SNE plots, the reduction was directly applied to the log-transformed 

original data. In ref 43, Chu obtained snapshots at different times of embryonic stem (ES) 

differentiation from pluripotency to definitive endoderm (ED) over 4 days at 0, 12, 24, 36, 

72, and 96 h. Noticeably, cells recorded at 72 and 96 h are mixed in UMAP and t-SNE plots 

and misclassified in the R-S plot. This finding is consistent with ref 43, where cells from 

72 and 96 h were relatively homogeneous. In a biological sense, this may indicate that cell 

differentiation had mostly completed by 72 h, such that not much of the further process of 

cell differentiation was observed at 96 h. In the t-SNE and UMAP plots, we can see a pattern 

similar to that of the R-S plot. There are 2 subclusters of the 12 h samples. Additionally, 

the 72 and 96 h samples form one large cluster, which is consistent with the R-S plot’s 

findings. Most notably, there is a large difference between the ES cell at 0 h and ES cells 

at different times in all visualizations, and there is no misclassification of the 0 h state with 

cells from 72 and 96 h states, indicating that the cells have indeed differentiated from the 

original pluripotent state.

Figure 7 shows a comparison between the R-S plot and 2D plots of UMAP and t-SNE of 

the GSE75748 cell data. CCP was used to reduce the dimension to 100 supergenes with 

τ = 6 and κ = 2. In ref 43, Chu obtained snapshots of lineage-specific progenitor cells that 
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differentiated from H1 human embryonic stem (ES) cells. These differentiated cells include 

neuronal progenitor cells (NPCs), endoderm derivative cells (DECs), endothelial cells (ECs), 

trophoblast-like cells (TB), human foreskin fibroblasts (HFFs), and undifferentiated H1 and 

H9 human ES cells. Not surprisingly, all 3 visualizations show that undifferentiated ES 

cells H1 and H9 are clustered together, indicating that these two ES cells are relatively 

homogeneous, which agrees with Chu’s findings. In the R-S plot, we see that all but 1 DEC 

sample are classified incorrectly, whereas in UMAP and t-SNE plots, DEC samples do not 

form a distinct cluster and have a super cluster forming with the H1, H9, and DEC cluster. 

In addition, all 3 visualizations show 2 clusters of NPC samples, but CCP is able to classify 

NPC samples correctly. Notice that in the R-S plot there are a few misclassifications of ECs 

and DECs, and in UMAP, these two clusters are adjacent to one another. This is consistent 

with a small number of misclassified EC and DEC groups shown in the RS plot. Since ECs 

are derivatives of mesoderm, it has been suggested by refs 37-39 that mesoderm and DECs 

may have developed and differentiated from a common progenitor pool.

5. CONCLUSION

CCP is a novel dimensionality reduction method that projects each cluster of similar genes 

into a supergene defined as accumulated pairwise nonlinear gene–gene correlations among 

cells. We have shown that CCP is able to differentiate cell types and also preserve the 

similarity along the trajectory of cellular differentiation. In addition, since CCP works 

exclusively in the data-domain, it does not rely on matrix diagonalization, and its results are 

easily interpretable. It significantly outperforms PCA for problems with intrinsically high 

dimensionality.

We also show that the RSI is a novel metric for evaluating the effectiveness of 

dimensionality reduction algorithms. Since it correlates with accuracy but does not rely 

on knowing the true labels of the data, it can be applied to improve both clustering 

and classification. In addition, the RSI can be used to vary the number of clusters and 

obtain insight into the optimal number of cell types. This information can be used to filter 

out data where CCP may not perform well, because CCP works best when the intrinsic 

dimensionality of the data, i.e., the number of gene features, is relatively high. Lastly, the 

R-S plot is introduced as a new visualization tool that works well for problems with a large 

number of cell types.
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Data Availability Statement

All data was processed and is available at https://github.com/hozumiyu/

SingleCellDataProcess. The code needed to reproduce this paper’s result can be found at 

https://github.com/hozumiyu/CCP-for-Single-Cell-RNA-Sequencing. CCP is made available 

through our Web server at https://weilab.math.msu.edu/CCP/ or through the source code 

https://github.com/hozumiyu/CCP. The source code of the RSI and R-S plot can be found at 

https://github.com/hozumiyu/RSI.
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Figure 1. 
ARI and NMI of the clustering results of CCP and PCA on GSE67835 and GSE75748 time 

and GSE59114 data. The red and blue lines correspond to CCP and PCA, respectively. A 

total of 20 random initializations were used to test the reduction, and for each reduction, a 

total of 30 random initializations were used to obtain the clustering results from k-means 

clustering. The averages of the ARI and NMI were obtained. For CCP, all the tests utilize 

τ = 6 and κ = 2 for the exponential kernel.
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Figure 2. 
RI, SI, and RSI of the gene clustering of GSE59114 and GSE67835. k-means clustering 

was performed with k = 2, 4, 8, 16, 32, 64, and 128 gene clusters. For each number of 

clusters, 10 random initializations were utilized, and the averages of the RI, SI, and RSI 

were obtained. The red, blue, and green lines correspond to the RI, SI, and RSI, respectively. 

We use t-SNE to visualize the genes in 2D. For GSE59114, k = 8 clusters were obtained, 

and the genes were colored according to their cluster assignment. For GSE67835, k = 64 cell 

types were obtained. Seven random gene clusters were colored, and the rest of the clusters 

were colored in green.
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Figure 3. 
Comparison of the RSI in classification and clustering problems for GSE67835, GSE75748 

time, and GSE82187 data at reduced dimensions N = 50, 100, 150, 200, 250, and 300. CCP 

was used to reduce the original data dimension using τ = 6 and κ = 2 for the exponential 

kernel. The top and bottom rows correspond to the classification and clustering results, 

respectively. For classification, a support vector machine was used. True labels were used 

to compute the RSI for the 5-fold cross-validation. For clustering, the RSI were computed 

using the cluster labels from k-means clustering and the true labels.
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Figure 4. 
Comparison of CCP and PCA clustering on GSE67835, GSE75748 time, and GSE82187 

data. CCP was used to reduce the original data dimension using τ = 6 and κ = 2 for the 

exponential kernel. The blue, orange, green, and red bars correspond to mean CCP ARI, 

mean PCA ARI, mean CCP NMI, and mean PCA NMI, respectively. Here, the average was 

taken over different dimensions.
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Figure 5. 
Comparison of CCP and PCA classification on GSE67835, GSE75748 time, and GSE82187 

data. CCP was used to reduce the original data dimension using τ = 6 and κ = 2 for the 

exponential kernel. The blue and orange bars correspond to the mean BAs of CCP and PCA, 

respectively. Here, the average was taken over different dimensions.
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Figure 6. 
R-S plot, CCP assisted t-SNE plot, and standard t-SNE plots of GSE75748 time data. 

CCP was used to reduce the scRNA-seq data to 200 supergenes using τ = 6 and κ = 2. 

The 5-fold cross-validation was used to split the data into 5 parts, where 4 parts were 

used for training and 1 part was used for testing the support vector machine classifier. RS 

scores were computed for the testing set, and all 5 folds were visualized. Each section 

corresponds to one of the 6 true cell types, and the sample’s color and marker correspond 

to the predicted label from the support vector machine classifier. For t-SNE and UMAP, the 

data was log-transformed, and any genes with less than 10−6 variance were removed before 

applying the reduction. Samples were colored according to their cell types.
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Figure 7. 
RS plot and CCP assisted UMAP and t-SNE plots of GSE75748 cell. CCP was used to 

reduce the scRNA-seq data to 100 components using τ = 6 and κ = 2. 5-Fold cross-validation 

was used to split the data into 5 parts, where 4 parts were used for training and 1 part was 

used for testing the k-NN classifier. The RS score was computed for the testing set, and 

all 5 folds were visualized. Each section corresponds to 1 of the 7 true cell types, and the 

sample’s color and marker correspond to the predicted label from the k-NN classifier. For 

t-SNE and UMAP, the data was log-transformed, and any genes with less than 10−6 variance 

were removed before applying the reduction. Samples were colored according to their cell 

types.
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