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Abstract

Population models of cancer reflect the overall US population by drawing on numerous existing data resources for parameter inputs
and calibration targets. Models require data inputs that are appropriately representative, collected in a harmonized manner, have
minimal missing or inaccurate values, and reflect adequate sample sizes. Data resource priorities for population modeling to support
cancer health equity include increasing the availability of data that 1) arise from uninsured and underinsured individuals and those
traditionally not included in health-care delivery studies, 2) reflect relevant exposures for groups historically and intentionally
excluded across the full cancer control continuum, 3) disaggregate categories (race, ethnicity, socioeconomic status, gender, sexual
orientation, etc.) and their intersections that conceal important variation in health outcomes, 4) identify specific populations of inter-
est in clinical databases whose health outcomes have been understudied, 5) enhance health records through expanded data ele-
ments and linkage with other data types (eg, patient surveys, provider and/or facility level information, neighborhood data), 6)
decrease missing and misclassified data from historically underrecognized populations, and 7) capture potential measures or effects
of systemic racism and corresponding intervenable targets for change.

For more than 20 years, the US National Cancer Institute (NCI)
has supported the Cancer Intervention and Surveillance
Modeling Network (CISNET) to quantify the impact of changes in
risk factors [eg, smoking cessation (1,2), HPV vaccines (3)] and
advances in screening and therapy on population cancer mortal-
ity over time (4-6). The CISNET models have also been used to
project the impact of various hypothetical screening guidelines
on the cancer burden (7-10). CISNET modeling teams have exam-
ined cancer outcomes for groups with elevated risk of cancer
mortality, such as women with pathogenic mutations placing
them at greater risk of breast cancer (11), and the risk of lung
cancer mortality among adults who smoke tobacco cigarettes (2).
CISNET has also conducted studies of population groups that
experience cancer disparities, in other words, adverse differences
in cancer prevention, incidence, stage at diagnosis, tumor sub-
type, and/or mortality among people who have been historically

underrecognized in health care and face greater obstacles to
health (12), although such studies are fewer in number. For
example, the CISNET prostate model teams have quantified pros-
tate survival disparities for Black and African American (here-
after Black) men as compared with men overall after accounting

for overdiagnosis and lead time because of screening (13). Recent
modeling reports have also evaluated whether existing mam-
mography screening strategies are equitable for Black women
(14), lung cancer screening disparities among Black adults (15),
the potential effects of racism in colorectal cancer incidence and
outcomes (16), and cervical cancer screening using self-sampling
as an approach for reducing disparities among Black women in
the Mississippi Delta (17).

Opportunities for researchers to use population modeling as a

tool for designing strategies to improve health equity are
enhanced, or conversely limited, by the quality of model
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parameter inputs and calibration targets, which is influenced by
the strength of the underlying data. CISNET models use the
strongest nationally representative evidence provided by empiri-
cal studies and data resources as inputs and calibration targets.
Multiple data inputs are incorporated in model structures and
can consequently reflect how factors interact along the cancer
control continuum, from risk and prevention (eg, smoking, body
mass index) to diagnosis (eg, cancer stage depending on method
of detection) to end of life (eg, quality of life) (18-20). Barriers to
obtaining high-quality data inputs are numerous and vary across
model components. Importantly, these barriers can be greater for
at-risk populations including persons defined by one or more
social categories (eg, race, ethnicity, gender, sexual orientation,
socioeconomic status), which increases complexity for inclusion
in population models (21). Elsewhere in this Monograph,
Chapman and colleagues (12) have outlined a framework for con-
ceptualizing these types of interactions, and we use this frame-
work to guide our consideration of data gaps and opportunities to
facilitate future modeling to test the effects of interventions on
cancer equity. In this report, we also describe strengths and limi-
tations of data currently used as inputs to various model compo-
nents and identify data resource needs that would expand
capability for modeling strategies to ultimately alleviate cancer
disparities and achieve health equity with an emphasis on racial
equity.

Strengths and limitations of model input
data
Population models of cancer include multiple components along
the cancer control continuum operating at different levels from
the cellular to the population level, all of which need to be
informed by data inputs or calibration targets (18-20). Specifying
a proposed causal mechanism between the components of a
model can be important for improving transparency and credibil-
ity. However, models do not necessarily have to specify the
mechanistic pathways by which components are causally
related, and modeling may not be the best tool for answering cer-
tain research questions where input data are unavailable or poor
quality, such as why some patients experience delays in diagno-
sis or treatment initiation due to barriers to care. Such topics
may best be pursued using other study designs involving primary
data collection. Yet, models can provide insight into actionable
steps to ameliorate disparities at different points along the can-
cer control continuum. For example, cancer mortality disparities
can reflect the interplay of race and cancer subtypes (eg, lung
cancer histologic type or colorectal cancer anatomic location)
affected by residential segregation including exposure to preda-
tory tobacco and alcohol marketing, environmental injustice (ie,
industrial facility proximity), and limited access to healthy foods
and health care, as well as reduced educational and occupational
opportunities (Table 1, upstream factors). Models that include
natural history components may explicitly include parameters
that reflect the biological effects of adversity, in other words, the
effect of chronic stressors on physiology and epigenetics (12).
Modeling teams must carefully consider how models are struc-
tured and how input data are used singly and jointly within the
model. For example, if tumor growth rates tend to be faster in
one population group compared with another prior to diagnosis
because of greater risk factor exposure, the population-specific
distributions of stage at cancer diagnosis and their corresponding
survival rates should correspond to higher mortality rates.
Researchers face challenges to develop models that are well

calibrated at all points along the cancer continuum, especially
for modeling populations (eg, Black adults) with greater cancer
burdens, because models may require more reprogramming,
parameterization, and calibration rather than simple data input
substitutions.

Health-care data used to inform model inputs may suffer
from biases driven by inequities in care (Table 1, detection, diag-
nosis, treatment) or biases in patient selection for model inputs.
For example, the 12% prevalence of a family history of breast
cancer based on the Breast Cancer Surveillance Consortium
(BCSC, a research network of academic and community-based
breast imaging clinics) (22) is almost double that of the 7% self-
reported prevalence observed in the National Health Interview
Survey (a surveillance study recruiting participants through ran-
dom sampling of households) (23). Some factors may be over- or
underrepresented in the BCSC compared with the general popu-
lation because of the geographic location of the BCSC registries or
referral patterns for breast imaging patients in the BCSC with
potentially elevated risk of breast cancer or because persons who
never obtain a mammogram because of barriers to obtaining
health care are not included in the BCSC. Data from household
studies are also limited because of participation and reporting
bias of healthy participants and by the extent to which partici-
pants may be unaware of the medical history of family members.

Any bias in model inputs may also bias the outputs and influ-
ence disparities. Modeling teams can decrease the risk of building
biases into the models by carefully considering the implications
of model assumptions and structure, data input choices, and the
resultant solutions suggested by model findings. For example,
because the distribution of age at diagnosis for some cancer types
skew younger for Black as compared with White patients with
cancer, models may need to consider evaluating the potential for
higher tumor initiation rates, shorter sojourn times, and/or faster
tumor growth rates in Black persons. These natural history
parameters should not be interpreted as reflecting that Black
people are inherently biologically different from White people
but that these parameters reflect the upstream (inherited genet-
ics) and downstream consequences of factors that exert physio-
logical effects on persons subjected to racism, social isolation,
environmental exposures, and violence as well as modifiable
behavioral factors (12). The lung cancer article in this Monograph
demonstrates an example of how the impact of different natural
history components (eg, histology, stage, survival) on racial dis-
parities, shaped by race-specific parameter input data (eg, smok-
ing patterns), can be quantified (24,25). Furthermore, when
available, model inputs may have greater uncertainty for popula-
tion groups with smaller sample sizes in source databases lead-
ing to correspondingly imprecise and inaccurate outputs. Indeed,
the relative lack of data concerning natural history parameters
for different populations is a barrier to building models that are
well calibrated within specific population groups. Biases can be
present in all types of data sources including those that appear
objectively measured, such as cancer recurrence or tumor
marker presence, as well as data elements that can be more sub-
jective, such as quality of life, tobacco, or substance abuse—
behaviors that rely on self-report (Table 1, patient-reported out-
comes, survival). To decrease the risk of building models that
incorporate biased assumptions or structures that lead to errone-
ous conclusions, CISNET models are increasingly adopting model
components that reflect upstream factors and actionable levers
rather than solely generating comparisons of racial disparities
(Table 1) (12). Here, we seek to address data at points along the
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cancer control continuum and how dataset selection may influ-

ence model findings.

Data needs for model inputs and calibration
targets
A first challenge for collecting model inputs and calibration targets

is the lack of data for different populations (eg, lack of detailed

information on race, ethnicity, sexual orientation, income, educa-

tion, marital status, disability, and other important sociodemo-

graphic characteristics) in surveillance, administrative, and other

databases. If information is indeed available, representation and

generalizability, harmonization, and completeness and accuracy

contribute to whether data are useful and of sufficiently high qual-

ity for population model inputs or calibration targets to investigate

strategies for improving health equity (see Table 2 for details).

Representation and generalizability
Nationally representative data are generally sought for model

inputs, particularly for groups not well represented in commonly

used sources. The imperfect gold standard for national represen-
tation is set by census estimates of at-risk population sizes and
death certificates for cancer mortality counts (Table 2), although
even this source is subject to undercounting of many demo-
graphic groups, including those most at risk of systemic discrimi-
nation and racism (26). The application of these estimates,
however, is often within health-related data settings that are lim-
ited to health systems serving populations covered by commer-
cial health insurance, Medicare, Medicaid, or veterans (eg,
Table 2; medical claims and electronic health records [EHRs] or
cancer registries for geographic areas). For example, CISNET
investigators have collaborated with members of the NCI-
supported BCSC and Population-based Research to Optimize the
Screening Process (PROSPR) consortia to examine questions
related to disparities in the delivery of cancer-related health care
(27). The data collected by the PROSPR research centers reflect
the variation of US delivery system organizations. However, some
health-care–derived data sets inherently overrepresent individu-
als with health insurance and greater health-care access.
Because access to health care is on the causal pathway between

Table 1. Intervention targets and data elements for addressing health equity using modeling of care delivery along the cancer control
continuum

Place in cancer control continuum

Intervention targets associated with cancer
outcomesa and amenable to disparities model-

ing research
Required frequency distributions or rates of data ele-

ments specific to the population of interestb

“Upstream” structural factors Health, social, and economic policies; social
and environmental factors

Income, education, health literacy, health insurance
coverage, employment, medical debt, residential
segregation and mortgage lending practices, neigh-
borhood factors (resources, violence), environmen-
tal quality (air, water), voting participation, local
media and advertising exposure

Prevention and risk assessment Individual cancer risk prediction, risk reduc-
tion behaviors and policies, access to
genetic counseling

Risk factors (eg, family history of cancer, smoking
status, environmental and occupational expo-
sures), genetic test results if conducted, availability
of genetic counseling

Early detection Modality of screening test, availability and
affordability of screening including new
modalities, hours facilities are open

Test performance values including rates of false-pos-
itive results and biopsies after false-positives, test
uptake and adherence, distributions of distance to
screening facilities and facility characteristics such
as area segregation and insurance accepted

Diagnosis Local and regional health-care capacity
including transfer of care between primary
and specialty clinicians, health-care facility
availability, screening failures (eg, interval
cancers and advanced-cancer diagnoses
despite recommended screening)

Follow-up rates, completeness of workup, time to fol-
low-up after a positive screening test, work leave
policies, time to treatment initiation, distance to
facilities, facility characteristics including clinic
workflow, stage at diagnosis, subtype of cancer

Treatment Availability and quality of health care, chal-
lenges in transition of care between pri-
mary and oncology care, insurance
coverage, out-of-pocket costs of care,
insurance network restrictions, pre-
authorization requirements, availability of
tumor biomarker testing

Facility characteristics including clinic workflow,
availability of patient navigation, insurance type,
costs of care, medical debt, treatment effective-
ness, completion of guideline-concordant care,
treatment type and quality

Patient-reported outcomes Treatment shared decision making, symp-
tom management, care coordination

Quality of life (utilities), satisfaction with care, symp-
toms (eg, pain, sleep quality, fatigue), documenta-
tion of shared decision making, type and timing of
physician appointments, community resources,
social determinants of health (eg, food insecurity),
social capital and support, resilience, availability of
paid sick days, patient navigation

Survival Behavioral risk factor modification, surveil-
lance testing, availability of maintenance
therapy, survivorship care plans

Risk factors assessed pre- and postdiagnosis, pat-
terns of surveillance screening tests and cancer
care for recurrence and new cancers, receipt of sur-
vivorship care per plan

a Outcomes produced by models include cancer-specific incidence, survival, and mortality; life-years and quality-adjusted life-years; stage distribution of
cancers diagnosed; false-positive screening tests; overdiagnosed cases; and health-care costs.

b Simulation models use group-level summary data as parameter inputs and calibration targets. Summary data include frequency distributions (eg, percent of
persons in each category of a factor) and other statistics such as means or medians, rate ratios, relative risks, hazard ratios, and 95% confidence intervals.
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racism and outcomes, data are more likely to be incomplete for
individuals who are excluded from obtaining health care because
of the effects of racism and discrimination. Alternatively, some
health-care datasets, such as those from Medicaid or safety net
systems, may reflect unique populations with less health-care
access and local differences in eligibility. To improve representa-
tion of individuals often excluded from health studies and EHRs,

data are especially needed that better represent the demographic
characteristics, health behaviors, and clinical factors among per-
sons with no or limited interaction with health-care services
(Table 3).

For a given model input, an ideal data source would include
relatively complete ascertainment of the relevant outcome meas-
ure for the entire population, not only individuals with

Table 2. Strengths and limitations of data resources for modeling cancer equity

Data resource
Data elements relevant to

modeling Strengths Limitationsa

Customized data summaries
from research studies like the
Multi-Ethnic Cohort

Risk factor distributions accord-
ing to key demographic factors
such as age, sex, race, and eth-
nicity

Self-reported data for elements
not routinely captured in med-
ical records; often enriched for
populations of interest

Missing data selectively more
likely in certain groups, social
biases and stigma affect cer-
tain groups differently when
self-reporting, healthy cohort
bias

Medicare Patterns of medical care among
persons aged 65 years and
older and those with disabil-
ities according to key demo-
graphic factors

Large, nationally representative
sample (98% of those aged 65
years and older), potential for
linkage to other detailed data-
sets (census, state cancer
registries, National Death
Index, provider information)

Excludes health maintenance
organization patients and
patients aged younger than 65
years; data more likely to be
incomplete for individuals
from disenfranchised popula-
tions; lack of data on under-
diagnosed conditions, risk
factors, and exposures

Medicaid (administrative claims) Patterns of medical care among
eligible low-income adults,
children, pregnant women,
elderly adults, and people with
disabilities

Large, nationally representative
sample (approximately 20% of
the US population); data on
those aged younger than 65
years

As a joint federal–state-funded
program, eligibility, coverage,
and scope varies across states
and time necessitating
national and state level analy-
ses; substantial data lags
(�4 years)

Medical claims databases
(eg, MarketScan)

Patterns of medical care accord-
ing to key demographic factors

Details of full course of care
including dosing and rounds of
therapy not available in cancer
registries

Limited to persons with certain
types of health insurance, pro-
cedure data lack reason for
service (eg, screening vs diag-
nostic follow-up), lack of data
on risk factors and exposures

Public health surveillance sys-
tems (eg, American
Community Survey, BRFSS,
Census, MEPS, NHANES, NHIS,
PATH)

Population size of United States
by age, calendar year, and
birth cohort, risk factor preva-
lence over time and by demo-
graphic characteristics

Nationally representative Missing data selectively more
likely in certain groups, social
biases and stigma affect cer-
tain groups differently when
self-reporting

State and national cancer regis-
tries supported by CDC and
NCI (eg, SEER)

Cancer incidence, survival, and
mortality; stage distribution at
diagnosis; tumor factors such
as grade and subtype

Near complete for geographic
catchment areas, databases
linked to SEER (Medicare,
Medicaid, health outcomes,
consumer assessment of pro-
viders)

Limited information on race and
ethnicity before 1990s, treat-
ment information often lim-
ited to planned first course,
limited data on individual
exposures and risk factors

Electronic medical records (eg,
PROSPR, BCSC)

Patterns of medical care accord-
ing to key demographic fac-
tors, individual-level risk
prediction score values

Often enhanced through linkage
with surveys or geospatial
data, detailed data across the
cancer care continuum includ-
ing test results, diversity of
types of health-care systems

Missing or incomplete data for
patients with barriers to
health-care access, limited
data on risk factors and expo-
sures

Clinical cooperatives (eg, NCDB,
NCCN)

Patterns of cancer treatment
care according to key demo-
graphic and disease factors

Can be very large and detailed
for certain aspects of care

Limited inclusion of diverse pop-
ulations

Death certificates (eg, CDC
Wonder, Human Mortality
Database)

Underlying cause of death, may
include contributing causes

Near complete for the United
States

Subject to well-described errors
and bias for cause of death
and race and ethnicity

Published literature including
meta-analyses

Treatment efficacy according to
disease factors

Treatment benefit under ideal
clinical trial conditions

Restrictive study inclusion and
exclusion criteria limit the
diversity of the participating
population

a Common limitation to all data sources: no information collected on many factors (country of origin, sex and gender minority status, sexual orientation,
Veteran status, etc.); small numbers of race and ethnic groups other than non-Hispanic White; race and ethnicity historically not self-reported. BCSC ¼ Breast
Cancer Surveillance Consortium; BRFSS ¼ Behavioral Risk Factor Surveillance System; CDC ¼ Center for Disease Control and Prevention; MEPS ¼Medical
Expenditure Panel Survey; NCCN ¼ National Comprehensive Cancer Network; NCDB ¼ National Cancer Database; NCI ¼ National Cancer Institute; NHANES ¼
National Health and Nutrition Examination Survey; NHIS ¼ National Health Interview Survey; PATH ¼ Population Assessment of Tobacco and Health Study;
PROSPR ¼ Population-based Research to Optimize the Screening Process; SEER ¼ Surveillance, Epidemiology, and End Results.
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unrepresentative health-care access. For instance, in comparison
with EHR data, population-based registry data provide a better
source for ascertaining natural history of some diseases because
they include more information for the entire population within
their geographic catchment area and not only those accessing
health care. Yet, EHRs and other nonrepresentative data can also
provide important information to inform models, which later can
be extrapolated to the whole US population via model calibration
and validation. In addition, supplementing registries, EHRs, and
other data sources with data reflecting measures of systemic rac-
ism or its secondary effects could provide new sources of data for
models to obtain more nuanced estimates of impacts on cancer
types, stage, and response to therapy.

Harmonization
Data collected following a standardized protocol over a long
period of time are helpful for examining trends and projecting
outcomes resulting from interventions that may reverse trends
that reflect disparities. Surveillance studies supported by the
National Center for Health Statistics within the Centers for
Disease Control and Prevention have served this essential pur-
pose for decades (Table 2). The conversion of medical records
from paper to electronic formats greatly expanded capability for
health research and cancer modeling. However, health systems
and clinics across the country have converted to EHRs at differ-
ent times with varying capacity to support analysis. Furthermore,
health systems have only recently started collecting self-reported
race and ethnicity, whereas other characteristics, such as sexual
orientation, gender identity, income, education, other social
determinants of health, and individual experiences of discrimina-
tion, are not routinely ascertained [see Jayasekera et al. (28) in
this Monograph]. Conversely, residential addresses are com-
monly collected and can be used to estimate area-level metrics of
the effects of structural racism such as neighborhood disinvest-
ment and disadvantage. Data sources with detailed individual
level information on experiences and intermediate effects related
to racism as well as health outcomes would allow population
models to connect the dots from potential upstream drivers to
downstream impacts (28,29). Models can then be reprogrammed
to better include modifiable targets influenced by racism, includ-
ing area-level metrics, social determinants of health, health
insurance policy, environmental exposures, education quality,
income, and debt (Table 3).

Because PROSPR has invested in harmonizing key EHR data
elements for research purposes by identifying which elements
are conceptually equivalent and can be pooled across medical
records from different health systems, PROSPR data are condu-
cive to use in population models as parameter inputs (30). For
example, CISNET and PROSPR have collaborated to examine the
impact of differences in time after an abnormal screening test to
diagnostic evaluation on mortality from breast, cervical, and col-
orectal cancer (31). This study relied on standardized definitions
and data capture for abnormal test results and time to diagnostic
evaluation. The CISNET models including these harmonized
measures can then be employed to estimate the potential long-
term health effects of differences in time to care, incorporating
any differences that may be experienced disproportionately by
persons not historically represented in research.

Completeness and accuracy
Missing and inaccurate data are common and can be associated
with cancer outcomes, including risk factors such as smoking
status as well as tumor stage and subtype at diagnosis (32). If

missing or misclassified values are more common among groups
experiencing health disparities related to barriers to health care,
then modeling results will be more prone to error or bias for these
groups. Strategies to address these potential limitations can
include sensitivity analyses to explore a range of input values,
yet a single best value (or range of values) needs to be selected for
each base-case modeling analysis. Data from epidemiologic
cohort studies can provide self-reported information that is not
routinely included in medical records or other sources (Table 2).
For example, the CISNET lung modelers are collaborating with
the Multiethnic Cohort to obtain input parameter data to connect
individual smoking histories to lung cancer risk among Black,
non-Hispanic White, and Hispanic adults as well as adults overall
(24); this effort builds on early work based on the Nurses’ Health
Study and Health Professionals’ Follow-up Study, which are pre-
dominately composed of non-Hispanic White adults (33).
Reviews of published studies have suggested that the self-report
of a cancer screening test is often more accurate when compared
with medical records among persons who have received the test
and less accurate among persons who have never received the
test (34-36). Errors in relying on self-reported smoking and
screening information may vary across populations because of
cultural differences in a person’s likelihood to acquiesce (respond
yes when uncertain) and answer according to social desirability
(overreport events that are socially favored) (34). Moreover, risk
factors that are disproportionately relevant to underrecognized
populations might have lower priority for accuracy in data collec-
tion efforts than those affecting most of the population. An
example is menthol cigarette and cigar use, which is more com-
mon among Black individuals but less common in national and
other surveys than other tobacco products that are reported less
frequently in the Black population, such as e-cigarette use (37).
Further, geocoding of residential addresses with linkage to area-
level data can complement or substitute for self-reported data
but also introduces other sources of error; in some situations,
geocoding requires substantial investment and has limited accu-
racy, for example, for persons living in rural areas, temporary
housing, mobile homes, and homeless shelters, and who use post
offices boxes. The intersectionality of race, ethnicity, and access
to care make patterns of exposure difficult to disentangle from
the drivers of reporting accuracy. Thus, modeling research needs
to consider the potential impact of multiple sources of bias to
avoid overstating screening test use and exposure to healthy and
unhealthy behaviors based on self-reports and to encourage the
increased acquisition of accurate data on factors that may be
overrepresented in populations historically and intentionally
excluded from research.

Other opportunities remain to improve the systematic collec-
tion of model data inputs across all populations who are included
in clinical databases (Table 3). Because EHRs were designed for
billing and clinical purposes rather than for research, critical
data are often missing or described in text notes rather than dis-
crete fields (38). For example, smoking history (ie, pack-years and
cessation data) is needed for identification of patients eligible for
lung cancer screening and is often missing from or incomplete in
the EHR (39,40). Informatics tools like character recognition and
artificial intelligence are rapidly expanding the opportunities for
clinical research based on unstructured EHR data, and novel
methods for EHR-based phenotyping have been developed to
improve the quality of characterization of populations in the
presence of the many data challenges noted above. Policies and
processes for protecting confidentiality and patient privacy will
need to keep pace with these technology innovations (41).

250 | Journal of the National Cancer Institute Monographs, 2023, Vol. 2023, No. 62



Because the EHRs will likely always lack key data elements across
the cancer continuum, enhanced EHR-based research data
resources will continue to serve as a critical source of data inputs
for modeling cancer disparities and health equity strategies.
Enhancements include linkages to surveys and other databases
using patient identifiers and to area-based measures using lati-
tude–longitude geocodes (42,43).

Sample size
To adequately characterize cancer screening and treatment uti-
lization patterns, as well as natural history of disease and history
of exposures, an adequate sample size is essential for precise
estimates, particularly for smaller racial and ethnic populations
with diverse socioeconomic indicators. Underrepresentation of
minoritized groups in clinical trials and other research studies
resulting in imprecise parameter estimation and limited ability to
obtain high-quality model inputs for these groups has been
described extensively in the literature on algorithmic fairness,
defined as “the study of definitions and methods related to the
justice of models” (44). Combining data across multiple studies,
health-care systems, or claims databases is often necessary to
obtain adequate representation of individuals subject to potential
health-care disadvantage. Collaborative data enterprises, such as
those led by the National Comprehensive Cancer Network and
the Commission on Cancer, have proved to be valuable as a
source of data inputs for treatment patterns and clinical charac-
teristics of Alaska Native, American Indian, Black, and Hispanic
cancer patients (Table 2). As CISNET teams increase their capa-
bility to model race groups other than Black and White, ethnicity,
and potentially intervenable targets that could modify the effects
of systemic racism, corresponding new data inputs are needed.

Ideally, new data sources would allow the disaggregation of race
and ethnicity categories that combine heterogeneous groups,
including Alaska Native, Asian American, Hispanic, Native
American, and Pacific Islander persons (Table 3) (45,46). As
reflected in other articles in this Monograph (24,47-51), CISNET
modelers have increased efforts to examine cancer control strat-
egies in Black persons. Additional efforts are needed to appropri-
ately represent other underrecognized populations who
experience racism and structural barriers to access health care,
including groups at the intersection of multiple identities (52,53).
Data harmonized through independent or collaborative efforts
have also served as an important alternative to dependency on
research reports and meta-analyses that may lack treatment effi-
cacy estimates, for example, for racial and ethnic populations
(Table 2) (54). Although smaller sample sizes may increase varia-
bility around model input values, concerns about data quality
should not be used as an excuse to avoid health equity modeling
research. Instead, investment in novel data resources should be
pursued along with targeted sensitivity analyses to explore the
impact of input data variation.

Future directions
Simulation modeling of the population cancer burden can be a
powerful tool for identifying approaches to improve health equity
and reduce cancer disparities, although we caution that existing
data sources and modeling approaches can incorporate and per-
petuate the effects of systemic racism and other upstream causes
of disparities. Modeling teams including informaticists who
advise and participate in those teams can take several steps to
improve health equity modeling and limit the impact of

Table 3. Priorities for improving data inputs used by population models of cancer equity

Limitation of current data Priorities for future data resources

Omission of data from people with limited use of health care
and participation in research studies

Cancer risk factor information, patterns of care, and health outcomes
among uninsured and underinsured groups and other disenfranchised
populations living in geographically diverse areas

Lack of data on exposures relevant for underrecognized groups Identify relevant exposures underrepresented in national surveys and
other data sources; expand questionnaires of national surveys to cap-
ture relevant risk factors

Coarse or broad race and ethnicity categories that conceal
important variation in health outcomes

Disaggregate race and ethnic groups, especially for Alaska Native, Asian
American, Hispanic, Native American, and Pacific Islander persons;
gather necessary information to characterize persons at the intersec-
tion of multiple identities including those who identify as multiracial

Poor data quality or unavailable data identifying disenfran-
chised populations in clinical databases

Include standard discrete data with robust data confidentiality protec-
tions for race and ethnicity, sex, and gender beyond male and female,
disability, sexual orientation, immigration, incarceration, and language
preference

Unknown eligibility for screening tests and method of cancer
detection; unclear whether tests are for screening or diag-
nostic follow-up

Include risk factor data to determine eligibility for cancer screening tests
(eg, pack-years of smoking), method of detection (symptoms, screen-
ing), and purpose of tests (screening or diagnostic follow-up) in cancer
registries and medical records

Self-reported data that are susceptible to misclassification and
sampling bias; lack of individual-level data on social deter-
minants of health in clinical datasets

Facilitate geocode linkages between medical records and claims with
area-based measures of social determinants of health; facilitate linkage
between surveys and medical records or claims for individual-level
measures of social determinants of health, for example, National
Health Interview Survey, National Health and Nutrition Examination
Survey, and Medical Expenditure Panel Survey linked with Medicare;
strengthen health information technology policies and procedures that
allow data linkages while preserving patient confidentiality

Absence of data on measures of systemic racism Increase availability of data on factors that reflect the effects of systemic
racism including income, education, health literacy, employment,
health insurance coverage, medical debt, residential segregation and
mortgage lending practices, neighborhood factors (resources, violence),
environmental quality (air, water), voting participation, local media and
advertising exposure, and individual experiences of discrimination
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underlying biases in data, including identifying data sources rep-
resentative of the target population for modeling; developing new
data sources that incorporate measures of systemic racism and
its effects; decreasing missing data and misclassified data from
populations historically and intentionally excluded from
research; understanding the limits of existing data inputs; and
using sensitivity analyses to estimate the effects of these limits
on outcomes and conclusions. The NCI has heavily invested in
data and consortium resources, including the BCSC and PROSPR,
which draw on key data elements supplemented with additional
data linkages. Building such large population models of cancer
using the best combination of data inputs is an approach for
identifying strategies to reduce the risk of excessive harm to pop-
ulation groups who have already suffered because of underrepre-
sentation in medical research and not fully received its benefits.
New multidisciplinary research teams are encouraged to develop
population models and explore new and emerging data resources
that may close persistent knowledge gaps resulting from the
under- or misrepresentation of some people in existing models
and data (55). Combined, these efforts can improve our ability to
develop and use population models to evaluate health dispar-
ities, identify leverage points to modify contributing socioeco-
nomic and health policies, and ultimately improve health equity.

Data availability
No new data were generated or analyzed in support of this
research.

Author contributions
Amy Trentham-Dietz, PhD (Conceptualization; Funding acquisi-
tion; Writing—original draft; Writing—review & editing), Douglas
A. Corley, MD, PhD (Conceptualization; Writing—review & edit-
ing), Natalie J. Del Vecchio, PhD (Conceptualization; Writing—
review & editing), Robert T. Greenlee, PhD, MPH
(Conceptualization; Writing—review & editing), Jennifer S. Haas,
MD, MSc (Conceptualization; Writing—original draft; Writing—
review & editing), Rebecca A. Hubbard, PhD (Conceptualization;
Writing—original draft; Writing—review & editing), Amy E.
Hughes, PhD (Conceptualization; Writing—review & editing), Jane
J. Kim, PhD (Conceptualization; Writing—original draft; Writing—
review & editing), Sarah Kobrin, PhD, MPH (Conceptualization;
Writing—original draft; Writing—review & editing), Christopher I.
Li, MD, PhD (Conceptualization; Writing—review & editing),
Rafael Meza, PhD (Conceptualization; Writing—review & editing),
Christine M. Neslund-Dudas, PhD (Conceptualization; Writing—
review & editing), and Jasmin A. Tiro, PhD, MPH
(Conceptualization; Writing—original draft; Writing—review &
editing).

Funding
This work was supported by the National Institutes of Health
under National Cancer Institute Grant U01CA253911. This
research was also supported in part by the National Institutes of
Health under National Cancer Institute Grants P30CA014520,
UM1CA221940, P01CA154292, UM1CA222035, U24CA221936,
U01CA152637, and UM1CA221939, and the American Cancer
Society (CRP-22-080-01-CTPS).

The funders did not influence this publication or review pre-
vious drafts.

The views expressed here are those of the authors only and do
not necessarily reflect the views of the National Cancer Institute
or National Institutes of Health.

Monograph sponsorship
This article appears as part of the monograph “Reducing
Disparities to Achieve Cancer Health Equity: Using Simulation
Modeling to Inform Policy and Practice Change,” sponsored by
the National Cancer Institute, National Institutes of Health
([Comparative Modeling of Precision Breast Cancer Control
Across the Translational Continuum; 3 U01 CA253911-03S2]).

Conflicts of interest
None.

Acknowledgments
The authors thank Drs. Jeanne Mandelblatt and Aruna Kamineni
for editorial suggestions.

References
1. Holford TR, Meza R, Warner KE, et al. Tobacco control and the

reduction in smoking-related premature deaths in the United

States, 1964-2012. JAMA. 2014;311(2):164-171.

2. Jeon J, Holford TR, Levy DT, et al. Smoking and lung cancer mor-

tality in the United States from 2015 to 2065: a comparative

modeling approach. Ann Intern Med. 2018;169(10):684-693.

3. Burger EA, Smith MA, Killen J, et al. Projected time to elimina-

tion of cervical cancer in the USA: a comparative modelling

study. Lancet Public Health. 2020;5(4):e213-e222.

4. Berry DA, Cronin KA, Plevritis SK, et al.; Cancer Intervention and

Surveillance Modeling Network (CISNET) Collaborators. Effect

of screening and adjuvant therapy on mortality from breast

cancer. N Engl J Med. 2005;353(17):1784-1792.

5. Plevritis SK, Munoz D, Kurian AW, et al. Association of screening

and treatment with breast cancer mortality by molecular sub-

type in US women, 2000-2012. JAMA. 2018;319(2):154-164.

6. Etzioni R, Gulati R, Tsodikov A, et al. The prostate cancer conun-

drum revisited: treatment changes and prostate cancer mortal-

ity declines. Cancer. 2012;118(23):5955-5963.

7. Mandelblatt JS, Stout NK, Schechter CB, et al. Collaborative

modeling of the benefits and harms associated with different

U.S. breast cancer screening strategies. Ann Intern Med. 2016;

164(4):215-225.

8. Knudsen AB, Rutter CM, Peterse EFP, et al. Colorectal cancer

screening: an updated modeling study for the US Preventive

Services Task Force. JAMA. 2021;325(19):1998-2011.

9. Meza R, Jeon J, Toumazis I, et al. Evaluation of the benefits and

harms of lung cancer screening with low-dose computed

tomography: modeling study for the US Preventive Services

Task Force. JAMA. 2021;325(10):988-997.

10. Kim JJ, Burger EA, Regan C, et al. Screening for cervical cancer in

primary care: a decision analysis for the US Preventive Services

Task Force. JAMA. 2018;320(7):706-714.

11. Lowry KP, Geuzinge HA, Stout NK, et al.; Breast Working Group

of the Cancer Intervention and Surveillance Modeling Network

(CISNET), in collaboration with the Breast Cancer Surveillance

Consortium (BCSC), and the Cancer Risk Estimates Related to

Susceptibility (CARRIERS) Consortium. Breast cancer screening

252 | Journal of the National Cancer Institute Monographs, 2023, Vol. 2023, No. 62



strategies for women with ATM, CHEK2, and PALB2 pathogenic

variants: a comparative modeling analysis. JAMA Oncol. 2022;

8(4):587-596.

12. Chapman C, Jayasekera J, Dash C, et al. A health equity frame-

work to support the next generation of cancer population simu-

lation models. J Natl Cancer Inst Monogr. 2023.

13. Kaur D, Ulloa-Perez E, Gulati R, et al. Racial disparities in pros-

tate cancer survival in a screened population: Reality versus

artifact. Cancer. 2018;124(8):1752-1759.

14. Chapman CH, Schechter CB, Cadham CJ, et al. Identifying equi-

table screening mammography strategies for black women in

the United States using simulation modeling. Ann Intern Med.

2021;174(12):1637-1646.

15. Han SS, Chow E, Ten Haaf K, et al. Disparities of national lung

cancer screening guidelines in the US population. J Natl Cancer

Inst. 2020;112(11):1136-1142.

16. Rutter CM, May FP, Coronado GD, et al. Racism is a modifiable

risk factor: relationships among race, ethnicity, and colorectal

cancer outcomes. Gastroenterology. 2022;162(4):1053-1055.

17. Campos NG, Scarinci IC, Tucker L, et al. Cost-effectiveness of

offering cervical cancer screening with HPV self-sampling

among African-American women in the Mississippi delta.

Cancer Epidemiol Biomarkers Prev. 2021;30(6):1114-1121.

18. Beaber EF, Kim JJ, Schapira MM, et al.; on behalf of the

Population-based Research Optimizing Screening through

Personalized Regimens consortium. Unifying screening proc-

esses within the PROSPR consortium: A conceptual model for

breast, cervical, and colorectal cancer screening. J Natl Cancer

Inst. 2015;107(6):djv120.

19. Beaber EF, Kamineni A, Burnett-Hartman AN, et al. Evaluating

and improving cancer screening process quality in a multilevel

context: the PROSPR II consortium design and research agenda.

Cancer Epidemiol Biomarkers Prev. 2022;31(8):1521-1531.

20. Trentham-Dietz A, Alagoz O, Chapman C, et al.; Breast Working

Group of the Cancer Intervention and Surveillance Modeling

Network (CISNET). Reflecting on 20 years of breast cancer mod-

eling in CISNET: recommendations for future cancer systems

modeling efforts. PLoS Comput Biol. 2021;17(6):e1009020.

21. Bowleg L. The problem with the phrase women and minorities:

intersectionality-an important theoretical framework for public

health. Am J Public Health. 2012;102(7):1267-1273.

22. Shiyanbola OO, Arao RF, Miglioretti DL, et al. Emerging trends in

family history of breast cancer and associated risk. Cancer

Epidemiol Biomarkers Prev. 2017;26(12):1753-1760.

23. Murff HJ, Peterson NB, Greevy R, et al. Impact of patient age on

family cancer history. Genet Med. 2006;8(7):438-442.

24. Skolnick S, Cao P, Jeon J, et al. Contribution of smoking patterns,

disease natural history, and survival on lung cancer disparities

in non-Hispanic Black individuals: a modeling study. J Natl

Cancer Inst Monogr. 2023.

25. Meza R, Cao P, Jeon J, et al. Patterns of birth cohort–specific

smoking histories by race and ethnicity in the U.S. Am J Prev

Med. 2023;64(4 suppl 1):S11-S21.

26. Jensen E, Kennel T. Who Was Undercounted, Overcounted in the

2020 Census?, March 10, 2022. https://www.census.gov/library/

stories/2022/03/who-was-undercounted-overcounted-in-2020-

census.html. Accessed April 21, 2023.

27. Kim JJ, Tosteson AN, Zauber AG, et al. Cancer Models and Real-

world Data: Better Together: Table 1. J Natl Cancer Inst. 2016;

108(2):djv316.doi:10.1093/jnci/djv316

28. Jayasekera J, Fernandes JR, Woo JMP, et al. Opportunities, chal-

lenges, and future directions for modeling the effects of

structural racism on cancer mortality in the U.S.: a scoping

review. J Natl Cancer Inst Monogr. 2023.

29. Ray R, Lantz PM, Williams D. Upstream policy changes to

improve population health and health equity: a priority agenda.

Milbank Q. 2023;101(S1):20-35.

30. Healthcare Delivery Research Program, Division of Cancer

Control & Population Sciences, National Cancer Institute.

PROSPR DataShare. April 10, 2023. https://healthcaredelivery.

cancer.gov/prospr/datashare/. Accessed April 21, 2023.

31. Rutter CM, Kim JJ, Meester RGS, et al. Effect of time to diagnostic

testing for breast, cervical, and colorectal cancer screening

abnormalities on screening efficacy: a modeling study. Cancer

Epidemiol Biomarkers Prev. 2018;27(2):158-164.

32. Yang DX, Khera R, Miccio JA, et al. Prevalence of missing data in

the national cancer database and association with overall sur-

vival. JAMA Netw Open. 2021;4(3):e211793.

33. Meza R, Hazelton WD, Colditz GA, et al. Analysis of lung cancer

incidence in the Nurses’ Health and the Health Professionals’

Follow-Up Studies using a multistage carcinogenesis model.

Cancer Causes Control. 2008;19(3):317-328.

34. Anderson J, Bourne D, Peterson K, et al. Evidence Brief: Accuracy of

Self-Report for Cervical and Breast Cancer Screening. VA ESP Project

#09-199. Washington, DC: US Department of Veterans Affairs;

2019. https://www.ncbi.nlm.nih.gov/books/NBK539386/pdf/

Bookshelf_NBK539386.pdf. Accessed April 21, 2023.

35. Howard M, Agarwal G, Lytwyn A. Accuracy of self-reports of Pap

and mammography screening compared to medical record: a

meta-analysis. Cancer Causes Control. 2009;20(1):1-13.

36. Rauscher GH, Johnson TP, Cho YI, et al. Accuracy of self-

reported cancer-screening histories: a meta-analysis. Cancer

Epidemiol Biomarkers Prev. 2008;17(4):748-757.

37. Zavala-Arciniega L, Meza R, Hirschtick JL, et al. Disparities in

cigarette, e-cigarette, cigar, and smokeless tobacco use at the

intersection of multiple social identities in the US adult popula-

tion. Results from the tobacco use supplement to the current

population survey 2018-2019 survey. Nicotine Tob Res. 2023;25(5):

908-917.

38. Taksler GB, Dalton JE, Perzynski AT, et al. Opportunities,

pitfalls, and alternatives in adapting electronic health

records for health services research. Med Decis Making. 2021;

41(2):133-142.

39. Modin HE, Fathi JT, Gilbert CR, et al. Pack-year cigarette smok-

ing history for determination of lung cancer screening eligibility.

Comparison of the electronic medical record versus a shared

decision-making conversation. Ann Am Thorac Soc. 2017;14(8):

1320-1325.

40. Ritzwoller DP, Meza R, Carroll NM, et al. Evaluation of

population-level changes associated with the 2021 US

Preventive Services Task Force lung cancer screening recom-

mendations in community-based health care systems. JAMA

Netw Open. 2021;4(10):e2128176.

41. Elmore LW, Greer SF, Daniels EC, et al. Blueprint for cancer

research: critical gaps and opportunities. CA Cancer J Clin. 2021;

71(2):107-139.

42. Shih YT, Sabik LM, Stout NK, et al. Health economics

research in cancer screening: research opportunities, chal-

lenges, and future directions. J Natl Cancer Inst Monogr. 2022;

2022(59):42-50.

43. Doria-Rose VP, Breen N, Brown ML, et al. A history of health eco-

nomics and healthcare delivery research at the National Cancer

Institute. J Natl Cancer Inst Monogr. 2022;2022(59):21-27.

A. Trentham-Dietz et al. | 253

https://www.census.gov/library/stories/2022/03/who-was-undercounted-overcounted-in-2020-census.html
https://www.census.gov/library/stories/2022/03/who-was-undercounted-overcounted-in-2020-census.html
https://www.census.gov/library/stories/2022/03/who-was-undercounted-overcounted-in-2020-census.html
https://doi.org/10.1093/jnci/djv316
https://healthcaredelivery.cancer.gov/prospr/datashare/
https://healthcaredelivery.cancer.gov/prospr/datashare/
https://www.ncbi.nlm.nih.gov/books/NBK539386/pdf/Bookshelf_NBK539386.pdf
https://www.ncbi.nlm.nih.gov/books/NBK539386/pdf/Bookshelf_NBK539386.pdf


44. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M.

Ethical machine learning in healthcare. Annu Rev Biomed Data

Sci. 2021;4:123-144.

45. Kanaya AM, Hsing AW, Panapasa SV, et al. Knowledge gaps,

challenges, and opportunities in health and prevention research

for Asian Americans, native Hawaiians, and Pacific Islanders: a

report From the 2021 National Institutes of Health Workshop.

Ann Intern Med. 2022;175(4):574-589.

46. Cancer Disparities Progress Report 2022: Achieving the bold

vision of health equity for racial and ethnic minorities and other

underserved populations. 2022. http://www.CancerDisparities

ProgressReport.org/. Accessed April 21, 2023.

47. Chapman CH, Schechter CB, Huang H, et al. Racial disparities in

US breast cancer mortality. J Natl Cancer Inst Monogr. 2023.

48. Gulati R, Nyame YA, Lange JM, et al. A model-based decomposi-

tion of racial disparities in prostate cancer incidence and mor-

tality. J Natl Cancer Inst Monogr. 2023.

49. Rutter CM, Nascimento de Lima P, May FP, et al. Understanding

racial disparities in colorectal cancer outcomes. J Natl Cancer Inst

Monogr. 2023.

50. Sereda Y, Alarid-Escudero F, Bickell NA, et al. Approaches to

developing de novo cancer population models to examine racial

disparities in bladder, gastric, and endometrial cncer and multi-

ple myeloma mortality: The CISNET incubator program. J Natl

Cancer Inst Monogr. 2023.

51. Spencer JC, Burger EA, Campos NG, et al. Adapting a model of

cervical carcinogenesis among self-identified Black women to

evaluate racial disparities in the United States. J Natl Cancer Inst

Monogr. 2023.

52. Kelly-Brown J, Palmer Kelly E, Obeng-Gyasi S, et al.

Intersectionality in cancer care: A systematic review of current

research and future directions. Psychooncology. 2022;31(5):

705-716.

53. Malone J, Snguon S, Dean LT, et al. Breast cancer screening and

care among black sexual minority women: a scoping review of

the literature from 1990 to 2017. J Womens Health (Larchmt). 2019;

28(12):1650-1660.

54. Tam J, Levy DT, Feuer EJ, et al. Using the past to

understand the future of U.S. and global smoking disparities: a

birth cohort perspective. Am J Prev Med. 2023;64(4 suppl 1):

S1-S10.

55. Meza R, Jeon J. Invited Commentary: Mechanistic and

Biologically Based Models in Epidemiology-A Powerful

Underutilized Tool. Am J Epidemiol. 2022;191(10):1776-1780.

254 | Journal of the National Cancer Institute Monographs, 2023, Vol. 2023, No. 62

http://www.CancerDisparitiesProgressReport.org/
http://www.CancerDisparitiesProgressReport.org/

	Active Content List
	Strengths and limitations of model input data
	Data needs for model inputs and calibration targets
	Future directions
	Conflicts of interest
	Acknowledgments
	References


