
1Scientific Data |          (2024) 11:370  | https://doi.org/10.1038/s41597-024-03165-8

www.nature.com/scientificdata

High-resolution freshwater 
dissolved calcium and pH data 
layers for Canada and the United 
States
Andrew J. Guerin   1 ✉, Andréa M. Weise1 ✉, Jackson W. F. Chu   2, Mark A. Wilcox3, 
Erin Sowerby Greene3 & Thomas W. Therriault3

Freshwater ecosystems are biologically important habitats that provide many ecosystem services. 
Calcium concentration and pH are two key variables that are linked to multiple chemical processes in 
these environments, influence the biology of organisms from diverse taxa, and can be important factors 
affecting the distribution of native and non-native species. However, it can be challenging to obtain 
high-resolution data for these variables at regional and national scales. To address this data gap, water 
quality data for lakes and rivers in Canada and the continental USA were compiled and used to generate 
high-resolution (10 × 10 km) interpolated raster layers, after comparing multiple spatial interpolation 
approaches. This is the first time that such data have been made available at this scale and resolution, 
providing a valuable resource for research, including projects evaluating risks from environmental 
change, pollution, and invasive species. This will aid the development of conservation and management 
strategies for these vital habitats.

Background and Summary
Calcium concentration and pH are key determinants of many environmental and biological processes in fresh-
water ecosystems. Both variables regulate metabolic physiology in aquatic organisms, influencing reproduction, 
growth, and predator-prey interactions across a wide range of taxa including bacteria1,2, aquatic algae and dia-
toms3,4, molluscs5, crustacea6, and fish4,7,8. Since differences in these parameters can lead to detectable biological 
effects on individuals, populations, and communities9,10, pH and calcium concentration can both be important 
predictors of species distributions11,12 and are often used to evaluate the risk of establishment for invasive spe-
cies, such as dreissenid mussels13–15. pH and dissolved calcium content of lakes influence their susceptibility to 
acidification16,17. They affect nutrient availability18,19, and play an important role in determining the environmen-
tal risks posed by metals and other contaminants by influencing their dissolution, mobilization, bioavailability, 
and toxicity20–22, as well as mediating their adsorption and desorption by microplastics23,24.

For large-scale studies at regional, national and continental levels, a common challenge facing freshwater 
researchers and resource managers is the availability of water quality data17, including calcium and pH. Such 
data are not readily available for all areas of North America, and given the large number of lakes, rivers, and 
other water bodies in Canada and the USA, measuring these variables at all sites would be prohibitively expen-
sive and impractical. One way of improving water quality data coverage is to use existing measurements to pre-
dict values for unsampled locations via spatial interpolation14,25,26. This approach has several advantages: large 
amounts of data from multiple sources can be combined, no complex mechanistic modelling is required, and a 
range of established interpolation methods are available.

The goal of this work was therefore to use spatial interpolation to generate calcium and pH raster layers 
for the entirety of Canada and the continental USA at higher spatial resolution and coverage than previously 
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available13,15. An expansive dataset covering Canada and the USA (1,347,887 calcium measurements from 
97,648 locations, and 8,789,005 pH measurements from 208,784 locations) was compiled from multiple gov-
ernmental, non-governmental, and academic sources, and used to generate spatially interpolated maps of these 
variables at a 10 × 10 km resolution. These layers will be of value for projects requiring calcium and pH data at 
regional to continental scales, including understanding past and present sensitivity of lakes and rivers to acidi-
fication16,17, assessment of regional variation in the risks posed by contaminants20, ecological niche modelling27, 
and invasive species risk assessment13,15.

Methods
Data sources.  Since Canada lacks a centralised repository for water quality data, georeferenced Canadian 
water quality records were obtained from multiple sources: publicly-accessible federal28–31, provincial and terri-
torial agency databases32–40; non-governmental open access data repositories - the Atlantic Datastream (https://
atlanticdatastream.ca/)41–93 and the Mackenzie Datastream (https://mackenziedatastream.ca/)52,94–115; published 
reports and primary literature116–124; a previous invasive species risk assessment15; and directly from contacts 
in relevant agencies in each of the provinces and territories (Table 1). Records for the United States (including 
Alaska, but excluding Hawaii) were obtained from the Water Quality Portal125, which combines data from fed-
eral, state, tribal and local agencies; the dataRetrieval package126 was used to directly download data for sites with 
calcium and pH data collected between 2000 and 2021 (Water Quality Portal accessed 15th February 2021). To 
ensure that records were as contemporary as possible while retaining high spatial coverage, records from before 
2000 were excluded for most sources. However, older records were retained for some areas of Canada (particu-
larly the Territories) where fewer data were generally available. All data handling, processing and interpolation 
was conducted in R v4.1.0127.

Data processing and preparation for interpolation.  Records from appropriate site types (lakes, rivers, 
ponds, and streams) were selected where possible, although most data sources did not provide this information. 
Records from marine waters or in proximity to mines, industrial facilities, wastewater treatment infrastructure 
or other potentially-contaminated sites were excluded if this information was provided. For USA Water Quality 
Portal data, for example, this was done by excluding records with certain keywords (e.g. “WASTEWATER”) in the 
site name or site description fields. Records with various map datums (NAD27, NAD83, WGS84) were included 
without correction; differences among these three major datums are generally less than a few hundred meters, 
which is an acceptable degree of positional error given the intended final resolution of the interpolated data layers. 
In any case, most records did not include map datum information, although records which specified unusual or 
unrecognised map datums were excluded. Data were inspected for clearly incorrect positions (e.g., points plot-
ting outside of the relevant state, province, territory, or points plotting in the ocean); these were corrected where 
possible. Records that lacked critical metadata (i.e., coordinates, date, etc.), had obvious position or date errors 
that could not be easily rectified, were flagged at the source with quality control concerns, or had impossible (e.g., 
negative) measurements, were excluded.

‘Total’ and ‘Dissolved’ calcium were the most commonly recorded fractions, but data for other fractions were 
sometimes provided. Analysis of data from samples where more than one fraction was measured demonstrated 
strong positive correlations with slope close to 1 among the most commonly measured fractions (Table 2). 
Consequently, where data for multiple fractions were provided, measurements of ‘Dissolved’ calcium were pre-
ferred, but most other fractions were treated as equivalent and used where ‘Dissolved’ data were not provided. 
Other fractions were occasionally provided, including ‘Filterable’ and ‘Fixed’ calcium; insufficient data were 
available to compare these with ‘Dissolved’ calcium, and since they were extremely rarely encountered, they 
were excluded. In any case, large numbers of records did not provide information on the fraction analysed; their 
removal would have had a highly detrimental impact on the extent of the available data, so they were retained 
and assumed to be equivalent to ‘Dissolved’. Calcium concentrations were converted to consistent units (mg L−1) 
and records without units (<0.01% of records) were excluded.

Some records had extremely high calcium concentrations, including some well over 1000 mg L−1; these val-
ues were generally considered unfeasible, as freshwater calcium concentrations rarely exceed 450 mg L−1 and are 
typically much lower128. Anomalously high calcium concentrations may result from inclusion of inappropriate 
sample types (e.g., contaminated water, industrial effluents, marine samples), equipment malfunction, and data 
entry errors. A cut-off of 500 mg L−1 was therefore set and all records with higher calcium concentrations were 
excluded; this represented <0.2% of all records. The only exceptions to this rule were samples from the Pecos 
and Wichita River systems in Texas; calcium concentrations above 500 mg L−1 are not unusual in this area129,130, 
and removing all such records left a notable gap in spatial coverage in an area with already sparse data coverage. 
Instead, all records above 500 mg L−1 for this area were set to 500 mg L−1 to maintain consistency with the rest of 
the data, while avoiding the loss of spatial coverage. For records with calcium concentrations below 0.05 mg L−1 
(a common detection limit), one of two approaches was taken. Where records were flagged as being ‘below 
detection limit’, or where an explicit detection limit was given for values below 0.05 mg L−1, records were set to 
0.05 mg L−1 for consistency across the dataset (<0.005% of all records). Other records with calcium concentra-
tions less than 0.05 mg L−1 were excluded (<0.05% of all records). For pH data, records with values lower than 
2.5 or above 12.5 were excluded, although for most sources all records fell within this range.

Duplicate data (duplicate records present in individual data sources, presence of the same data in multiple 
sources) and pseudo-duplicate data (lab and field replicates, samples collected simultaneously from different 
depths at a location) were handled by calculating an average (median) using all records for each site on each 
date. For each variable, these site-date medians were then used to calculate the following summary statistics 
for each site across all dates: mean, standard deviation, 25th percentile, 50th percentile (median), 75th percentile, 
minimum, maximum (all of these summary statistics are included in the shared databases, see Data Records 
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section). For spatial interpolation, the median value for each site was used, since this measure is comparatively 
robust to outliers. Medians for each site were converted to spatial data and reprojected into the North America 
Albers Equal Area Conic projection, using the sf package131.

Spatial interpolation methods.  To select the approach used to generate the interpolated data layers, three 
interpolation methods were compared (Table 3): nearest neighbour (NN), inverse distance weighting (IDW), 
and ordinary kriging (OK). NN is the simplest method, providing a baseline against which the more advanced 
methods can be compared; each point for which an interpolated value was required was assigned the value from 
the closest available data point. IDW uses a combination of values from multiple data points, weighted by dis-
tance. For IDW, arbitrary or ‘standard’ values for nmax (the maximum number of points to be considered when 
predicting a value for a specific grid cell) and idp (the inverse distance power parameter, which controls how the 
weighting of data points varies with distance) are often used132. In this case, however, the optim function was 
used to find values of idp and nmax for the calcium and pH data which minimised two different error metrics, 
root-mean-square error (RMSE) and mean absolute error (MAE), during preliminary 5-fold cross-validation 
(Table 4). OK is a geostatistical technique, which uses a fitted model of the spatial autocorrelation among data 
points (a ‘semi-variogram’ or ‘variogram’) to derive the weights used for the interpolation of values to each grid 
cell. OK often generates superior results to IDW133, but this is not always the case132,134. An additional advantage 
of OK is that it generates a measure of statistical uncertainty (Kriging variance) for each interpolated value; this 
is not typically provided by other methods. Kriging variance is influenced by the distances from the interpolated 
points to locations with data, and by the spatial covariance relationship determined by the fitted variogram; 
greater variance indicates greater distance from measured values and thus greater uncertainty in the interpo-
lated values. Variograms for each variable were fitted using the automap package135, which automatically selects 

Type Source Spatial coverage Temporal coverage

n Sites

Ca pH

FAD Environment and Climate Change Canada28 Canada, AK 2000–2019 282 279

FAD Environment and Climate Change Canada29 ON 2000–2018 4172 4357

FAD Environment and Climate Change Canada30 Canada 2002–2018 — 267

FAD USGS31 AK,YT 2009–2014 85 92

PDR Atlantic DataStream41–93 NB,NL,NS,PE 2000–2020 555 2214

PDR Mackenzie DataStream52,94–115 AB,BC,NT,YT 2000–2018 480 707

PDR Water Quality Portal125 USA 2000–2021 76013 188951

PTA‡ Government of Alberta32 AB 2000–2020 254 302

PTA Government of British Columbia33 BC 2000–2020 2903 3033

PTA† Government of Manitoba MB 2011–2018 262 302

PTA Government of New Brunswick34 NB 2000–2020 635 663

PTA Government of Newfoundland and Labrador35 NL 2019–2020 — 29

PTA Government of Nova Scotia36 NS 2002–2017 — 5

PTA† Government of the Northwest Territories NT 1982–2021 97 97

PTA† Natural Resources and Forestry Ontario ON 2008–2017 1327 1346

PTA Environment, Conservation and Parks Ontario37 ON 2000–2019 541 594

PTA Government of Prince Edward Island38 PE 2001–2020 72 219

PTA‡ Gouvernement du Québec39 QC 2005–2020 1065 652

PTA‡ Water Security Agency, Saskatchewan40 SK 2010–2020 682 476

PTA† Government of Yukon, Environment Department YT 2010–2021 325 343

PRP Antoniades et al.116,117 NT,NU 1996–2000 86 86

PRP Filazzola et al.118 North of 50°N 1998–2016 — 148

PRP Joynt and Wolfe119 NU 1995 — 56

PRP Michelutti et al.120,121 NT,NU 1997–1998 37 37

PRP Pienitz et al.123 NT 1991 24 24

PRP Ruhland et al.124 NT,NU 1996,1998 53 53

OT 2012 Risk Assessment15, 2004 Acid Deposition 
Assessment122

AB,BC,MB,NB, 
NL,NS,ON,QC, SK 1983–2011 8703 4088

OT† Conseil de gouvernance de l’eau des bassins versant de 
la rivière Saint-François (and partners) QC 2018–2020 116 418

OT† Kivalliq Inuit Association, Crown-Indigenous 
Relations and Northern Affairs Canada NU 2004–2020 56 54

Table 1.  Summary of data sources used. FAD = Federal Agency Database (Canada/US); PDR = Public Data 
Repository; PTA = Provincial or Territorial Agency (Canada); PRP = Peer-Reviewed Publication; OT = Other 
Organisation or Data Source. † data provided directly by agency contacts, not publicly accessible; ‡ includes 
data provided by agency contacts and publicly accessible agency databases; all other data were obtained from 
publicly accessible sources.
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relevant models and parameter values that best fit the empirical variogram (Table 3), although constraints can be 
applied to the process. In this case, variograms were fitted with and without a fixed ‘nugget’ of zero, since manual 
setting of this parameter can sometimes be advantageous136. In all cases, OK was restricted to a nmax of 100 and 
nmin (the minimum number of data points to consider) of 15; changes to these numbers had little to no impact 
on the error metrics obtained during preliminary 5-fold cross-validation. Spatial models for all interpolation 
methods were fit using the gstat package137.

Leave-one-out cross-validation (LOOCV) was performed for each method to compare their predictive accu-
racies. This technique drops an individual point from the dataset and then uses the remaining data to interpolate 
a value for the location of the dropped data; this is repeated for all available data points. The interpolated values 
for each point were compared to the real measured values and used to calculate multiple performance metrics 
(Table 4): the correlation coefficient r; three absolute error measures, RMSE, MAE, and the mean bias error 
(MBE); and a measure of relative error, the median symmetric accuracy138 (MSA). The interpolation methods 
were compared by considering their scores in these metrics. Initially, the intention was to use an ‘objective’ 
function136 to integrate these metrics into a single performance score. However, this was not necessary, since for 
both calcium concentration and pH one method had the best scores in all key metrics (see Technical Validation). 
Since predictive accuracy of any interpolation method can vary spatially132,136, error metrics were also calculated 
using data from each individual province, territory and state.

On the basis of these comparisons a final interpolation method was selected for each variable. Calcium and 
pH values were then interpolated onto a grid with a cell size of 10 × 10 km2 using the gstat::predict function and 
the resulting grids were converted to raster format139. Interpolated rasters were masked using outlines of Canada 
and the USA from the rnaturalearth package140. Rasters of Kriging variance for each variable were also generated 
at the same resolution.

Comparison n ρ p-value Slope

“Dissolved” vs “Total” 139453 0.977 <0.001 1.019

“Dissolved” vs “Total Recoverable” 17791 0.982 <0.001 1.019

“Dissolved” vs “Recoverable” 9513 0.967 <0.001 1.023

“Dissolved” vs “Extractable” 490 0.947 <0.001 0.969

“Dissolved” vs “Soluble” 267 0.977 <0.001 0.998

Table 2.  Comparison of “Dissolved” calcium versus different calcium fractions measured for samples where 
measurements for more than one fraction were supplied in the source data. ρ = Pearson’s correlation coefficient.

Interpolation Method Calcium pH

Nearest Neighbour (NN) NN interpolation uses only data from nearest point (nmax = 1)

Inverse Distance Weighting, Optimsed for RMSE (IDW-OR) nmax = 15, idp = 1.2 nmax = 19, idp = 1

Inverse Distance Weighting, Optimsed for MAE (IDW-OM) nmax = 14, idp = 2.2 nmax = 16, idp = 1.1

Ordinary Kriging (OK)

Model: Matern/Stein Model: Matern/Stein

Nugget: 700 Nugget: 0.4

Sill: 3413 Sill: 0.86

Ordinary Kriging with zero nugget (OK-ZN)
Model: Matern/Stein Model: Matern/Stein

Sill: 2076 Sill: 0.92

Table 3.  List of Interpolation methods used, including parameter values (where applicable).

Metric Formula Interpretation

Correlation coefficient, r Correlation between ′Zi  and Zi
High correlation between observed and interpolated values suggests 
accurate interpolation

Mean Absolute Error (MAE) ∑ =
′ −∣ ∣i

n Zi Zi
n

1 A measure of the average magnitude of prediction errors

Root Mean Square Error (RMSE) ∑ =




′ − 

i

n Zi Zi

n

1
2 Another measure of the average prediction error. Compared to MAE, 

RMSE is more sensitive to large outliers.

Mean Bias Error (MBE) ∑ =
′ −i

n Zi Zi
n

1
By including the sign of individual residuals, MBE shows whether (on 
average) the interpolation tends to over- or under-predict

Median Symmetric Accuracy (MSA) | | −′exp Median Z Z( ( log ( / ) )) 1e i i
Measure of ‘typical’ proportional error, symmetric and robust to 
outliers

Table 4.  Error metrics considered for comparison of interpolation methods. Zi is the observed value at a point, 
′Zi  is the value interpolated for that point during LOOCV.
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Data Records
Project data are available at Data Dryad141. The data provided include the final interpolated rasters (and kriging 
variance rasters) for calcium and pH, the point data used for the interpolations (summary statistics for each site) 
and the underlying data for each site on each date (Table 5).

Rasters were generated by Ordinary Kriging with a pre-defined zero nugget: for both variables this was 
the best-performing method (see Technical Validation). All rasters use the North America Albers Equal Area 
projection (ESRI:102008), have a resolution of 10 × 10 km, and have been provided in geotiff format. For each 
interpolation, the associated kriging variance rasters have been provided; these can be used to identify areas 
of higher uncertainty resulting from low availability of water quality data. Rasters are provided both ‘masked’ 
(using country outlines for the USA and Canada from the rnaturalearth package140 such that values are only 
provided for land area) and ‘unmasked’. The latter allow users to use their own territorial outlines for masking, 
to resample the rasters at different resolutions, or to reproject the rasters (for example into a latitude-longitude 
projection). It is advisable to perform these latter operations prior to masking the rasters with territory outlines. 
Some example R scripts to facilitate masking and reprojection can be found in the associated GitHub reposi-
tory142 (see Code Availability, below).

The ‘sites’ files contain the site data used for the interpolations (Table 5). This includes the following summary 
statistics for each site: median (used for the interpolations), number of dates with data, total number of records 
included, mean, standard deviation, minimum, maximum, 25th percentile, 75th percentile. Information on data 
sources and years with data is also included. The ‘site-date’ files contain summary data for each site on each date 
with available data: the median, mean, standard deviation, minimum, maximum, 25th percentile, 75th percentile, 
and number of records. Data sharing agreements with some organisations do not permit open sharing of their 
data and thus these records are not included in the databases (11,901 sites for calcium, 7601 sites for pH). For 
a small number of sites for which both public and proprietary data were available (calcium: 383 sites, pH: 61 
sites), summary statistics have been recalculated using only public data; consequently, the values provided may 
not exactly match those used for the interpolations. The associated metadata files include full information on 
the contents of each of the data files. Finally, the source_ids.csv file includes identifying information for the data 
sources included in the databases.

There are obvious spatial patterns in freshwater calcium concentrations across the continent (Fig. 1), reflect-
ing the relationship with the chemical composition of the underlying bedrock. These include large areas of 
comparatively low calcium on the east and west coasts of Canada and the USA, and a large area corresponding 
to the Canadian Shield geological region. Calcium concentrations are comparatively high (30 mg L−1 or greater) 
across a continuous broad area running from the southern United States up to Yukon and Alaska. Areas of high 
and low calcium tend to correspond with areas of high and low pH (Fig. 2).

Technical Validation
Calcium.  The final calcium database used for the interpolations included records for 97,648 sites; the publicly 
shareable dataset includes 85,747 sites. Median calcium concentrations for individual sites ranged from 0.06 
to 500 mg L−1, but 95% of sites had median calcium concentrations of 115 mg L−1 or lower (Fig. 3). The highest 
concentrations of sites were mostly in the eastern United States and parts of southern Ontario, Quebec, and 
New Brunswick, while coverage was lowest in Alaska, the Canadian territories (Yukon, Northwest Territories, 
and Nunavut), and parts of northern Quebec (Fig. 4a). The majority of sites (56%) were sampled multiple times; 

File name Description

Rasters: Ca

calcium-KR-97648-median_10 km_ZN_masked.tif interpolation, masked

calcium-KR-97648-median_10 km_ZN_variance_masked.tif kriging variance, masked

calcium-KR-97648-median-10km-ZN.tif interpolation, unmasked

calcium-KR-97648-median-10km-ZN_variance.tif kriging variance, unmasked

Rasters: pH

ph-KR-208784-median_10km_ZN_masked.tif interpolation, masked

ph-KR-208784-median_10km_ZN_variance_masked.tif kriging variance, masked

ph-KR-208784-median_10km_ZN.tif interpolation, unmasked

ph-KR-208784-median_10km_ZN_variance.tif kriging variance, unmasked

Data: Ca

sites_calcium_85747.csv
site summary data

metadata_sites_calcium_85747.csv

site-date_calcium_985955.csv
summary data for all dates with records at all sites

metadata_site-date_calcium_985955.csv

Data: pH

sites_ph_201183.csv
site summary data

metadata_sites_ph_201183.csv

site-date_ph_3525217.csv
summary data for all dates with records at all sites

metadata_site-date_ph_3525217.csv

Other source_ids.csv list of data source IDs

Table 5.  List of data provided in the associated data repository141. Masked rasters have been masked using 
country outlines such that values are only given for land area, and are therefore ‘ready-to-use’. Note that 
databases (.csv files) only include data from shareable (open source) providers.
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Fig. 1  Interpolated freshwater calcium concentration map for Canada and the USA, generated using zero-
nugget Kriging interpolation.

Fig. 2  Interpolated freshwater pH map for Canada and the USA, generated using zero-nugget Kriging 
interpolation.

Fig. 3  Frequency distribution of site median calcium concentrations. Dashed line marks the 95th percentile. 
X-axis is truncated at 150 mg L−1; a small proportion of sites (~3%) had higher values.
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individual sites were sampled from 1 to over 1000 times (median dates sampled = 2, mean dates sampled = 10.6). 
In most areas sites were, on average, sampled at least twice; however, there were areas of northern Ontario and 
Quebec where only a single data point was provided for most sites (Fig. 4b). Some of the provided data for this 

Fig. 4  Calcium concentration data coverage. (a) Sites per 10,000 km2 (b) Sampling intensity (mean dates 
sampled per site per 10,000 km2).

Fig. 5  Temporal variation in dissolved calcium concentration for ten sites, selected (from among the 100 
sites with data for the most dates) to have the longest temporal coverage and to come from 10 different 
administrative regions; source region given for each plot, along with number of dates with data. Seasonal 
fluctations are evident for most of the sites, but are small compared to spatial variation across Canada and the 
USA. Dotted lines mark the interquartile range for each site. Outliers have been removed for presentation, but 
were not excluded from calculation of site statistics. Note the differences in vertical scales for individual plots.
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area were already temporally-averaged values, so this does not mean that all data points for these areas were based 
on single measurements. Temporal variation in measurements from individual sites is to be expected as a result 
of measurement error and temporal change, such as seasonal fluctuations in calcium concentrations (Fig. 5). 
However, the scale of temporal variation at individual sites was generally smaller than the spatial variation among 
sites. The interquartile range for temporally-averaged calcium concentrations across all sites was 48.5 mg L−1, 
while the median interquartile range for calcium measurements at individual sites was 5 mg L−1, and 75% of sites 
had an interquartile range of 12.5 or less.

For the interpolation of calcium concentrations, the zero-nugget Kriging method (OK-ZN) had the highest r 
value and the lowest error metrics (excluding the proportional error, MSA, which was very similar to the lowest 
value); in particular, the bias error (MBE) was lower than the other methods (Table 6). The IDW interpolations, 
however, were not substantially worse. At the province, territory, and state level, the outcome was mostly sim-
ilar: OK-ZN was the best or joint-best method in 53 out of 62 cases (Tables 7, 8); OK was slightly superior for 
four areas, the IDW methods (IDW-OR and IDW-OM) were superior for 4 areas, and in one US state NN was 
the best method. There appeared to be no tendency for the best approach to vary with number of data points in 
each area; OK-ZN was generally superior for states, provinces and territories with low (e.g., Mississippi, n = 75) 
and high (e.g., Florida, n = 13,591) numbers of data points. Consequently, the zero-nugget kriging interpolation 
(OK-ZN) was selected as the preferred interpolation method.

pH.  The final pH database used for the interpolations included records for 208,784 sites; the publicly shareable 
dataset includes 201,183 sites. The median pH across all sampled sites was 7.9, and 95% of sites had a median pH 
between 5.4 and 8.74 (Fig. 6). Density of sites was high across much of the USA, with a considerably higher num-
ber of sites than for calcium (Fig. 7a). Coverage tended to be sparser for Canada, with some areas, such as north-
ern Saskatchewan and northern Manitoba, having fewer sites with available data compared to calcium. Compared 
to the calcium data, a greater proportion (67%) of sites had data from more than one date, and sites tended to have 
data from a greater number of sampling dates (median dates sampled = 4, mean dates sampled = 17.2). However, 

Method r RMSE MAE MBE MSA

NN 0.78 32.77 13.25 0.09 0.21

IDW-OR 0.82 28.03 12.25 0.16 0.23

IDW-OM 0.82 28.63 12.09 0.13 0.21

OK 0.82 28.61 13.39 −0.01 0.30

OK-ZN 0.84 27.06 11.79 0.01 0.22

Table 6.  Error Metrics for calcium interpolation methods, generated via leave-one-out cross-validation. 
The best interpolation methods for each metric are highlighted in bold. Metrics: r = correlation coefficient, 
RMSE = Root Mean Square Error, MAE = Mean Absolute Error, MBE = Mean Bias Error, MSA = Median 
Symmetric Accuracy. Methods: NN = nearest neighbour; IDW-OR = inverse distance weighting, RMSE-
optimised; IDW-OM = inverse distance weighting, MAE-optimised; OK = ordinary kriging, unconstrained 
nugget; OK-ZN = ordinary kriging, zero nugget.

Province / Territory

Calcium pH

n Best n Best

Alberta 841 IDW-OR (OK-ZN) 475 IDW-OM

British Columbia 3384 OK-ZN 3154 OK-ZN

Manitoba 899 OK-ZN 814 OK-ZN (IDW-OM)

New Brunswick 936 OK-ZN 1221 OK-ZN

Newfoundland and Labrador 117 OK-ZN 330 OK-ZN

Nova Scotia 270 OK-ZN 657 IDW-OM

Northwest Territories 428 OK-ZN 504 IDW-OR/IDW-OM

Nunavut 164 OK 313 OK-ZN

Ontario 7819 OK-ZN 6537 OK-ZN

Prince Edward Island 75 OK-ZN 478 OK-ZN

Quebec 4619 OK-ZN 4259 OK-ZN

Saskatchewan 1657 OK-ZN 630 OK-ZN

Yukon Territory 365 OK-ZN 398 IDW-OM

Table 7.  Best-performing calcium and pH interpolation methods for each Province / Territory (Canada), 
according to LOOCV error score and correlation between observed and predicted values. n = number 
of sites. Methods: NN = Nearest Neighbour; IDW-OR = Inverse distance weighting, RMSE-optimised; 
IDW-OM = Inverse distance weighting, MAE-optimised; OK = Kriging; OK-ZN = Kriging, zero nugget. Where 
two methods are presented separated by ‘/’ this indicates that the two methods performed equally well. Methods 
presented in parentheses were those with the highest correlation coefficient, r, in cases where this was not the 
same method with the best scores in the other error metrics.
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there were again areas of Quebec and Ontario where the data tended to be based on single values for each site 
(Fig. 7b). Temporal fluctuation at individual sites was also evident for pH (Fig. 8). However, the scale of temporal 
variation for individual sites was again smaller than the spatial variation among sites. The median interquartile 
range for pH measurements at individual sites was 0.3, with 75% of sites having an interquartile range of less than 
0.46; the interquartile range across all sites (spatial variability) was 0.97.

State

Calcium pH

n Best n Best

Alaska 396 OK-ZN 1020 OK-ZN

Alabama 1274 OK-ZN 2635 IDW-OM/OK-ZN

Arkansas 848 OK-ZN 1258 IDW-OM

Arizona 2102 OK-ZN 3416 IDW-OM

California 2904 OK-ZN 6451 OK-ZN

Colorado 4355 OK-ZN 6296 OK-ZN

Connecticut 78 NN 168 IDW-OM (NN)

Delaware 75 OK-ZN 559 OK-ZN

Florida 13591 OK-ZN 29471 OK-ZN

Georgia 1954 IDW-OM 3554 OK-ZN (IDW-OM)

Iowa 266 OK 5001 OK-ZN

Idaho 591 OK-ZN 1322 OK-ZN

Illinois 2129 OK-ZN 3406 OK-ZN

Indiana 2260 OK-ZN 8845 IDW-OM (OK-ZN)

Kansas 1198 OK-ZN 1045 OK-ZN

Kentucky 751 OK-ZN 1394 IDW-OM (OK-ZN)

Louisiana 357 OK 935 IDW-OM (OK-ZN)

Massachusetts 344 OK-ZN 1442 OK-ZN

Maryland 579 OK 2942 OK-ZN

Maine 262 OK-ZN 1506 OK-ZN

Michigan 2367 OK-ZN 3046 IDW-OM

Minnesota 1994 OK-ZN 14282 OK-ZN

Missouri 847 OK-ZN 2975 OK-ZN

Mississippi 73 OK-ZN 1408 OK-ZN

Montana 4081 OK-ZN 5860 OK-ZN

North Carolina 938 OK/OK-ZN 2148 OK-ZN

North Dakota 1321 OK-ZN 1856 IDW-OM/OK-ZN

Nebraska 265 OK-ZN 1368 OK-ZN (IDW-OM)

New Hampshire 324 OK-ZN 2792 OK-ZN

New Jersey 1090 OK-ZN 4108 IDW-OM

New Mexico 1100 OK-ZN 1491 OK-ZN

Nevada 836 OK-ZN 1816 OK-ZN

New York 1819 OK-ZN 2611 OK-ZN

Ohio 5836 OK-ZN 6159 OK-ZN

Oklahoma 402 OK-ZN 4261 OK-ZN (IDW-OR)

Oregon 855 OK-ZN 3750 OK-ZN

Pennsylvania 1831 OK-ZN 2927 IDW-OM (OK-ZN)

Rhode Island 26 IDW-OM 59 IDW-OM

South Carolina 1509 IDW-OR 1958 OK-ZN

South Dakota 497 OK-ZN 3200 OK-ZN

Tennessee 795 OK-ZN 5811 OK-ZN

Texas 528 OK-ZN 5077 OK-ZN

Utah 2554 OK-ZN 3641 OK-ZN

Virginia 1665 OK-ZN 8271 OK-ZN

Vermont 1893 OK-ZN 2169 IDW-OM (OK-ZN)

Washington 335 OK-ZN 1876 IDW-OM/OK-ZN

Wisconsin 1952 OK-ZN 7308 OK-ZN

West Virginia 1339 OK-ZN 2553 OK-ZN

Wyoming 684 OK-ZN 1567 OK-ZN

Table 8.  Best-performing calcium and pH interpolations for each State (USA). See Table 7 for abbreviations.
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Error metrics for the pH interpolations were generally very low, including RMSE and MAE; this is to be 
expected, since the restricted range of feasible pH values makes extremely large errors impossible. While it is 
not valid to directly compare most metrics between interpolations with different scales and based on different 
data, it is worth noting that the proportional errors (MSA) were considerably lower for the pH interpolations 
compared to the calcium interpolations. It is important to be aware, however, that since pH is measured on a 
logarithmic scale, apparently small differences may have comparatively large physical and chemical implications. 
There was little variation in the accuracy of the different interpolation methods, with most error metrics being 
similar for most of the methods (Table 9). However, OK-ZN had the best (or equal-best) scores in every metric 
excluding the proportional error, which was very close to the lowest value. For individual provinces, territories 
and states, the situation was similar (Tables 7, 8); OK-ZN was the best or equal-best method in 46 cases, with 
IDW-OM / IDW-OR being slightly better for the others. Consequently, the zero-nugget kriging interpolation 
(OK-ZN) was selected as the preferred interpolation method.

Kriging variance maps generated by the selected interpolation methods can be used to identify areas of 
higher uncertainty in the interpolated values, and maps for the two variables show broadly similar patterns 
(Fig. 9). Across much of the USA and some of the Canadian provinces, there were high densities of sites (Figs. 4a, 
7a); kriging variance was lower in these areas, indicating comparatively lower uncertainty in the interpolated 
values. Variance, and therefore uncertainty, was highest in the northern areas of the continent, where there were 
fewer sites with data. Interpolated values in such areas should be treated with some caution, since they are more 
distant from locations with measured values. These areas could be prioritised for future sampling if more cer-
tainty is required for estimates of pH and calcium concentrations.

Usage Notes
Example application – invasive species risk assessment for dreissenid mussels.  To illustrate the 
advantages of high-resolution calcium and pH data, Wilcox et al.143 performed a continental-scale risk assessment 
for two species of invasive, freshwater dreissenid mussels using the new data layers. The two species, the zebra 
mussel Dreissena polymorpha and the quagga mussel D. rostriformis bugensis, have significant ecological and 
economic impacts on freshwater ecosystems in North America144, but can only survive, grow, and reproduce in 
waters with sufficiently high concentrations of dissolved calcium and within a particular pH range5.

Fig. 6  Frequency distribution of site median pH values.

Fig. 7  pH data coverage. (a) Sites per 10,000 km2 (b) Sampling intensity (mean dates sampled per site per 
10,000 km2).
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Due to the lack of high-resolution calcium and pH data, previous risk assessments13,15 for these species have 
been limited to ecoregion- or sub-drainage-level resolution, and have not included Alaska and large areas of Canada 
(the Maritime provinces, Newfoundland and Labrador, and the Arctic). By combining the new calcium and pH 
data layers with additional high-resolution bioclimatic variables (e.g. temperature) from WorldClim145, Wilcox et 
al.143 were able to model habitat suitability for both dreissenid species for the entire extent of Canada and the con-
tinental USA, assess the importance of calcium and pH relative to additional bioclimatic drivers of mussel distri-
butions, and calculate the relative risk of invasion for every Canadian province and territory at a 10 km2 resolution.

Limitations.  ‘Big data’ approaches can be a useful tool for water quality projects, but are not without limita-
tions146, and the aggregation of many different data sources, with highly variable quality control standards, necessi-
tates some care in their use. Given the extremely large number of data points involved, inspection of individual data 
records was not possible. Therefore, some of the data filtering and cleaning approaches may have resulted in the exclu-
sion of some valid records. On the other hand, it is likely that some low-quality data remain in the final database used 

Fig. 8  Temporal trends in pH for ten sites, selected (from among the 100 sites with data for the most dates) to 
have the longest temporal coverage and to come from 10 different administrative regions; source region given 
for each plot, along with number of dates with data. Dotted lines mark the interquartile range for each site. 
Outliers have been removed for presentation, but were not excluded from calculation of site statistics.

Method r RMSE MAE MBE MSA

NN 0.78 0.55 0.35 0.007 0.029

IDW-OR 0.84 0.46 0.30 0.007 0.027

IDW-OM 0.84 0.46 0.30 0.008 0.027

OK 0.81 0.49 0.33 0.001 0.031

OK-ZN 0.84 0.45 0.30 0.001 0.028

Table 9.  Error Metrics for pH interpolation methods, generated via leave-one-out cross-validation. The best 
interpolation methods for each metric are highlighted in bold. Metrics: RMSE = Root Mean Square Error, 
MAE = Mean Absolute Error, MBE = Mean Bias Error, MSA = Median Symmetric Accuracy. Methods: 
NN = nearest neighbour; IDW-OR = inverse distance weighting, RMSE-optimised; IDW-OM = inverse 
distance weighting, MAE-optimised; OK = ordinary kriging, unconstrained nugget; OK-ZN = ordinary 
kriging, zero nugget.
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for the interpolations. For example, while certain sources provided enough information to be able to quickly screen 
out inappropriate sample types, most sources did not. Points with large or obvious errors in their values or positions 
were easy to identify, and therefore to remove or correct. Records with incorrect or inaccurate – but plausible – values 
or positions were effectively impossible to identify and remove. The large number of records used for the final calcium 
and pH databases should, however, minimise the impact of these types of error on the final interpolations.

There are also a few limitations to using spatial interpolation to create such large-scale maps of water qual-
ity variables. Calcium concentrations and pH are primarily driven by the underlying geology147; transitions 
between underlying rock types can be relatively well delineated, and interpolation across such boundaries may 
produce results that do not reflect reality. This problem is likely to be minimised in areas with a high density of 
data points but may be important in data-poor regions. For example, there are relatively large swathes of north-
ern Quebec and Arctic Canada for which no calcium or pH data were available. This may not be problematic in 
some contexts; for example, in the case of invasive species risk assessment, there are other factors (low temper-
ature, remote location) that may make these areas low risk for many non-native organisms. Geological proxies 
could be used to predict calcium concentration in locations with no water quality data148, but this requires 
detailed geological information and validated mechanistic models and does not account for effects of plant 
cover and land use, which influence water chemistry4,149. Despite these limitations, geological data could be 
used to help improve predictions in areas with lower data coverage, or higher uncertainty, via co-kriging, which 
allows relationships with additional variables to be used during the interpolation process150,151. Alternatively, a 
range of machine learning approaches are available which are also able to use additional information, such as 
geological data and other environmental covariates; these methods can perform better than traditional geosta-
tistical methods for generating spatial interpolations152,153, particularly when the density of data points for the 
primary variable of interest is low154. However, they do not always generate more accurate interpolations; a com-
bined approach, which uses an ensemble of outputs from different interpolation methods with spatially-varying 
weightings dependant on density of available data, may result in better overall accuracy136. Such exercises are 
good candidates for future improvement to these data layers.

Code availability
The associated GitHub repository142 (https://github.com/andrew-guerin/water_quality_interpolations) contains 
code used to perform the final interpolations, scripts for reprojection and resampling of rasters, copies of the 
interpolated data layers, copies of the calcium and pH databases used for the interpolations (excluding proprietary 
data from third parties, which cannot be publicly shared under existing data agreements), and Shiny app scripts 
for interactive maps which show the distribution of data points, with summary data (where these can be shared). 
Please note that, as a result of the large number of data points included, the Shiny maps may take a few moments 
to load.
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