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Abstract 
The accurate identification of disease-associated genes is crucial for understanding the molecular mechanisms underlying various 
diseases. Most current methods focus on constructing biological networks and utilizing machine learning, particularly deep learning, 
to identify disease genes. However, these methods overlook complex relations among entities in biological knowledge graphs. Such 
information has been successfully applied in other areas of life science research, demonstrating their effectiveness. Knowledge 
graph embedding methods can learn the semantic information of different relations within the knowledge graphs. Nonetheless, the 
performance of existing representation learning techniques, when applied to domain-specific biological data, remains suboptimal. 
To solve these problems, we construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end 
knowledge graph completion framework for disease gene prediction using interactional tensor decomposition named KDGene. KDGene 
incorporates an interaction module that bridges entity and relation embeddings within tensor decomposition, aiming to improve 
the representation of semantically similar concepts in specific domains and enhance the ability to accurately predict disease genes. 
Experimental results show that KDGene significantly outperforms state-of-the-art algorithms, whether existing disease gene prediction 
methods or knowledge graph embedding methods for general domains. Moreover, the comprehensive biological analysis of the 
predicted results further validates KDGene’s capability to accurately identify new candidate genes. This work proposes a scalable 
knowledge graph completion framework to identify disease candidate genes, from which the results are promising to provide valuable 
references for further wet experiments. Data and source codes are available at https://github.com/2020MEAI/KDGene. 
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INTRODUCTION 
Deciphering the molecular mechanisms underlying diseases is 
essential for the advancement of precision medicine [1]. One 
of the main goals is to identify the causing genes of diseases. 
Traditionally, this identification has relied heavily on experimen-
tal approaches, which are extremely time-consuming and labor-
intensive [2]. 

With the completion of the Human Genome Project and the 
maturity of high-throughput sequencing technology [3], a growing 
body of computing-based Disease Gene Prediction (DGP) methods 

have been developed, which are proven effective [4, 5], mainly 
divided into four categories: (1) Network Propagation methods, 
which are mostly based on the classic random walk algorithm 
[6, 7]. (2) Methods based on Network Features. These methods 
usually use the constructed network to obtain the topological 
feature information of nodes, then calculate the correlation 
between a query disease and candidate genes, completing the 
prediction by sorting the gene list [8, 9]. (3) Supervised Learning 
methods such as classification [10]. And (4) Network Embedding 
and Deep Learning methods. These methods have gained wide
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attention in recent years [11, 12]. GLIM [13] can systematically 
mine the potential relationships between multilevel elements 
by embedding the features of the human multilevel network 
through contrastive learning. With the development of deep 
learning technology, researchers have tried to build specific 
neural network models to predict disease genes [14, 15]. Recent 
studies have further expanded the application of computational 
models in genomics, demonstrating innovative approaches for 
drug repurposing [16], predicting miRNA–disease associations 
[17] and exploring lncRNA–disease interactions [18], as well as 
employing hypergraph-based techniques for metabolite–disease 
interaction prediction [19]. These advancements highlight the 
continuous evolution of computational techniques in identifying 
disease-related genetic markers and potential therapeutic 
targets [20]. 

In recent years, Knowledge Graphs (KGs) have been success-
fully applied to life science research [21]. KG is a semantic network 
that reveals the relations between entities, which can formally 
describe things and their relations in the real world. In KGs, 
nodes represent entities or concepts, and edges are composed of 
attributes or relations. Knowledge exists in the form of triples 
[22]. Inferring unknown facts from those already in KGs is called 
Knowledge Graph Completion (KGC). Performing better in existing 
KGC models, Knowledge Graph Embedding (KGE)-based methods 
learn latent representations of entities and relations in continu-
ous vector space [23]. One representative type of these methods 
is based on tensor decomposition. In Canonical Polyadic (CP) 
decomposition [24], a tensor can be decomposed into a set of 
matrices, where each row in the matrix represents an embedding 
vector of entity or relation. Since current implementations of CP 
are lagging behind their competitors, CP-N3 [25] uses a tensor  
nuclear p-norm as a regularizer to break through the limitations 
of CP and obtain considerable performance. Compared to KGE, 
Network Embedding (NE) assigns nodes in a network to low-
dimensional representations and preserves the network structure 
effectively [26]. The main difference between KGE and NE is that 
the latter focuses on the topology of the network, while KGE 
focuses more on the internal information of different relations 
and the semantic connotation of facts. 

At present, DGP methods combined with KGE have not been 
fully exploited. A few studies have explored KGE-based meth-
ods for disease gene prediction [27]. KGED [28] is a convolu-
tional neural network-based KGE model, that uses external entity 
descriptions to infer relations between biological entities. Since 
KGED is used to predict gene-gene relations to generate gene 
interaction networks for diseases, it’s not an end-to-end model 
for DGP. And it requires textual descriptions of entities, which 
may introduce noise and are not simple to obtain. [29] and  [30] 
adopt existing KGE models from the general domain. Although the 
conventional KGE models have been proven useful for inferring 
new biological relations, their performance with biological data 
is not as satisfactory as that of general-domain KGs [31]. One 
of the key points is how to model KGE in the process of disease 
gene prediction to accurately capture the interaction between 
biological entities [32], so that diseases and genes can be learned 
with more comprehensive biological features. Meanwhile, these 
researches present the KGE-based methods’ performance without 
comparison with existing DGP methods, which leaves the true 
performance of KGE still ambiguous. 

To address these issues, we first integrated multiple relations 
centered on diseases and genes from biological knowledge 
bases to construct a large-scale biological KG, and develop an 
end-to-end knowledge graph completion framework using an 

interactional tensor decomposition to identify disease–gene 
associations, named KDGene (see Fig. 1A-D). KDGene introduces 
a gating mechanism-based interaction module between the 
embeddings of entities and relations to tensor decomposition, 
which can effectively enhance the information interaction in 
biological knowledge. Perceiving related knowledge, the model 
is capable of learning the connotation of different relations and 
endows biological entities and relations with more comprehensive 
and precise representations, which is beneficial to disease gene 
prediction. Experimental results show that KDGene performs 
optimally among existing DGP methods and conventional KGE 
methods. In particular, compared with KGE methods, KDGene 
realizes an average improvement of over 20% on Hit Ratio (HR) 
and Mean Average Precision (MAP) metrics. Moreover, KDGene’s 
performance in predicting unseen disease–gene associations fur-
ther demonstrates its robustness and generalization capabilities. 
We also evaluate the impacts of KGs composed of knowledge 
with different relation types and degrees of confidence on its 
performance. In summary, the main contributions of our work 
are 3-fold: 

1. We construct a biological knowledge graph centered on dis-
eases and genes, then adopt a scalable end-to-end KGC 
framework to predict disease genes. 

2. We propose a novel KGE model, called KDGene, specifically 
for disease gene prediction. The model introduces an inter-
action module to tensor decomposition, which effectively 
enhances the information interaction between biological 
knowledge. 

3. The biological analysis, which includes case studies on dia-
betes mellitus and atrophic gastritis, also verifies KDGene’s 
capability to identify new and accurate candidate genes. 

MATERIALS AND METHODS 
Preliminaries 
Knowledge graph 
A knowledge graph can be denoted as G = {E ,R,T }, where  E 
and R are the entity set and relation set, respectively. And T = 
{(h, r, t) ∈ E × R × E} denotes the triple set which consists of 
all the triple facts in G. When constructing a biological KG, we 
integrate knowledge from different biological databases in the 
form of triples and add them to the KG. 

Knowledge graph completion 
The task of KGC, also known as Link Prediction, is to either predict 
unseen relations r between two existing entities: (h, ?, t), or predict 
entities when the triple’s relation and another entity are given: (h, 
r, ?)  or  (?,  r, t). For DGP, since triples of this kind of facts are in the 
form (disease, disease-gene, gene), we focus on the second mode 
to predict the tail entity (gene) given the head entity (disease) and 
relation (disease-gene). 

In this paper, we adopt the improved tensor decomposition-
based model under the framework of KGC, in which a triple (h, r, 
t) can be represented as an element of a binary third-order entity-
relation tensor XN×M×N, where  N = |E | is the total number of 
entities and M = |R| the number of relations. In the tensor X , 
Xikj denotes that there is a kth relation between the ith entity and 
the jth one, which is 

Xikj = 

⎧⎨⎩1, if
(
hi, rk, tj

) ∈ G 
0, if

(
hi, rk, tj

)
/∈ G 

(1)
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Table 1: The scale of our constructed biological knowledge 
graph related to diseases and genes 

Entity type Quantity Relation type Quantity 

Disease 22 697 Disease-Protein 117 738 
Protein 21 616 Protein–Protein 841 068 
Symptom 2504 Disease–Symptom 184 831 
GO 1207 GO-Protein 61 634 
Pathway 316 Pathway-Protein 25 813 
Drug 1437 Drug–Disease 14 631 

Drug-Protein 277 745 
Total 49 777 Total 1 523 460 

Therefore, tensor decomposition-based algorithms can infer a 
predicted tensor X̂ that approximates X . To predict the candidate 
genes of a disease, queries like (i, k, ?) are answered by ordering 
gene entities j′ by decreasing scoring values of X̂ikj′ . Note  that  we  
propose a scalable KGC framework for disease gene prediction, 
which means the KGE model can be replaced by others. 

Biological KG construction 
To learn more comprehensive representations of diseases and 
genes, we introduce the knowledge of different relation types 
to construct a biological KG(see Fig. 1A). Regarding diseases, the 
Disease–Symptom relations from SymMap [33] and the Drug– 
Disease relations from SIDER [34] are introduced into the KG. 
Regarding genes, we introduce the Protein–Protein Interactions 
(PPI) from STRING [35], the Drug-Protein relations from STITCH 
[36], the Protein–GO relations from GO [37] and the Protein– 
Pathway relations from KEGG [38]. Table 1 shows the scale of our 
biological KG. 

In our framework, there are no restrictions on the entity type 
and relation type which means the construction of the KG is 
flexible. When others use it, the disease-gene relation facts can be 
added or subtracted from the KG to complete the training accord-
ing to the demand. As the amount of knowledge in biological 
databases grows, abundant facts about new types of relations can 
be continuously added to our KG. 

CP-N3 
The 3KGC task can be regarded as a 3D binary tensor comple-
tion problem, where each slice is the adjacency matrix of one 
relation type in the KG. It is a natural solution to apply tensor 
decomposition to the KGC task, which is simple, expressive and 
can achieve state-of-the-art results in general-domain KGs. Here, 
we take the typical CP-N3 model as an example and further 
introduce the interaction module on this basis to predict disease– 
gene associations. 

CP-N3 [25] is based on CP decomposition [24], which decom-
poses a high-order tensor X ∈ Rn1×n2×n3 into several r rank one 
tensors ui ∈ R

n1 , vi ∈ R
n2 , wi ∈ Rn3 (⊗ denotes the tensor product): 

X ≈ 
r∑

i=1 

ui ⊗ vi ⊗ wi. (2) 

Interaction module 
Introducing the interaction module aims to equip KGE mod-
els, tensor decomposition-based methods in particular, with bet-
ter biological knowledge perception. That is, the model should 
learn more precise representations of entities and relations. To 
deal with the problem of long-term dependencies, Hochreiter 

and Schmidhuber proposed long short-term memory (LSTM) [39]. 
They improved the remembering capacity of the standard recur-
rent cell by introducing a gate’ into the cell in which the gate 
mechanism can choose which information enters the next cell 
[40]. We adopt the vanilla LSTM cell [41] consisting of an input 
gate, an output gate and a forget gate. The activation process of 
LSTM is as follows: 

First, the forget gate f and the input gate i at the time step t are 
computed by 

ft = σ
(
Wfhht−1 + Wfxxt + bf

)
, 

it = σ
(
Wihht−1 + Wixxt + bi

)
, 

c̃t = tanh
(
Wc̃hht−1 + Wc̃xxt + bc̃

)
, 

(3) 

where σ is the logistic sigmoid function. For the forget gate, the 
LSTM unit determines which information should be removed 
from its previous cell states ht−1. The candidate memory cell c̃t 

is also added to the cell state through a TanH Layer. All the W are 
weights that need to be learned, while b represents the bias vector 
associated with this component. Then, the cell state is updated by 

ct = ft ◦ ct−1 + it ◦ c̃t, 

ot = σ
(
Wohht−1 + Woxxt + bo

)
, 

ht = ot ◦ tanh (ct) . 

(4) 

where ot is the output gate, ct, ht are the outputs at the cur-
rent time and ◦ is the Hadamard product. In this intuitionistic 
structure, the control of the forget gate can save the previous 
information, and the control of the input gate can prevent the 
current irrelevant information from being added to the cell. The 
information in each part sufficiently interacts with others, which 
is why we utilize this simple and effective structure as our inter-
action module. By selecting this approach, we enable our model 
to better perceive and interpret the interactions between entities 
and relations, particularly within vertical biological domains. 

KDGene 
We present KDGene (see Fig. 1B), a knowledge graph completion 
model that introduces the interaction module into CP-N3, which 
applies to disease gene prediction. In the following, a triple is 
represented as (h, r, t), with two entities h, t ∈ E (the set of entities) 
and a relation r ∈ R (the set of relations). We use eh, et ∈ Rde to 
denote the embeddings of head and tail entities and er ∈ Rdr to 
represent the relation embeddings. 

Instead of adopting the translation-based principle h + r = t in 
TransE [42], we use the gating mechanism as the entity-to-relation 
translation. When the embeddings eh, er, et are trained, taking the 
relation embedding er as the input, and the head entity embedding 
eh as the hidden layer, we use an LSTM cell [39] to obtain the  
updated relation embedding e′

r ∈ Rde . The calculation process is 
as follows: 

f = σ
(
Wfheh + Wfxer + bf

)
, 

i = σ
(
Wiheh + Wixer + bi

)
, 

c̃ = tanh
(
Wc̃heh + Wc̃xer + bc̃

)
, 

c = f ◦ c0 + i ◦ c̃, 

e′
r = σ

(
Woheh + Woxer + bo

)
, 

(5) 
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Figure 1. Visualization of our work. (A) We construct a comprehensive biological KG including seven relations. (B) After the construction, a triple is 
represented as (h, r, t), with two entities h, t and a relation r. We  use  eh, et ∈ Rde to denote embeddings of head and tail entities and er ∈ Rdr to represent 
the relation embeddings. When embeddings eh, er, et are trained, taking the relation embedding er as the input, the head entity embedding eh as the 
hidden layer, we use the interaction module to obtain the updated relation embedding e′

r ∈ Rde . Then the scoring function of triple (h, r, t) is calculated 
by eh, e′

r and et. (C) After training, for a query disease, score all candidate genes and rank by descending as the prediction results. (D) Our framework’s 
performance, as well as case studies, demonstrates the model’s ability to identify accurate candidate genes. 

where all W are weight matrices and b are bias vectors learned 
in the training process. Similarly, f , i, c̃, c are the forget gate, input 
gate, candidate memory cell and the call state, respectively. The 
initial input of the cell state is set to 0. The visual structure of 
the interaction module in KDGene can be found in Fig. S1 of the 
supplementary material. 

After getting the updated relation embedding e′
r, we define the 

scoring function of a triple (h, r, t) for KDGene as follows: 

φ(h, r, t) = 
de∑

i=1 

ehi ⊗ e′
ri ⊗ eti. (6) 

In CP-N3, the embedding dimensions of entities and relations 
must be the same, resulting in a lot of parameter redundancy 
for those datasets with very different numbers of entities and 
relations. After introducing the interaction module, the dimen-
sions of entities and relations can be different, which signifi-
cantly improves the operability and flexibility of KDGene. More 
importantly, through the gating mechanism of LSTM, entities and 
relations are learned with more precise representations, which 
will benefit disease gene prediction. 

Training and prediction 
We use the standard data augmentation techniques [25] of adding 
reciprocal predicates in the original training set S and get S′, i.e.  
add (t, r−1, h) for every (h, r, t). Besides, we follow the 1-N scoring 
introduced by [43], that is, we take one (h, r) pair and score it 
against all entities t′ ∈ E simultaneously. We train our model with 

the full multiclass log-loss: 

L =
∑

(h,r,t)∈S′

(
−φ(h, r, t) + log

(∑
t′∈E 

exp(φ(h, r, t′))

))
. (7) 

where L is the loss function that should be minimized. For 
KDGene, we follow the N3 regularization used in CP-N3 [25], and 
the loss function for KDGene is as follows: 

L =
∑

(h,r,t)∈S′

(
−φ(h, r, t) + log

(∑
t′∈E 

exp(φ(h, r, t′)

))

+ λ 
de∑
i 

(|ehi|3 + |e′
ri|3 + |eti|3 )). (8)  

After training, for disease gene prediction, we take (h, r) pairs, 
where the head entity is the query disease, and the relation is 
disease-gene, and then score all candidate genes that are not in 
the training set. The list of genes with high to low scores is the 
candidate genes’ prediction result (see Fig. 1C). 

EXPERIMENTAL RESULTS 
Experimental setting 
Dataset 
We select curated disease–gene associations from the DisGeNet 
database [44] as a benchmark dataset and apply the conventional 
10-fold cross-validation to evaluate the disease gene prediction

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae161#supplementary-data
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algorithms. For each fold, there are 117,738 disease–gene associa-
tions in the training set and 13,082 in the testing set. 

Baselines 
For baselines, comparisons with existing disease gene predic-
tion algorithms are essential. Typical models including DADA [7], 
GUILD [45], RWRH [46], PDGNet [15], PRINCE [6], and RWR_PPI, 
RWR_HMLN, GLIM_DG [13] are our baselines. In addition, since we 
formulate disease gene prediction as the KGC task, and propose a 
novel KGE method, KDGene should also be compared with exist-
ing KGE models. We experiment with six popular KGE baselines: 
TransE [42], RotatE [47], DistMult [48], ComplEx [49], TuckER [50] 
and CP-N3 [25]. Open-source code links for these implementations 
can be found in our GitHub repository. 

Evaluation metrics 
Following [13], we select the hit ratio (HR@K) and mean average 
precision (MAP@K) as evaluation metrics (where K=1, 3, 10, 50). For 
a given disease d, Pd@K represents the top-K predicted candidate 
genes, and Gd represents the known genes of d in the test set. HR@K 
is calculated by 

HR@K(d) =
∣∣Pd@K

⋂
Gd

∣∣
|Gd| . (9)  

The Average Precision (AP) of a single disease d can be calcu-
lated as follows: 

AP@K(d) = 
1 

|Gd|
∑
i⊆Gd

∑
j⊆Gd 

h
(
pj < pi

) + 1 
pi 

, (10) 

where pi is the position of candidate gene i in the ranking list and 
h

(
pj < pi

)
indicates that the position of candidate gene j is higher 

than that of gene i in the ranking list. The overall MAP@K is the 
mean of AP@K(d) across all test diseases D: 

MAP@K =
∑D 

d AP@K(d) 

|D| . (11) 

For both HR and MAP, higher values indicate higher predictive 
performance. 

Implementation details 
We implement KDGene with PyTorch and have made our 
source code and data available on https://github.com/2020MEAI/ 
KDGene. In our experiments, we carried out extensive grid search, 
over the following ranges of hyperparameter values: batch size 
in {128, 256, 512, 1024}, learning rate in {0.01, 0.03, 0.05, 0.1}, 
regularization coefficient in {0, 0.001, 0.01, 0.1}, the entity and 
relation dimension in {1000, 1500, 2000}. 

Comparison with state-of-the-art models 
Table 2 reports the evaluation results of disease gene prediction 
on the DisGeNet dataset. It can be seen that KDgene outper-
forms all the baselines consistently and significantly. Specifi-
cally, compared with DGP baselines, KDGene realizes an aver-
age improvement of 16.59% and over 25% improvement on the 
HR metric in particular. Compared with KGE-based baselines, in 
terms of HR@1, HR@3, HR@10, HR@50, MAP@1, MAP@3, MAP@10, 
MAP@50, the performance gains achieved by our model are 17.24, 
21.44, 31.15, 20.35, 17.23, 21.12, 23.52 and 23.59%, with an average 
improvement of 21.96%. These results illustrate the effectiveness 
of KDGene for disease gene prediction. 

Our results also suggest that the success of KDGene does not 
mean that KGE-based models are the best in all DGP models 
(e.g. the MAP metric of GLIM_DG is better than all existing KGE 
methods), but they can still outperform most DGP models. It’s very 
promising for KGE-based methods to become the best in terms of 
the HR metric, showing a powerful recall ability, which indicates 
that combining complex relations in biological knowledge is ben-
eficial for predicting candidate genes comprehensively. 

Existing DGP models combined with KGE [29] usually adopt 
conventional KGE methods. Our experiments confirm that exist-
ing KGE-based models are effective but not necessarily opti-
mal. Among these typical KGE models, methods based on tensor 
decomposition perform better (e.g. [48–50], CP-N3). Adopting ten-
sor decomposition, we further introduce an interaction module 
based on the gating mechanism. It’s worth noting that the result 
of CP-N3 can be regarded as an ablation study. Compared with 
CP-N3, KDGene realizes an increase by 39.86, 47.35, 52.12, 31.81, 
39.85, 46.30, 47.52 and 45.39% on HR@1, HR@3, HR@10, HR@50, 
MAP@1, MAP@3, MAP@10 and MAP@50, respectively, with an aver-
age improvement of 43.77%. The impressive improvement com-
pared with CP-N3 demonstrates the significance of the interaction 
module, which enables KDGene with more precise representa-
tions of entities and relations to predict disease genes. 

In addition to the model’s performance, we have also ana-
lyzed the computational cost and complexity of KDGene, with 
detailed discussions provided in Section III of the supplementary 
materials. 

Prediction on unseen disease–gene associations 
We conduct a detailed evaluation of KDGene’s ability to predict 
gene associations for diseases not present in the training set. 
Specifically, we categorize the training data into two groups: 
Disease-gene in Train containing diseases with known gene asso-
ciations in the training set, and Disease-gene not in Train contain-
ing diseases with no explicitly defined disease-gene relations in 
the training set but may present in the KG with other relations. A 
10-fold cross-validation across DisGeNet is employed. On average, 
each fold featured 3409 diseases with known gene associations 
(Disease-gene in Train) and 321 diseases for which the model had 
not been directly exposed to the corresponding genes (Disease-
gene not in Train). By adopting this approach, we aim to rigor-
ously test KDGene’s generalization capabilities and its potential to 
uncover novel insights within the complex landscape of disease-
gene relations. The results are presented in Table 3. 

The results indicate that the prediction performance drops 
by nearly half when the model is not trained on the disease-
gene triples, highlighting the huge challenge of no prior expo-
sure. Despite this anticipated reduction, KDGene consistently 
surpasses the baseline CP-N3. Moreover, KDGene still marginally 
outperforms several extant disease gene prediction methods (i.e. 
PRINCE, DADA, GUILD, PDGNet) when Disease-gene not in Train. 
Our findings indicate that KDGene demonstrates promising per-
formance in identifying potential disease–gene associations, even 
in the absence of direct training data for specific diseases. These 
results substantiate the utility of integrating biological knowl-
edge graphs for augmenting the semantic richness of diseases 
and genes. They also underscore KDGene’s ability to leverage 
the comprehensive knowledge graph, effectively utilizing indirect 
information and relational patterns to predict associations. 

Comparison of different KGs 
To evaluate the impact of KGs composed of different relations on 
KDGene, we use different combinations of relations to construct

https://github.com/2020MEAI/KDGene
https://github.com/2020MEAI/KDGene
https://github.com/2020MEAI/KDGene
https://github.com/2020MEAI/KDGene
https://github.com/2020MEAI/KDGene
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Table 2: Disease gene prediction results on DisGeNet 

Models HR@1 HR@3 HR@10 HR@50 MAP@1 MAP@3 MAP@10 MAP@50 

DGP Methods RWRH [46] 0.082 0.153 0.269 0.486 0.297 0.268 0.272 0.286 
PRINCE [6] 0.006 0.011 0.024 0.074 0.025 0.026 0.028 0.031 
DADA [7] 0.012 0.025 0.047 0.107 0.045 0.044 0.049 0.053 
GUILD [45] 0.023 0.032 0.049 0.107 0.073 0.076 0.080 0.084 
PDGNet [15] 0.020 0.031 0.045 0.068 0.094 0.056 0.044 0.043 
RWR_PPI [13] 0.070 0.148 0.271 0.474 0.257 0.241 0.255 0.270 
RWR_HMLN [13] 0.094 0.180 0.304 0.502 0.342 0.303 0.306 0.320 
GLIM_DG [13] 0.105 0.194 0.312 0.508 0.383 0.335 0.329 0.342 

KGE Methods TransE [42] 0.086 0.160 0.272 0.472 0.278 0.243 0.241 0.252 
RotatE [47] 0.085 0.159 0.272 0.477 0.275 0.241 0.241 0.252 
DistMult [48] 0.107 0.200 0.309 0.406 0.346 0.301 0.292 0.299 
ComplEx [49] 0.103 0.193 0.317 0.515 0.331 0.288 0.281 0.291 
TuckER [50] 0.096 0.182 0.288 0.394 0.308 0.269 0.261 0.269 
CP-N3 [25] 0.090 0.165 0.273 0.471 0.290 0.249 0.244 0.254 
KDGene (ours) 0.126 0.243 0.416 0.620 0.406 0.365 0.361 0.370 

The table consists of two parts, the upper part is about the baselines for typical DGP models, and the lower is about the baselines for KGE models. Bold 
numbers are the best results of all and underline numbers are the best results of baseline models. 

Table 3: Performance evaluation of models with/without prior exposure to disease–gene associations 

Type Models HR@1 HR@10 MAP@1 MAP@10 

Disease–gene in Train CP-N3 0.090 0.273 0.290 0.244 
KDGene 0.126 0.416 0.406 0.361 
Improve 39.13% 52.23% 39.12% 46.92% 

Disease–gene not in Train CP-N3 0.028 0.129 0.029 0.054 
KDGene 0.065 0.186 0.067 0.099 
Improve 132.21% 44.87% 132.25% 82.75% 

biological KGs from KG1 to KG10 on KDGene. The results are shown 
in Fig. 2. 

KG1 consists only of disease-gene facts in the training set, with 
no external relations introduced. The corresponding overall per-
formance is the worst. Based on KG1, KG2 and KG3 introduce facts 
about Disease–Symptom and PPI, respectively. KG2 achieves the 
best performance, indicating that disease–symptom associations 
are beneficial for candidate gene prediction, while PPI has little 
effect. KG4, which jointly introduces the two relations, fails to 
achieve the cumulative effect. 

Referring [30], KG5 introduces GO and Pathway associations 
of genes. It can be seen from the results that only introducing 
protein-related facts does not improve the prediction of disease 
genes. KG6 reintroduces the disease–symptom relation based 
on KG5. And the performance has improved but still not 
reached the performance of KG2. The possible reason for the 
degradation of KG3 and KG5 that further introduce Protein–Protein 
or GO & Pathway-Protein associations is that relations about 
proteins add more similar entities into the KG, which could be 
noise. 

Within KG7 to KG10, these drug-related facts, when integrated 
into the biological KG, potentially enhance the model’s under-
standing of disease mechanisms by elucidating the therapeu-
tic processes and the biochemical pathways involved in disease 
modulation. However, this improvement was modest, suggesting 
that while drug associations carry valuable signals, they may also 
introduce complexities or confounding factors that the model 
needs to disentangle. This trend is accompanied by a similar 
decrease in effectiveness when the KG is augmented with PPI 
relation (KG8 and KG10), thereby corroborating the principle that 

incorporating too many similar entities can detract from model 
performance. 

Comparison of different PPI score 
To analyze the impact of knowledge with different confidence 
levels on KDGene, we consider scores in PPI facts. This score is 
often higher than the individual sub-scores, expressing increased 
confidence when an association is supported by several types of 
evidence [35]. We select three grades of scores for evaluation, that 
is, the interaction scores ≥ 700, ≥ 850 and ≥ 950, respectively. 
For a fair comparison, all three evaluations are performed on the 
KG with the same disease-gene facts, with no differences other 
than the PPI facts. In Fig. 3(A), as the score threshold increases, the 
performance of KDGene gradually improves, which indicates the 
introduction of reliable biological knowledge into the KG is more 
beneficial for KDGene to learn the representations of entities and 
relations. 

Comparison of different interaction modules 
To evaluate the impact of different interaction modules on the 
performance of KDGene, we conduct experiments with similar 
structures such as RNNCell and GRUCell, and the results are 
shown in Fig. 3(B). Among the three gating mechanisms, the rela-
tion embedding is used as the input, and the head entity embed-
ding as the hidden layer. The results of introducing different 
interaction structures are all better than the model without the 
gating mechanism (here we compare with CP-N3), illustrating 
the significance of the interaction module for tensor decomposi-
tion models. Among the three, the result of LSTMCell is slightly
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Figure 2. Results of KDGene with different biological KGs. We use seven relations associated with diseases and genes to evaluate the effect of ten 
combinations on performance. All these KGs include the disease-gene relation by default and other experimental settings remained constant. 

Figure 3. (A) Results of KDGene with facts in different confidence levels of protein-protein interactions. (B) Results of KDGene with different interaction 
modules. 

better than the remaining two. The possible reason is that the 
setting of the forget gate makes it more parameters to learn more 
details. 

Hyper-parameter analysis of KDGene 
We also conduct hyper-parameter tuning experiments focusing 
on embedding dimensions for entities and relations, batch size, 
learning rate, and regularization coefficient. Among these, the 
setting of the regularization coefficient has the most significant 
impact on KDGene’s performance, aligning with our baseline 
model CP-N3 [25] in general domain knowledge graphs. Notably, 
the introduction of the interaction module allows for the use 
of unequal embedding dimensions for entities and relations, 
enhancing flexibility beyond CP-N3. And the combination of 
differing dimensions has indeed shown better performance in 
our experiments. More detailed results can be found in Section II 
of the supplementary material. 

Functional homogeneity analysis 
To fully evaluate the candidate genes predicted by KDGene, we 
have conducted an in-depth functional homogeneity analysis 
[10, 51] for the candidate genes. First, we calculated the 
functional homogeneity [52] of the candidate genes (identified 
by KDGene) and the known genes of test diseases (named 
Training) and compared them with random expectation (named 
Expected). The results (see Fig. 4) showed that both candidate 
genes and known genes demonstrate a stronger functional 
homogeneity than that observed in the random experiment. 
The homogeneity of the genes predicted by KDGene proves to be 
even better than that of the known genes in molecular function, 
suggesting the biological relevance of the predicted candidate 
genes. 

Case study: diabetes mellitus and atrophic 
gastritis 
We first perform pathway enrichment analysis on known genes 
in the training set and candidate genes predicted by KDGene 
for diabetes mellitus. The result is shown in Fig. 5(A). It  can  be  
seen that 24 pathways related to hypoglycemic pathways showed 
significant enrichment. Specifically, a significantly enriched path-
way is the PI3K-Akt signaling pathway, including 24 related genes 
(5 from the training set and 19 predicted by KDGene), with a P-
value of 1.25E-20. We also obtain the top 10predicted genes to 
demonstrate KDGene’s capability to seek out novel and credible 
candidate genes for diabetes mellitus (see Table 4). The inde-
pendent database of disease-gene association (i.e. MalaCards) 
and literature database (i.e. PubMed) are utilized to validate the 
credibility of these candidate genes. We found that there are 
six candidate genes (precision=60%), namely IL6 (rank=1), HLA-
DRB1 (rank=3), IL1B (rank=6), KCNJ11 (rank=7), IL2RA (rank=8), 
GCK (rank=9), that are recorded in MalaCards database. Especially, 
HLA-DRB1, KCNJ11 and IL2RA also exist in the testing set. Besides, 
all ten genes have co-occurrence with diabetes mellitus in current 
published literature, which declared these genes are likely to be 
associated with diabetes mellitus. 

Then, we take diabetes mellitus and atrophic gastritis as exam-
ples to illustrate the high network closeness and functional rele-
vance between genes in the training set and the candidate genes 
predicted by KDGene (see Fig. 5). For diabetes mellitus (Fig. 5B–C), 
we keep all 42 genes in the training set and 6 genes in the testing 
set of the DisGeNet dataset and take out the top 50 candidate 
genes predicted by KDGene. The dense links (221 real links vs. 
41.23 expected links, P = 2.05E-88, binomial test) that hold in the 
PPI network indicate that those two kinds of genes would tend 
to have closer interactions than expectation and rely on the same 
functional module in the PPI network. The top ten gene prediction 
results of KDGene hit three diabetes mellitus-associated genes
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Figure 4. The result of functional homogeneity analysis of disease genes. (A–D) The distribution of the functional homogeneity of disease genes based on 
(A) pathways, (B) biological process, (C) molecular function and (D) cellular component of GO. The genes predicted by KDGene tend to be more functional 
related as compared with the random expectation. 

Table 4: Top 10 candidate genes for diabetes mellitus 

Rank Rank candidate gene Recorded in MalaCards Co-occurrence in related reference (PMID) 

1 IL6 � 16278864, 16150725 
2 IFNA2 32160960, 34469050 
3 HLA-DRB1 � 10333055, 18279373 
4 PTGS2 36049411, 33565572 
5 HMOX1 34508760, 33343809 
6 IL1B � 9112337, 11032727 
7 KCNJ11 � 32027066, 26448950 
8 IL2RA � 28265534, 21248163 
9 GCK � 9075802, 19933992 
10 FAS 32168372, 30993294 

in the testing set. Meanwhile, we find that more than half of 
the predicted genes have corresponding literature evidence for 
association with diabetes. For example, interleukin-6 (IL-6, the top 
predicted gene), is not in the testing set, but [ 53] indicates pro-
inflammatory cytokines, such as interleukin-6 (IL-6), have been 
considered as key factors in type 1 diabetes mellitus and diabetic 
nephropathy. 

For atrophic gastritis (Fig. 5D–E), due to the limited number of 
associated genes in the training and testing sets, we incorporate 
established disease–gene associations from the MalaCards 
database. This allows us to investigate the connectivity between 
genes with strong supporting evidence and the candidate genes 
predicted by KDGene in the PPI network. We detect 39 actual 
connections between predicted genes and evidence genes in 
the PPI network compared to the expected 3.192 connections 
(P=3.16E-30, binomial test), highlighting the closer and more rel-
evant associations between predicted genes and evidence genes. 

Simultaneously, KDGene successfully predicts the only related 
gene, KRAS, in the testing set, and other genes in the top ten 
predictions, such as SOD2 and TNF, are validated as being 
associated with gastritis ([54, 55]). These results illustrate 
the accuracy and reliability of KDGene’s prediction, which 
are promising to provide valuable references for further wet 
experiments. 

DISCUSSION 
In this study, we leverage biological knowledge bases to con-
struct a KG and develop a scalable, end-to-end knowledge 
graph completion framework, KDGene, employing interactional 
tensor decomposition for identifying disease–gene associations. 
KDGene incorporates a gating mechanism-based interaction 
module between entity and relation embeddings, significantly
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Figure 5. Case study. (A) Pathway enrichment analysis of the benchmark and candidate genes associated with diabetes mellitus. The bubble chart on 
the right illustrates significantly enriched pathways related to hypoglycemic pathways. The list on the left details the enriched genes, including those 
from the training set and new candidates predicted by KDGene. (B) Visualization of links of known and predicted genes for diabetes mellitus on the PPI 
network. (C) For diabetes mellitus, the observed number of network links is significantly larger than the random control (P = 2.05E-88, binomial test). (D) 
Visualization of links of known and predicted genes for Atrophic Gastritis on the PPI network. (E) The observed number of network links is significantly 
larger than the random control (P = 3.16E-30, binomial test). The statistical significance of the P-values for the predicted genes in both representative 
diseases suggests that the interactions observed on the PPI network are not due to random chance and may indicate biologically meaningful relationships 
relevant to the pathophysiology of the conditions. 

enhancing biological knowledge learning. Our experimental 
findings establish KDGene’s superior performance over existing 
disease-gene prediction and knowledge graph embedding meth-
ods. Furthermore, we assess the effect of incorporating KGs with 

varying relation types and confidence levels on KDGene’s efficacy. 
The performance in predicting unseen disease–gene associations 
further demonstrates KDGene’s robustness and generalization 
ability, while comprehensive biological analyses on diseases like 
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diabetes mellitus and atrophic gastritis validate its potential in 
identifying novel and accurate candidate genes. 

However, despite comparing KDGene with current represen-
tative baselines in disease-gene prediction, the rapid develop-
ment of computational biology databases, and the continuous 
emergence of related works pose challenges. These works, 
extending beyond disease-gene association prediction, employ 
the latest techniques like network embedding, deep learning and 
hypergraph-based approaches to address a wide spectrum of 
biological association predictions, including drug–disease [16], 
lncRNA–disease [18], metabolite–disease [19], miRNA–disease 
associations [17] and human–virus PPIs under different disease 
types [20]. Although our modeling approach shares similarities 
with these studies, differences in the data and feature level 
make it challenging to transfer these models for rigorous and 
fair comparison in disease-gene prediction performance. 

In future work, we aim to incorporate the insights gained 
from these advanced methodologies, striving for continual opti-
mization of our model to improve its predictive capabilities. By 
integrating the spirit underlying recent advancements in the field, 
we will enhance the accuracy and applicability of KDGene in the 
broader context of computational biology research. 

Key Points 
• We construct a biological knowledge graph centered on 

diseases and genes, then adopt a scalable end-to-end 
KGC framework to predict disease genes. 

• We propose a novel KGE model, called KDGene, specif-
ically for disease gene prediction. The model intro-
duces an interaction module to tensor decomposition, 
which effectively enhances the information interaction 
between biological knowledge. 

• The biological analysis, which includes case studies on 
diabetes mellitus and atrophic gastritis, also verifies 
KDGene’s capability to identify new and accurate can-
didate genes. 
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