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Abstract 

Background

In the past, two studies found ensembles of human judgement 
forecasts of COVID-19 to show predictive performance comparable to 
ensembles of computational models, at least when predicting case 
incidences. We present a follow-up to a study conducted in Germany 
and Poland and investigate a novel joint approach to combine human 
judgement and epidemiological modelling.

Methods

From May 24th to August 16th 2021, we elicited weekly one to four 
week ahead forecasts of cases and deaths from COVID-19 in the UK 
from a crowd of human forecasters. A median ensemble of all 
forecasts was submitted to the European Forecast Hub. Participants 
could use two distinct interfaces: in one, forecasters submitted a 
predictive distribution directly, in the other forecasters instead 
submitted a forecast of the effective reproduction number Rt . This 
was then used to forecast cases and deaths using simulation methods 
from the EpiNow2 R package. Forecasts were scored using the 
weighted interval score on the original forecasts, as well as after 
applying the natural logarithm to both forecasts and observations.
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Results

The ensemble of human forecasters overall performed comparably to 
the official European Forecast Hub ensemble on both cases and 
deaths, although results were sensitive to changes in details of the 
evaluation. Rt forecasts performed comparably to direct forecasts on 
cases, but worse on deaths. Self-identified “experts” tended to be 
better calibrated than “non-experts” for cases, but not for deaths.

Conclusions

Human judgement forecasts and computational models can produce 
forecasts of similar quality for infectious disease such as COVID-19. 
The results of forecast evaluations can change depending on what 
metrics are chosen and judgement on what does or doesn't constitute 
a "good" forecast is dependent on the forecast consumer. 
Combinations of human and computational forecasts hold potential 
but present real-world challenges that need to be solved.
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Abstract 

Background

In the past, two studies found ensembles of human judgement 
forecasts of COVID-19 to show predictive performance comparable to 
ensembles of computational models, at least when predicting case 
incidences. We present a follow-up to a study conducted in Germany 
and Poland and investigate a novel joint approach to combine human 
judgement and epidemiological modelling.

Methods

From May 24th to August 16th 2021, we elicited weekly one to four 
week ahead forecasts of cases and deaths from COVID-19 in the UK 
from a crowd of human forecasters. A median ensemble of all 
forecasts was submitted to the European Forecast Hub. Participants 
could use two distinct interfaces: in one, forecasters submitted a 
predictive distribution directly, in the other forecasters instead 
submitted a forecast of the effective reproduction number Rt . This 
was then used to forecast cases and deaths using simulation methods 
from the EpiNow2 R package. Forecasts were scored using the 
weighted interval score on the original forecasts, as well as after 
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applying the natural logarithm to both forecasts and observations.

Results

The ensemble of human forecasters overall performed comparably to 
the official European Forecast Hub ensemble on both cases and 
deaths, although results were sensitive to changes in details of the 
evaluation. Rt forecasts performed comparably to direct forecasts on 
cases, but worse on deaths. Self-identified “experts” tended to be 
better calibrated than “non-experts” for cases, but not for deaths.

Conclusions

Human judgement forecasts and computational models can produce 
forecasts of similar quality for infectious disease such as COVID-19. 
The results of forecast evaluations can change depending on what 
metrics are chosen and judgement on what does or doesn't constitute 
a "good" forecast is dependent on the forecast consumer. 
Combinations of human and computational forecasts hold potential 
but present real-world challenges that need to be solved.
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Introduction
Infectious disease modelling and forecasting has attracted  
wide-spread attention during the COVID-19 pandemic and  
helped inform decision making in public health organisations 
and governments1,2. Most forecasts used to inform decision 
making were based on computational models of COVID-19,  
but some authors also explored human judgement forecasting  
as an alternative or in combination3–6.

Past research found that in the context of infectious disease  
forecasting, human judgement forecasts could achieve predic-
tive performance broadly comparable to forecasts generated 
based on mathematical modelling, in particular when fore-
casting incident cases, rather than lagged indicators indica-
tors like deaths. Farrow et al.7 found that an aggregate of human  
predictions outperformed computational models when predict-
ing the 2014/15 and 2015/16 flu season in the US. However,  
a comparable approach performed worse than computational 
models at predicting the 2014/15 outbreak of chikungunya 
in the Americas. Bosse et al.3 found an ensemble of human  
forecasters to outperform an ensemble of computational  
models when predicting cases of COVID-19 in Germany and  
Poland, but performing worse when predicting incident deaths. 
Similarly, McAndrew et al.5 reported an ensemble of human 
forecasters to perform comparably to an ensemble of compu-
tational models when predicting incident COVID-19 cases, 
and worse when predicting incident deaths. Farrow et al.7  
and in particular Bosse et al.3 struggled to recruit many par-
ticipants (numbers of active forecasters ranged from 22 to 61 
in McAndrew et al.5, 7 to 24 in Farrow et al.7, and 4 to 10 in  
Bosse et al.3). It is important to note that in previous studies  
(and also this one) human forecasters were free to use any  
resources, including computational models, in the process of 
creating a forecast, making it difficult to completely separate  
human judgement and computational modelling.

In some situations, human judgement forecasting may have 
advantages relative to computational models. Human judgment  

may be particularly useful to provide timely forecasts in situ-
ations where data is sparse and many parameters are hard to  
quantify. Humans are also generally able to answer a broad set 
of question (such as for example the likelihood that a given  
actor will take some specified action) and can take factors  
into account that are hard to encode in a computational model.  
On the other hand, human judgement forecasting is difficult  
to scale due to the time and effort required, and humans may 
be at a disadvantage at tasks that strongly benefit from the  
ability to perform complex computations. Also, the use of  
human judgement forecasts by decision makers may be com-
plicated by the lack of clarity of the basis on which they were  
made.

Methods that aim to combine human judgement and math-
ematical modelling are therefore appealing, though we note that  
presenting this as a binary choice is misleading. Most com-
putational models in use in epidemiology have at least some  
element of human judgement supporting their structure or 
usage. Also, human forecasters often make use of approaches  
such as calculating a base rate of incidences, or extrapolating  
current trends, which are in reality equivalent to simple  
models. One explicit method to combine separate human  
judgement and computational model forecasts with the goal of 
improving predictive performance is an ensemble. This has been 
shown to improve performance across model types5. Farrow  
et al.7, Bosse et al.3, Swallow et al.8 and others suggested 
additional possibilities in the context of infectious diseases  
that may also help reduce the amount of human effort required. 
One approach is to use human forecasts, for example of  
relevant disease parameters, as an input to computational  
modelling. Another approach is to use mathematical modelling  
in explicit combination with human judgement, for example 
by giving experts the option to make post-hoc adjustments to  
model outputs. Bosse et al.3 proposed asking human forecast-
ers to forecast the effective reproduction number R

t
 (the aver-

age number of people an infected person would infect in turn)  
based on modelled estimates and to then use this forecast in 
a mathematical simulation model in order to obtain forecasts  
for observed case and death numbers.

This paper represents a follow-up study to Bosse et al.3 in 
the United Kingdom with one- to four-week ahead forecasts  
made over the course of thirteen weeks between May 24 and 
August 16, 2021. The study period is after the second wave 
of COVID-19 in the UK (which peaked in January 2021) and  
falls into a time when restrictions in the UK were gradually  
lifted as part of the roadmap out of lockdown (with final 
restrictions lifted on July 19, 2021). Forecasts were elicited  
from experts and laypeople as part of a public forecasting  
tournament, the “UK Crowd Forecasting Challenge”, using 
a web application. All forecasts were submitted to the  
European COVID-19 Forecast Hub, one of several Forecast  
Hubs that have been systematically collating forecasts of  
different COVID-19 forecast targets in the US1, Germany and 
Poland9,10, and Europe11. This study aims to investigate whether 
the original findings in Bosse et al.3 with respect to forecaster 
performance replicate in a different country, in a different  

          Amendments from Version 1
We added a more detailed contextualisation of the study period 
(May to September 2021) and an explanation of the various 
factors that contributed to the pattern of observed cases and 
deaths from COVID-19 in the UK at that time. We also added a 
new Figure to illustrate the study period. We included details 
on the study authors who made forecasts as participants. We 
clarified parts of the discussion related to the evolution of the 
case fatality ratio (CFR) over the study period and provided 
references. We also clarified that our human forecasts were 
included in the overall Hub ensemble against which they are 
compared, likely leading us to underestimate the differences 
between the two. We added suggestions for further research, 
for example on priming effects from defaults shown in the 
user interface or on the effect that the availability of additional 
qualitative data might have on forecast accuracy.

Any further responses from the reviewers can be found at 
the end of the article
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time period, and with an increased number of participants.  
In addition, it explores the approach proposed in Bosse et al.3  
to ask participants for a forecast of the estimated effective 
reproduction number R

t
 which is then translated into a forecast  

of cases and deaths using a simulation model. We describe 
this approach as human in the loop computational model-
ling and consider it a formalisation of often practiced manual  
intervention in computational forecasts.

Methods
Interaction with the European Forecast Hub
The European COVID-19 Forecast Hub11 was launched in 
March 2021 in order to elicit weekly predictions for various  
COVID-19 related forecast targets from different research 
groups. The forecasts evaluated in this study were submitted  
every Monday before 11.59pm GMT between May 24 2021  
and August 16 2021. Forecasts were made for incident weekly 
reported numbers of cases of and deaths from COVID-19  
on a national level for various European countries over a one to 
four week forecast horizon. While forecasts were submitted  
on Mondays, weeks were defined as epidemiological weeks, 
ending on a Saturday, and starting on Sunday. Forecast hori-
zons were therefore in fact 5, 12, 19 and 26 days. Submissions  
to the European Forecast Hub followed a quantile-based  
format with 23 quantiles of each output measure at levels  
0.01, 0.025, 0.05, 0.10, 0.15,. . . , 0.95, 0.975, 0.99. Every week, 
forecasts submitted to the hub were automatically checked 
for conformity with the required format and all eligible fore-
casts combined into different ensembles. Until the 12th of July 
2021 the default Hub ensemble (“EuroCOVIDhub-ensemble”)  
shown on all official Forecast Hub visualisations (https://cov-
id19forecasthub.eu/) was a mean ensemble (i.e., the α-quantile  
of the ensemble is given by the mean of all submitted  
α-quantiles). From the 29th of July onwards, the default  
Forecast Hub ensemble became a median ensemble. The  
median number of models included in the Forecast Hub  
ensemble for the UK during the study period was 9 for cases  
and 10 for deaths (see Figure SI.1 in the SI).

Ground-truth data on daily reported test positive cases and 
deaths linked to COVID-19 were provided by the European  
Forecast Hub and sourced from the Johns Hopkins University 
(JHU). Data were subject to reporting artifacts and revisions. 
All data points were marked as anomalous retrospectively by  
the European Forecast Hub if in subsequent updates data 
was changed by more than 5 percent. In August 2022 JHU 
switched the data source for their UK death numbers from 
“deaths within 28 days of a positive COVID test” to “Deaths  
with COVID-19 on the death certificate” and revised all their 
past data to guarantee consistency. The 2021 UK ground truth 
death data as it was made available through the European  
Forecast Hub in 2021 is therefore substantially different and 
on average lower than the data available as of early 2023. Data 
revisions are displayed in Figure SI.2 in the Supplementary  
Information12. All results presented here were derived  
based on the original data available in 2021, which were 
available through the European COVID-19 Forecast Hub  
GitHub repository (https://github.com/covid19-forecast-hub-
europe/covid19-forecast-hub-europe).

Human judgement forecasts
Forecasts of incident cases and deaths linked to COVID-19 
in the UK were elicited from individual participants every 
week through a web application (https://cmmid-lshtm.shin-
yapps.io/crowd-forecast/) described in 3. The application is 
based on R13 shiny14 and is available as an R package called  
crowdforecastr15. When signing up, participants could 
self-identify as “experts” if they worked in infectious disease  
modelling or had professional experience in any related field.

The web application offered participants two different ways 
of making a forecast, called ’direct’ (or ’classical’) and ’R

t
 

forecast’. To make a ’direct’ forecast (as described in more 
detail in 3), participants selected a predictive distribution (by  
default a log-normal distribution) and adjusted the median and 
width of the distribution to change the central estimate and  
uncertainty at each forecast horizon.

Just as in the previous study, the default forecast shown was  
a repetition of the last known observation with constant  
uncertainty around it. The shown distribution was the expo-
nential of a normal distribution with mean log(last value) 
and uncertainty set to the standard deviation of the last 
four changes in weekly log observed forecasts (i.e., as  
σ(log(value4) − log(value3), log(value3) − log(value2), . . . )). 
In addition to information about past observations, participants  
could see various metrics and data such as the test positivity  
rate and vaccination rate sourced from Our World in  
Data16. Figure SI.3 in the Supplementary Information12 shows a  
screenshot of the forecast interface for direct forecasts.

In addition to the ‘direct’ forecasts, we implemented a second  
forecasting method (‘R

t
 forecasts’), where we asked partici-

pants to make a forecast of the effective reproduction number  
R

t
. This forecast was made based on a baseline estimate pro-

duced by the EpiNow217 R13 package effective reproduction  
number model which we also used in 3 as a standalone com-
putational model. The estimate produced by EpiNow2 was 
shown as the default forecast and could be adjusted by the user.  
The resulting R

t
 forecast was then translated into a forecast 

of cases using the simulation model from the EpiNow2 R  
package, which implements a renewal equation based18 gen-
erative process for latent infections. We chose a Gaussian  
Process prior with mean 0 for the first differences of the effec-
tive reproduction number in time, implying that in the absence 
of informative data the reproduction number would remain 
constant on average, with uncertainty increasing with the  
temporal distance to informative data points. Latent infections  
were convolved with delay distributions representing the incu-
bation period and reporting delay, and assumed to follow a  
negative binomial observation model with a day of the week 
effect to produce an estimate of reported cases. This approach  
has been widely used for short-term forecasting3,11 and used 
to produce reproduction number estimates19–21. Further details  
are given in the Supplementary Information12.

To obtain forecasts for deaths, we similarly fit a model that 
convolved observed and predicted reported cases as implied  
by the R

t
 forecast over a delay distributions20,21 and scaled 
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them by a fixed ratio to model the time between a case 
report and a reported death and the case fatality ratio using 
the EpiNow2 R package17. Further details are given in the  
Supplementary Information12.

As R
t
-estimates up to at least two weeks prior to the forecast  

data were uncertain due to their dependence on partially  
complete observations of underlying infections given the delays 
from infection to report, we also asked participants to submit 
an estimate of R

t
 for the two weeks prior to the current fore-

cast date. Participants were therefore asked to estimate/predict  
six R

t
 values, four of them beyond the forecast horizon. In order 

to obtain sample trajectories needed as input for the simula-
tion model, we drew 1000 samples from the six provided  
distributions. These samples were ordered and corresponding  
samples treated as one sample trajectory. Samples for daily  
values were obtained by linearly interpolating between weekly 
samples. 

Upon pressing a button, participants could see a pre-
view of the evolution of cases implied by their current R

t
  

forecast. However, due to lack of development time, partici-
pants could not preview the death forecast implied by their cur-
rent input for R

t
 nor could they influence the estimated case  

fatality ratio or delay between reported cases and reported 
deaths. Figure SI.4 in the Supplementary Information12 shows  
a screenshot of the forecast interface for R

t
 forecasts.

Every week, we submitted an ensemble of individual forecasts  
to the European Forecast Hub. In contrast to the ensemble  
of human forecasts described in Bosse et al.3, we used the  
quantile-wise median, rather than the quantile-wise mean to 
combine predictions, drawing upon insights gained from the 
COVID-19 Forecast Hubs22. We submitted three different ensem-
bles to the Hub: The first one, “epiforecasts-EpiExpert_direct”  
(here called “direct crowd forecast” or “crowd-direct”) was 
a quantile-wise median ensemble of all the direct forecasts.  
“epiforecasts-EpiExpert_Rt” (here called “R

t
 forecast” or  

“crowd-rt”) was a median ensemble of all forecasts made 
through the R

t
 interface. “epiforecasts-EpiExpert” (here called  

“combined crowd ensemble” or “crowd-ensemble”) was a 
median ensemble of all forecasts together. A participant could  
enter the combined crowd ensemble twice if they had sub-
mitted both a direct and an R

t
 forecast. Before creating the  

ensemble, we deleted forecasts that were clearly the 
result of a user or software error (such as forecasts that 
were zero everywhere). Our combined crowd ensemble,  
“epiforecasts-EpiExpert”, but not the other two, entered 
the official European COVID-19 Forecast Hub ensemble  
(“EuroCOVIDhub-ensemble”).

The UK Crowd Forecasting Challenge
To boost participation compared to our last crowd forecasting 
study in Germany and Poland7 which struggled in this regard, 
we announced an official tournament, the “UK Crowd Fore-
casting Challenge”. Participants were asked to submit weekly 
predictions for reported cases and deaths linked to COVID-19  
in the United Kingdom one to four weeks into the future.  

Everyone who had submitted a forecast for targets in the UK 
during the tournament period from the 24th of May 2021 to  
the 16th of August 2021 was deemed a participant and eli-
gible for a prize. The first prize was 100 GBP, second prize  
50 GBP and third prize 25 GBP. Participant performance was 
determined using the mean weighted interval score (WIS) on  
the log scale (see details in the next Section), averaged across  
forecast dates, horizons and forecast targets. For the tournament 
ranking, participants who did not submit a forecast in a given 
week were assigned the median score of all other participants 
who submitted a forecast that week. The UK crowd forecast-
ing challenge was announced over Twitter and our networks. In 
addition, we created a project website, https://crowdforecastr.org,  
made weekly posts on Twitter and sent participants who had 
registered on the online application weekly emails with a 
reminder and a summary of their past performance. A public 
leaderboard was available on our website https://epiforecasts.io.  
Participants could choose to make a direct forecast as well as 
an R

t
 forecast and were counted as two separate forecasters and 

eligible for prizes twice. Weekly forecasts had to be submitted  
between Sunday 12pm and Monday 8pm UK time.

Analysis
We scored forecasts using the weighted interval score23. 
For (1-α)⋅100% prediction interval, the interval score is  
computed as

2 2
( , ) ( ) ( ) 1( ) ( ) 1( ),IS F y u l l y y l y u y uα α α= − + ⋅ − ⋅ ≤ + ⋅ ⋅ ≥−

where 1() is the indicator function, y is the true value, and l and 
u are the 

2
α  and 1 − 

2
α  quantiles of the predictive distribution  

F, i.e., the lower and upper bound of a single prediction inter-
val. For a set of K prediction intervals and the median m, the  
score is computed as a weighted sum,

0
1

1
( , ) ,| |

0.5

K

k
k

y mWIS w w IS F y
K α

=

 −= ⋅ ⋅ + ⋅ +  
∑

where w
k
 is a weight for every interval. Usually, 

2
k

kw
α

=  and  
w

0
 = 0.5.

The WIS is a strictly proper scoring rule yielding non-negative  
values, with smaller values implying better performance. A 
forecaster, in expectation, optimises their score by providing 
a predictive distribution F that is equal to the data-generating  
distribution G, and is therefore incentivised to report their 
true belief. The WIS can be understood as an approximation 
of the continuous ranked probability score (CRPS, Gneiting  
et al.24) for forecasts in a quantile-based format. The CRPS,  
in turn, represents a generalisation of the absolute error to  
predictive distributions. The WIS can be decomposed into 
three separate penalty components (corresponding to the 
three terms in the definition of the interval score): forecast  
dispersion (i.e., uncertainty of forecasts), overprediction and  
underprediction.

Bosse et al.25 recently suggested to transform forecasts and 
observations using the natural logarithm prior to applying the  
WIS to better reflect the exponential nature of the underlying  
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disease process. We, therefore, also compute WIS values  
after transforming all forecasts and observations using the  
function f : x → log(x + 1). In the following, we refer to WIS 
scores obtained without a transformation as “scores on the  
natural scale”, and WIS values obtained after log-transforming  
forecasts and observations as “scores on the log scale”. To 
make scores easier to interpret, we report relative WIS scores, 
where the average score for a given model was divided by 
the average score for the European Forecast Hub ensemble  
(“EuroCOVIDhub-ensemble”). In addition, we computed ranks 
based on WIS values.

In order to measure probabilistic calibration24, we used the 
empirical coverage of all central 50% and 90% prediction  
intervals. Empirical coverage refers to the percentage of 
observations falling inside any given central prediction inter-
val (e.g., the cumulative percentage of observed values that  
fall inside all central 50% prediction intervals).

If not otherwise stated, we present results for two-week-ahead 
forecasts, following the practice adopted by the COVID-19  
Forecast Hubs, which found predictive performance to be poor 
and unreliable beyond this horizon1,9,11. We analysed all fore-
casts stratified by forecast target (cases or deaths), forecast  
horizon, and forecast approach. We compared the performance  
of the direct vs. R

t
 forecasting approach using instances where 

we had both a direct forecasts and an R
t
 forecast from the  

same person.

For self-reported “experts” and “non-experts”, a simple  
comparison of scores would be confounded by individual dif-
ferences in participation and the timing of individual fore-
casts. We therefore compared the performance of self-reported 
“experts” vs. “non-experts” by creating and evaluating two 
modified median ensembles, one including only “experts”  
and the other only “non-experts”.

Forecasts were evaluated using the scoringutils26 package 
in R. All code and data used for this analysis, including  
individual-level forecasting data is available at https://github.
com/epiforecasts/uk-crowd-forecasting-challenge. All code used 
to submit the forecasts to the European Forecast Hub is available  
at https://github.com/epiforecasts/europe-covid-forecast.

Ethics statement
This study has been approved by the London School of Hygiene 
& Tropical Medicine Research Ethics Committee (reference 
number 22290). Consent from participants was obtained in  
written form.

Results
Observed values
The study period (forecasts were made between May 24 and  
August 16, 2021, for targets between May 29 and September  
11, 2021) was characterised by an increase in the number of 
cases and deaths in the United Kingdom. Reported cases in  
particular rose rapidly compared to pre-study levels, with 
a peak on July 17, 2021, followed by a trough and another  
subsequent increase in numbers. Death numbers remained 

almost constant in the first four weeks of the study period, fol-
lowed by a steady increase until the end of the study period  
in September 2021. This increase in the case and death num-
bers coincides with the rise of the Delta variant in the UK at 
the beginning of May27,28 as well as the European Football  
Championship29. Reported cases were likely influenced by an 
increased uptake of the NHS COVID-19 app in spring and 
summer 202130. An overview of the reported case and death  
numbers is shown in Figure 1.

Crowd forecast participation
A total number of 90 participants submitted forecasts (more  
precisely, forecasts were submitted from 90 different accounts, 
some of them anonymous). Out of 90 participants, 21  
self-identified as “experts”, i.e., stated they had profes-
sional experience in infectious disease modelling or a related  
field.

The median number of unique participants in any given week 
was 17, the minimum was 6 and the maximum was 51. This  
was higher than the number of participants in 3 (which had a 
median number of 6, a minimum of 2, and a maximum 10).  
With respect to the number of submissions from an individual 
participant, we observed similar patterns as 3: An individual  
forecaster participated on average in 2.6 weeks out of 13. The 
median number of submissions from a single individual was 
one, meaning that similar to 3 most forecasters dropped out  
after their first submission. Only five participants submitted  
a forecast in ten or more weeks and only two submitted a  
forecast in all thirteen weeks, one of whom is an author on 
this study (S. Abbott). Three other authors participated in the 
study (S. Funk, N. Bosse, and E. van Leuwwen). A total of 535  
forecasts were submitted by human forecasters, 118 (22%) of 
these were submitted by authors of this study. The number of 
direct forecasts (median: 13 for cases and 12 for deaths) was 
higher than the number of R

t
 forecasts (median: 6 for both  

cases and deaths) in all weeks (see Figure 2A). The median 
number of “non-experts” (11 for cases, 10 for deaths) was 
higher than the median number of “experts” (8 for cases and  
deaths) (see Figure 2B).

Case forecasts
At the beginning of the study period, human forecasters as  
well as the Forecast Hub ensemble, consistently underpredicted  
case numbers (see Figure 5A). All forecasting approaches  
overshot the peak in case numbers on July 17, 2021, overpre-
dicting case numbers severely in the three weeks after, followed  
again by a small tendency to underpredict when case numbers  
rose once more in the 4th week after the peak.

All forecasting approaches exhibited underdispersion when 
predicting cases, meaning that forecasts on average were too  
narrow and not uncertain enough. Empirical coverage for 
case forecasts was below nominal coverage for all forecasting  
approaches for forecasts more than one week into the future 
(see Figure 3E,F). For 50% prediction intervals, empirical  
coverage was worst for the direct crowd forecasts (0.31), best for  
the R

t
 forecasts (0.46) and in between for the Hub ensemble  

and the crowd ensemble (both 0.38, see Table 1). For 90%  
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Figure 2. Number of forecasts across the study period. A: number of forecasts included in the Hub ensemble and the combined crowd 
ensemble. B: number of forecasts by “experts” and “non-experts”. Expert status was determined based on the participant’s answer to the 
question whether they “worked in infectious disease modelling or had professional experience in any related field”.

Figure 1. Observed cases and deaths of COVID-19 in the UK. Observed daily (bars) and weekly (black lines and points) numbers of cases 
and deaths as available through the European Forecast Hub when the study concluded in 2021. The green rectangle marks the study period 
from May 24 until September 11, 2021. Daily numbers were multiplied by seven in order to appear on the same scale as weekly numbers.
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Figure 3. Predictive performance across forecast horizons. A–D: WIS stratified by forecast horizon for cases and deaths on the natural 
and log scale. E, F: Empirical coverage of the 50% and 90% prediction intervals stratified by forecast horizon and target type. Grey dashed 
lines denote the nominal coverage that a model should ideally achieve.

Table 1. Performance for two-week-ahead forecasts. Values have been cut to three significant digits 
and rounded.

Model Target

WIS - natural WIS - log scale
Coverage 

50%
Coverage 

90%abs. rel. sd abs. rel. sd

EuroCOVIDhub-ensemble Cases 38.2k 1 55.6k 0.25 1 0.22 0.38 0.69

crowd-ensemble Cases 40.1k 1.05 69.4k 0.22 0.91 0.25 0.38 0.69

crowd-direct Cases 39.3k 1.03 67k 0.23 0.96 0.27 0.31 0.69

crowd-rt Cases 45.9k 1.2 74.7k 0.23 0.93 0.24 0.46 0.62

EuroCOVIDhub-ensemble Deaths 37.9 1 26.9 0.13 1 0.04 0.77 1

crowd-ensemble Deaths 40.2 1.06 41.5 0.12 0.97 0.07 0.54 0.77

crowd-direct Deaths 33.9 0.89 30.6 0.13 0.99 0.08 0.54 0.85

crowd-rt Deaths 79.5 2.1 72.7 0.25 1.98 0.13 0.15 0.46
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prediction intervals, coverage was worst for the R
t
 forecasts 

(0.62) and slightly better for the other approaches (all 0.69).  
Coverage for all forecasts deteriorated further with increasing  
forecast horizon (see Figure 3E,F).

In terms of WIS on the log scale, all human forecasting 
approaches outperformed the Forecast Hub ensemble for two 
week ahead forecasts of cases (see Figure 3). WIS values relative  
to the Hub ensemble (=1) were 0.91 for the combined crowd 
ensemble, 0.96 for the direct crowd forecasts and 0.93 for  
the R

t
 forecasts (see Table 1). In contrast, in terms of WIS on 

the natural scale, the Hub ensemble outperformed all human  
forecasting approaches. Relative WIS values on the natural  
scale for two week ahead forecasts were 1.05 for the  
combined crowd ensemble, 1.03 for the direct crowd fore-
casts and 1.2 for the R

t
 forecasts. The discrepancy between  

performance on the log and natural scale can be attrib-
uted to case forecasts from the Hub ensemble tending to 
be lower than forecasts from human judgement approaches 
(see Figure 4). On the natural scale, this resulted in smaller  
overprediction penalties, putting it ahead of human forecasts 
(see Figure 3A,C). On the log scale, however, it led to large  
penalties for underprediction.

Performance of the Hub ensemble relative to the human fore-
casting approaches improved with increasing forecast horizon  
(see Figure 3). For a four-week-ahead forecast horizon, the 
Hub ensemble outperformed all other approaches both on the  
log scale (rel. WIS values the human forecasts of 1.02, 1.05,  
1.06) and on the natural scale (rel. WIS values of 1.21, 1.25,  
1.3) (compare Table SI.1 in the Supplementary Information12).

In terms of relative model ranks for two week ahead forecasts, 
the Hub ensemble and the R

t
 forecast showed a higher variance  

than the combined crowd ensemble and the direct forecasts 
(See Figure 5), despite forecasts being about the same or more  
dispersed (see Figure 3). Both the Hub ensemble and the R

t
 

forecast were more often in first place than other approaches  
(4 times each, both on the log and on the natural scale). 
However, they were also most often in the last place (Hub 
ensemble: 6 on the log scale and 5 on the natural scale, R

t
 : 5 

on the log scale and 6 on the natural scale). The direct fore-
casts placed relatively equally in places 1-4. The crowd ensem-
ble never placed fourth, but also had the lowest number of first  
places (2, both on the log and the natural scale). Aggregated 
model ranks only changed marginally when switching between  
the log and the natural scale (see Figure 5).

When comparing WIS values on the log scale with those on 
the natural scale, scores were more equally distributed across  
the study period on the log scale and more weight was given 
to forecasts in June and July which underpredicted the extent  
to which case number would rise (see Figure 4). On the  
natural scale, the WIS as a measure of the absolute distance  
between forecast and observation increased or decreased with 
the magnitude of the forecast target23,25. Average scores were  
therefore dominated by performance around the peak when 

cases were highest, in particular by forecasts made on the 19th  
of July for the 31st of July (see Figure 4). For all forecast-
ing approaches, overprediction was the largest contributor  
to overall scores (see Figure 3A). On the log scale, underpredic-
tion played a larger role (see Figure 3C). Switching between 
scores on the log and on the natural scale had the strong-
est effect on the R

t
 forecasts, which had a relative WIS value  

of 0.96 on the log scale and 1.2 on the natural scale. The R
t
  

forecasts tended to be higher than both the direct forecasts 
and the Forecast Hub ensemble, especially around the peak, 
leading to high scores on the natural scale, but not on the log  
scale.

Death forecasts
In the first part of the study period, most forecasting 
approaches (albeit not the direct crowd forecasts), showed a 
tendency to overpredict the increase in death numbers (see  
Figure 5B). All forecasting approaches started to underpredict  
death numbers four weeks after the peak in case numbers  
on July 17, 2021, expecting a consequent drop in deaths that  
did not occur.

All forecasting approaches except the R
t
 forecasts showed 

higher empirical coverage for deaths than for cases (see  
Figure 3). Forecasts from the Hub ensemble generally tended 
to be wider than the human forecasts (see Figure 4 and  
Figure 3B,D). For 50% prediction intervals, the Hub ensemble 
exceeded the nominal coverage noticeably (0.77) (see Table 1).  
R

t
 forecasts failed to get close to nominal coverage (0.15), 

while the combined crowd ensemble and the direct forecasts 
had empirical coverage close to nominal coverage (both 0.54).  
For 90% prediction intervals, the Hub ensemble again exceeded 
nominal coverage and covered all observations (1) while  
the R

t
 forecasts again failed to get close to nominal coverage 

(0.46). The crowd ensemble exhibited some underdispersion  
(0.77) while the direct forcecasts almost reached nominal  
coverage for two week ahead forecasts of deaths (0.85).

In terms of WIS on the log scale for two week ahead predic-
tions of deaths, the combined crowd ensemble (0.97) and the 
direct crowd forecasts (0.99) were marginally ahead of the  
Hub ensemble, while the R

t
 forecasts performed noticeably  

worse (1.98) (see Figure 3D and Table 1). For the Hub ensem-
ble, the dispersion component played by far the largest role, 
while this was less the case for the human forecasts, which 
got higher penalties from both over- and underprediction.  
Combining the R

t
 forecasts and the direct forecasts led to an 

ensemble that performed better than either of them alone on 
the log scale despite the poor overall performance of the R

t
  

forecasts. In terms of WIS on the natural scale, only the direct 
forecasts (0.89) performed better for two week ahead death  
predictions than the Hub ensemble, while the combined 
crowd ensemble performed slightly worse (1.06) and the R

t
  

forecasts again noticeably worse (2.1).

In terms of relative model ranks for two week ahead death 
forecasts, the R

t
 forecasts took the fourth place most often (9  
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Figure 4. Forecasts and corresponding WIS for 2-week ahead forecasts of cases and deaths from COVID-19 in the UK. A: 50% 
prediction intervals (coloured bars) and observed values (black line and points) for cases and deaths on the natural scale. B: Corresponding 
WIS values, decomposed into dispersion, overprediction and underprediction. C: 50% prediction intervals on the log scale, i.e., after applying 
the natural logarithm to all forecasts and observations. D: Corresponding WIS on the log scale, i.e., the WIS applied to the log-transformed 
forecasts and observations.

on the log scale and 10 on the natural scale), while the direct 
forecasts placed first most often (5 on the log scale and 6  
on the natural scale, see Figure 5). Again, the crowd ensemble  
never placed fourth.

When comparing scores on the log and on the natural scale, 
scores on the log scale were again more evenly distributed 
across the study period. On the natural scale, high scores were 

concentrated around the end of the study period, when death  
incidences were highest (see Figure 4).

Rt forecasts
For cases, where participants could observe the case fore-
cast implied by their R

t
 forecast, predictive performance was 

similar between corresponding direct and R
t
 forecasts for most  

forecasters who had submitted both (see Figure 6). For 
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Figure  5.  Ranks  for  all  forecasting  approaches  for  two  week  ahead  forecasts. Colours indicate how often (out of 13 forecasts)  
a given approach got 1st, 2nd, 3rd, or 4th rank.

Figure 6. Comparison of predictive performance of individual forecasters using either the direct forecasting or Rt interface. 
Comparisons are based only on those instances where forecasters have submitted a prediction using both interfaces. The absolute level for 
a given forecaster relative to others is not meaningful as forecasters differ in the amounts of forecasts they have submitted and when.

deaths, where forecasters could not see the incidence forecast 
implied by their R

t
 forecast or manually adjust the case fatality  

rate, performance of the R
t
 forecasts was significantly worse.  

From June to the end of July, R
t
 forecasts overpredicted deaths 

and were noticeable higher than other forecasts, whereas in  
August, R

t
 forecasts underpredicted deaths and were substan-

tially lower than other forecasts (see Figure 4). In particular,  
R

t
 forecasts for deaths were worse than the corresponding  
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direct death forecasts for most forecasters (see Figure 6).  
Changing from the direct forecasting method to R

t
 forecast-

ing for cases tended to improve scores for better forecasters  
and decrease scores for worse forecasters, although sample  
sizes and the size of the observed effect are both small.

Combining direct crowd forecasts and R
t
 forecasts improved 

performance on the log scale compared to both direct and R
t
  

forecasts alone across all horizons and target types. This was 
not the case on the natural scale, where direct forecasts per-
formed better than the R

t
 and the direct forecasts for both  

cases and deaths across most horizons. Only for case forecasts  
four weeks ahead on the natural scale was the combined  
ensemble better than the direct forecasts. However, even on 

the natural scale, performance of the combined ensemble was  
better than the average of the WIS of direct and R

t
 forecasts.

Experts and non-experts
A median ensemble of two week ahead forecasts restricted to 
only those made by either “experts” or “non-experts” (determined  
based on self-reported experience in infectious disease mod-
elling or a related field) performed worse than the combined 
crowd example, both for cases and deaths and both on the 
log scale and on the natural scale (see Figure 7 and Table 2  
and Figure 2B for a visualisation of participation). The median 
number of “non-experts” was 11 for cases and 10 for deaths, 
which was higher than the median number of “experts”,  
which was 8 for cases and deaths.

Figure 7. Predictive performance of self-reported “experts” and “non-experts” across forecast horizons. Forecasts from “experts” 
and “non-experts” were combined to two separate median ensembles, including both direct and Rt forecasts. A–D: WIS stratified by forecast 
horizon for cases and deaths on the natural and log scale. E, F: Empirical coverage of the 50% and 90% prediction intervals stratified by 
forecast horizon and target type. Grey dashed lines denote the nominal coverage that a model should ideally achieve.
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Table 2. Performance for two-week-ahead forecasts of experts and non-experts. Values 
have been cut to three significant digits and rounded.

Model Target

WIS - natural WIS - log scale
Coverage 

50%
Coverage 

90%abs. rel. sd abs. rel. sd

crowd-ensemble Cases 40.1k 1 69.4k 0.22 1 0.25 0.38 0.69

Expert Cases 42.7k 1.06 74.9k 0.24 1.08 0.28 0.46 0.77

Non-Expert Cases 43.1k 1.07 67k 0.26 1.14 0.25 0.31 0.54

crowd-ensemble Deaths 40.2 1 41.5 0.12 1 0.07 0.54 0.77

Expert Deaths 41.2 1.03 41.8 0.16 1.29 0.15 0.54 0.77

Non-Expert Deaths 45.9 1.14 56.8 0.13 1.06 0.08 0.46 0.77

When comparing two week ahead forecasts from “experts” and 
“non-experts”, the ensemble of “experts” was better calibrated  
(see Figure 7). For cases, “experts” achieved better scores than 
“non-experts” both on the log and on the natural scale. WIS  
values relative to the combined crowd ensemble were 1.08 
for “experts” and 1.14 for “non-experts” on the log scale and  
1.06 for “experts” and 1.07 for “non-experts” on the natural 
scale (see Table 2). For deaths, “experts” performed worse than  
“non-experts” in terms of WIS on the log scale (WIS relative  
to the combined crowd ensemble: 1.29 vs. 1.06), but better  
on the natural scale (1.03 vs. 1.14). Both the “expert”- and 
the “non-expert”-ensemble had similar proportions of R

t
 fore-

casts (mean of 32% for “experts” and 32.2% for “non-experts”  
across cases and deaths together).

For four weeks ahead forecasts of cases, the combined ensem-
ble outperformed both “experts” and “non-experts” on the 
log scale as well as on the natural scale. “Experts” performed  
better than “non-experts” both on the log scale (WIS 
value relative to the combined crowd ensemble of 1.08 for 
“experts” vs. 1.21 for “non-experts”) and on the natural scale  
(1.04 vs. 1.07). For four week ahead forecasts of deaths,  
“Experts” performed better than “Non-experts” on the log 
scale (1.17 vs. 1.18) as well as on the natural scale (0.95 vs.  
1.15).

Discussion
In this paper, we presented a follow-up study to Bosse et al.3, 
analysing human judgement forecasts of cases of and  
deaths from COVID-19 in the United Kingdom submitted to 
the European COVID-19 Forecast Hub between the 24th of  
May and the 16th of August 2021. Human judgement fore-
casts were generated using two different forecasting approaches, 
a) direct forecasts of cases and deaths and b) forecasts of 
the effective reproduction number R

t
, which were based on esti-

mates from an open source effective reproduction number  
estimation model and also relied on this model, along with a 
second model relating cases and deaths from the same source,  
to simulate reported cases and deaths.

Just like Bosse et al.3 and Farrow et al.7, this study strug-
gled to retain a large number of participants. Focused public  
outreach efforts such as creating a dedicated website, announc-
ing an official tournament, providing a public leaderboard,  
sending weekly emails with details on past performance and 
weekly announcements on Twitter, did noticeably increase  
participation compared to the previous study in Germany and 
Poland. Nevertheless, retaining participants beyond the initial  
recruitment proved challenging, and most forecasters only  
submitted a single forecast. McAndrew et al.5 had a higher  
number of participants, suggesting that making use of existing 
forecasting platforms that have access to a large existing user  
base and greater resources may be helpful in recruiting a 
larger number of participants, though these platforms lack the  
flexibility and software tooling to run a novel study of this  
kind in real-time as things stand.

The study period was marked by an increase in both case and 
death numbers. Case numbers rose quickly compared to the  
pre-study period, peaking on July 17, 2021, followed by a 
trough and a subsequent further increase. Forecasts displayed  
a pattern where forecasters tended to underpredict while case 
numbers were rising, and overpredict while case numbers  
were falling, particularly following a peak. Similar patterns 
have been observed previously in other short-term forecasts of  
COVID-19 (see e.g. 3,9,11).

Death numbers during the study period were increasing more 
slowly than during the previous peak in January 2021, coinciding  
with the beginning of vaccination efforts and a growing  
immunity in the population28. The peak in case numbers in July 
2021 was not followed by a subsequent peak in death num-
bers (but rather a steady incline over several months), sug-
gesting some decoupling of case and death numbers such as 
would be expected from effects of immunity that are stronger in  
preventing severe disease than any symptoms. Forecasters 
tended to overpredict death numbers in the beginning, while  
underpredicting them in the end, expecting death numbers to 
fall after the peak in cases. The study period coincides with 
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the rise of the Delta variant in the UK27,28, as well as the 2021  
European Football Championship, which likely shifted the  
age distribution towards younger cases29.

In line with results from previous work3,11, we found 
almost all forecasts for cases to be underdispersed (i.e., too  
narrow/overconfident). Empirical coverage for death forecasts  
was higher than the corresponding coverage for cases for all  
forecasting approaches except the R

t
 forecasts.

For forecasts of cases two weeks ahead, performance of the 
human judgement forecasts was better than the European  
Forecast Hub ensemble in terms of WIS on the log scale, and 
worse in terms of WIS on the natural scale. This was linked  
to a tendency of the Hub ensemble to make lower case  
predictions, which led to lower overprediction penalties on the 
natural scale, but noticeably higher underprediction penalties  
on the log scale. For forecasts of deaths two weeks ahead, 
direct human forecasts and the combined crowd ensemble per-
formed better than the Hub ensemble on the log scale. On  
the natural scale, the combined crowd ensemble performed 
worse than the Hub ensemble, while the direct crowd forecasts  
still performed better. R

t
 forecasts for deaths performed notice-

ably worse than all other approaches both on the log and on  
the natural scale.

In their original study, conducted in Germany and Poland,  
Bosse et al.3 found that humans outperformed an ensemble of 
computational models when predicting cases, but not when  
predicting deaths. They hypothesised that computational mod-
els might have an advantage over human forecasters when  
predicting deaths, benefiting from the ability to model the 
delays and epidemiological relationships between different lead-
ing and lagged indicators. McAndrew et al.5 similarly found in 
their study that humans performed comparably to an ensem-
ble of computational models for cases, but not for predictions 
of deaths of COVID-19. Results in our study do not directly  
support this pattern, but given the low number of observations 
also do not provide strong evidence against it. In this study,  
the combined crowd ensemble performed better than the Hub 
ensemble on both cases and deaths on the log scale, and worse 
on the natural scale. Direct forecasts, which would be most  
comparable to the forecasts in Bosse et al.3, performed worse 
than the Hub ensemble on cases and better on deaths. During the 
study period, the case fatality ratio (CFR) likely changed quite 
quickly compared to the pre-study period. On the one hand, the 
rise of the Delta variant in the UK, which was first detected in 
the UK in March 2021 was estimated to have a higher CFR than  
previous variants27,31 (although Perez-Guzman et al.28 esti-
mated it to be lower than that of the Alpha variant). On the 
other hand, the ongoing COVID-19 vaccination and grow-
ing natural immunity in the population had decreasing effects 
on the CFR. In addition, the age distribution of cases changed 
(hence modifying the overall CFR) throughout study period 
in Summer 2021, in parts related to the European Football  
Championship29. Overall, the CFR was lower than during  
previous peaks of COVID-1928. One possible hypothesis for the 
relatively good performance of human forecasts for deaths com-
pared to previous studies might be that some models submitted 
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to  the  Forecast  Hub  may  have  been  more  negatively  affected  by 
the  changes  in  CFR  during  the  study  period  than  human  fore-
casters  or  have  been  slower  to  update.  The  present  study  only 
saw  a  steady  increase  in  death  numbers,  which  one  could  argue 
is  relatively  easy  to  predict,  making  it  difficult  to  compare 
forecast  performance  with  performance  in  other  settings.  A 
confounding  factor,  when  comparing  results  from  this  study 
and  the  one  in  Germany  and  Poland  directly,  is  that  we  used 
a  median  ensemble  to  combine  individual  forecasts  here,  while 
the earlier study used a mean ensemble.

Importantly,  in  this  study  our  combined  crowd  ensemble 
(“epiforecasts-EpiExpert”)  contributed  to  the  European  Fore-
cast  Hub  ensemble.  This  is  in  contrast  to  the  study  by  Bosse 
et  al.3,  where  they  compared  crowd  forecasts  against  a  hypo-
thetical  ensemble  excluding  the  crowd  forecasts.  In  the  origi-
nal  study,  including  the  crowd  forecasts  improved  the  Hub 
ensemble  on  average  (however,  the  overall  number  of  mod-
els  included  in  the  German  and  Polish  Hub  ensemble  was 
smaller  than  the  number  of  models  in  the  European  Forecast 
Hub  ensemble).  In  our  study,  comparisons  between  our 
crowd  ensembles  and  the  Forecast  Hub  ensemble  are  there-
fore  confounded  by  the  fact  the  combined  crowd  ensemble 
was  included  in  the  Forecast  Hub  ensemble,  possibly  leading 
us to underestimate differences between the two.

This  study  explored  a  novel  method  of  forecasting  infectious 
diseases  that  combines  a  human  forecast  of  the  estimated 
effective  reproduction  number R

t with  epidemiological  model-
ling  to  map  the R

t forecast  to  a  forecast  of  cases  and  deaths.
One  appeal  of  this  approach  is  that  the  forecaster  can  directly 
forecast  the  generative  process  and  how  they  believe  it  is
affected  by  interventions  and  changes  in  behaviour.  Com-
putational  modelling  then  takes  care  of  dealing  with  details 
such  as  reporting  delays,  generation  intervals,  day  of  the  week 
periodicity,  and  the  relationship  between  different  indicators.
This  could  help  reduce  cognitive  load,  and  make  it  easier  to 
synthesise  various  sources  in  information  into  a  single  fore-
cast,  at  least  for  forecasters  who  have  an  intuitive  understanding 
of R

t
.  Though  we  note  all  of  these  modelling  steps  and  the

construction  of  the  model  itself  requires  the  human  construct-
ing  the  model  to  make  assumptions.  Anecdotally,  forecasters 
familiar  to  the  authors  reported  high  satisfaction  with  the 
forecasting  experience.  One  important  limitation  of  the 
approach  is  that R

t values  were  estimated  based  on  reported
numbers  of  cases.  This  is  susceptible  to  changes  in  testing 
and  reporting  and  estimated R

t values  may  not  accurately 
reflect  the  true  underlying  infectious  disease  dynamics.  In  our 
study, R

t forecasts  of  cases  were  comparable  to  direct
forecasts,  with  a  tendency  for  good  forecasters  to  improve 
when  using  the R

t method  and  worse  forecasters  to  deteriorate 

even  more.  Sample  sizes,  however,  were  very  low.  Given  that 
forecasters  could  simulate  cases  in  the  app,  it  is  also  possible 
that  forecasters  were  in  fact  directly  forecasting  cases. R

t fore-
casts  of  deaths  (which  forecasters  could  not  see  in  the  app)
were  noticeably  worse  than  direct  forecasts  of  deaths.  The 
computational  model  underlying  our R

t forecasts  of  deaths
estimated  a  constant  CFR  and  delay  distribution  using  the 
last  4  weeks  of  data,  therefore  updating  relatively  slowly  to
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new circumstances and the CFR was assumed to be constant 
over the four week forecast horizon. However, as mentioned  
before, the CFR likely evolved during the study period. Fore-
casters had no way of inspecting the death forecast implied  
by their R

t
 forecast, likely impacting predictive performance.  

They also had no way to adjust the CFR manually, likely  
impacting forecast accuracy. Allowing human forecasters to see  
their implied death forecasts, as well as giving them the ability  
to adjust the CFR and other model parameters would have  
increased complexity of the interface, but would have solved 
issues with the assumptions of the underlying model. Alter-
natively, a more complex model could have been used which  
allowed for time-varying CFR estimates and forecast these 
changes over the forecast horizon though this approach may still  
have struggled to cope with the rapid changes observed dur-
ing the study period. Another important limitation is that we 
didn’t have full sample trajectories of the R

t
-values predicted  

by forecasters. Rather, trajectories had to be constructed 
based on the distributions provided for the different forecast  
horizons, which likely negatively affected forecasts. One poten-
tial way to disentangle the effect of the convolution model 
from the R

t
 forecasts would have been to use the human  

forecasts for cases as an input to the second computational 
model, which could then have simulated deaths. Future work  
could expose forecasters to different combinations of these 
options with the aim of separating effects of the user inter-
face from ones related to the structure of the underlying  
computational model.

Combining forecasts from “experts” and “non-experts” led to 
better performance for forecasts two weeks ahead for cases as  
well as deaths, and both on the log scale and on the natural 
scale. Combining direct forecasts and R

t
 forecasts led to better  

performance on the log scale, but not on the natural scale. This 
suggests that combining different forecasts can be beneficial  
in many instances, although there may be differences in terms 
of WIS on the log and the natural scale. In particular, WIS  
values on the natural scale may be more susceptible to mod-
els that would tend to overshoot and miss the peak, while 
WIS on the log scale may be more affected by models that  
underpredict and miss upswings25.

Past studies of expert forecasts of COVID-196 had found  
predictions from experts to outperform those of non-experts. In 
our study, an ensemble of self-reported “experts” outperformed 
an ensemble of “non-experts” when forecasting cases two weeks 
ahead, both on the log scale and on the natural scale. When  
forecasting deaths two weeks ahead, “experts” performed 
worse than “non-experts” on the log scale, but better on the 
natural scale. Forecasts for “experts” tended to be better  
calibrated than non-experts. However results should be taken 
with care considering relatively low sample sizes (median 
of 11 “non-experts” for cases and 10 for deaths, median  
of 8 “experts” for cases and deaths) and given that expert 
status was self-reported. Furthermore, we only asked for  
professional involvement in a field related to infectious disease  

modelling, not specifically for familiarity with modelling of 
COVID-19 in the UK, and only offered participants a binary  
choice. However, as we used ad-hoc recruitment in our  
networks many of these self-identified experts are likely to be  
infectious disease modellers.

It is plausible to hypothesise that the default baseline shown 
to forecasters in the app may influence their predictions. One  
could also interpret the Rt-forecast as a way of showing a  
different baseline forecast to the forecaster compared to the  
direct forecast. In our study, the default was a naive forecast 
with the median equal to the last value and uncertainty equal 
to the standard deviation of the last four changes in weekly  
log values. Bosse et al.3 did not find conclusive evidence to 
that effect, but also did not analyse the question in detail. 
We suggest further research be done into potential priming  
effects that a default forecast can have on users.

Overall, results of our study should be taken with caution due to 
several important limitations. Firstly, our study was restricted  
to one location and to a relatively short period of thirteen  
weeks. Secondly, there were many confounding factors that 
likely influence results. These include the fact that different  
participants made forecasts at different points in time (with the 
median forecaster only submitting a single forecast) and that 
subgroups of interest (e.g. “experts”, or R

t
 forecasts) had dif-

ferent numbers of forecasters. In most instances, differences in 
scores between forecast approaches were small compared to the  
variance of scores within a single approach. In addition, there 
were many researcher degrees of freedom that could influence  
findings, for example how individual forecasts were combined  
to create an ensemble. Results were influenced by choices  
made during the evaluation with, for example, some conclu-
sions depending on forecast horizon and the transformation 
used prior to scoring. Highlighting this, prizes to the human  
forecasters were paid out based on the combined WIS on the 
log scale across all horizons and forecast targets. Had we  
chosen to instead measure WIS on the natural scale, or to fore-
cast only cases and continue to score on the log scale, rankings  
and payouts would have been different.

Conclusions
The results of our study are broadly consistent with previous  
studies on human judgement forecasting of COVID-19 and  
suggest that human crowd ensembles and an ensemble of com-
putational models are able to produce forecasts of similar  
quality. One interpretation of these findings is that a mixed 
crowd of human forecaster can produce a viable alternative or  
complement to an ensemble of mathematical models created 
by experts. An altnerative interpretation is that an ensemble  
of automated models can produce forecasts over the course 
of several years that are on par with that of an engaged crowd  
of human forecasters. This study, and all previous studies, com-
paring human judgement forecasts and computational mod-
els only ran over short periods of time and the majority of 
them struggled with recruitment and upkeep. Meanwhile,  
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COVID-19 Forecast Hubs have attracted continuous submis-
sions for almost three years and were able to consistently  
provide forecasts of comparable quality.

Our findings do not suggest that humans are necessarily at a 
general disadvantage compared to computational models at  
predicting reported deaths, but evidence in both directions 
is limited and this is made particularly complex as our study  
took place during a period of time when CFR estimates were 
changing rapidly. Despite evaluations being public, it remains 
a challenge to properly incentivise contributors to Forecast  
Hubs to regularly update their forecasting methodology in 
order to maximise utility, predictive performance, or both.  
Combining human judgement and epidemiological modelling  
by mapping R

t
 forecasts to case and death numbers has 

not yielded competitive forecasts for deaths in this study.  
However, we only presented a prototype of a forecasting 
approach, which, while having appealing properties, proved  
challenging to implement. Subsequent iterations and improve-
ments could likely achieve better results. More research is 
required to obtain a better understanding of the role of subject  
matter expertise in infectious disease forecasting. Similarly, 
it would be interesting to explore the effects on predictive 
accuracy of providing forecasters with additional qualitative  
real-time information such as detailed descriptive reports that 
enhance the forecasters’ understanding of the overall context 
beyond the numerical data that was visible in our application.  
Our results underline that it is difficult to evaluate forecast  
performance devoid of context that helps inform what a good  
or a bad forecast is. Different ways to look at the data let dif-
ferent forecasts appear better or worse. Forecast evaluation  
therefore either needs to be clearly informed by the needs of 
forecast consumers to determine what a good forecast is, or 
it needs a broad array of perspectives to provide a wholistic  
picture as we have attempted to present in this work. Further-
more, evaluating forecasts post-hoc leaves the researchers  
with many degrees of freedom to make decisions that affect 
which models look good and there is a risk of allowing for moti-
vated reasoning. More emphasis should be put on measures 

that prevent this, e.g. by establishing common standards for 
evaluations, pre-registering studies, and making it a norm  
to display a variety of standard metrics.

Data availability
All data and code are available publicy under a MIT license 
under https://github.com/epiforecasts/uk-crowd-forecasting-chal-
lenge and https://doi.org/10.5281/zenodo.7897257. The data has  
been published separately here: https://doi.org/10.5281/zenodo. 
7897289. Supplementary Information12 to this manuscript is  
available at https://doi.org/10.5281/zenodo.7897513.

Author contributions
NIB contributed to the conceptualization, data curation, formal 
analysis, investigation, methodology, software development,  
validation, visualization, and original draft preparation of the 
manuscript, as well as its review and editing. SA contributed  
to the conceptualization, data curation, investigation, meth-
odology, software development, supervision, and review and 
editing of the manuscript. JB contributed to the supervision,  
review, and editing of the manuscript. EvL contributed to the 
conceptualization, supervision, and review and editing of the  
manuscript. AC contributed to the conceptualization, supervi-
sion, and review and editing of the manuscript. SF contributed  
to the conceptualization, funding acquisition, project adminis-
tration, supervision, and review and editing of the manuscript.  
All authors have read and approved the final version of the  
manuscript.

Acknowledgements
We thank all forecasters for their participation and want to 
congratulate the three winners of the forecasting challenge:  
Russell Bradshaw, Sebastian Funk (an author of this study),  
and Akira Endo. All winners donated their prizes. We also 
thank Daniel J. McDonald and Hongru Du for their kind and  
thoughtful reviews which have helped improve the manuscript  
substantially.

References

1. Cramer E, Ray EL, Lopez VK, et al.: Evaluation of individual and ensemble 
probabilistic forecasts of COVID-19 mortality in the US. medRxiv. 
2021.02.03.21250974, 2021. 
Reference Source

2. Venkatramanan S, Cambeiro J, Liptay T, et al.: Utility of human judgment 
ensembles during times of pandemic uncertainty: A case study during 
the COVID-19 Omicron BA.1 wave in the USA. 2022.10.12.22280997, 2022.
Reference Source

3. Bosse NI, Abbott S, Bracher J, et al.: Comparing human and model-based 
forecasts of COVID-19 in Germany and Poland. PLoS Comput Biol. 2022; 18(9): 
e1010405.  
PubMed Abstract | Publisher Full Text | Free Full Text 

4. McAndrew T, Reich NG: An expert judgment model to predict early stages of 
the COVID-19 pandemic in the United States. PLoS Comput Biol. 2022; 18(9): 
e1010485.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5. McAndrew T, Codi A, Cambeiro J, et al.: Chimeric forecasting: combining 
probabilistic predictions from computational models and human 
judgment. BMC Infect Dis. 2022; 22(1): 833.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Recchia G, Freeman ALJ, Spiegelhalter D: How well did experts and laypeople 
forecast the size of the COVID-19 pandemic? PLoS One. 2021; 16(5): 
e0250935.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 17 of 22

Wellcome Open Research 2024, 8:416 Last updated: 21 MAR 2024

Page 20 of 29

Wellcome Open Research 2024, 8:416 Last updated: 11 APR 2024

https://github.com/epiforecasts/uk-crowd-forecasting-challenge
https://github.com/epiforecasts/uk-crowd-forecasting-challenge
https://doi.org/10.5281/zenodo.7897257
https://doi.org/10.5281/zenodo.7897289
https://doi.org/10.5281/zenodo.7897289
https://doi.org/10.5281/zenodo.7897513
https://www.medrxiv.org/content/10.1101/2021.02.03.21250974v1
https://www.medrxiv.org/content/10.1101/2022.10.12.22280997v1
http://www.ncbi.nlm.nih.gov/pubmed/36121848
http://dx.doi.org/10.1371/journal.pcbi.1010405
http://www.ncbi.nlm.nih.gov/pmc/articles/9534421
http://www.ncbi.nlm.nih.gov/pubmed/36149916
http://dx.doi.org/10.1371/journal.pcbi.1010485
http://www.ncbi.nlm.nih.gov/pmc/articles/9534428
http://www.ncbi.nlm.nih.gov/pubmed/36357829
http://dx.doi.org/10.1186/s12879-022-07794-5
http://www.ncbi.nlm.nih.gov/pmc/articles/9648897
http://www.ncbi.nlm.nih.gov/pubmed/33951092
http://dx.doi.org/10.1371/journal.pone.0250935
http://www.ncbi.nlm.nih.gov/pmc/articles/8099086


7. Farrow DC, Brooks LC, Hyun S, et al.: A human judgment approach to 
epidemiological forecasting. PLoS Comput Biol. 2017; 13(3): e1005248. 
PubMed Abstract | Publisher Full Text | Free Full Text 

8. Swallow B, Birrell P, Blake J, et al.: Challenges in estimation, uncertainty 
quantification and elicitation for pandemic modelling. Epidemics. 2022; 38: 
100547.  
PubMed Abstract | Publisher Full Text | Free Full Text 

9.	 Bracher	J,	Wolffram	D,	Deuschel	JK,	et al.: A pre-registered short-term 
forecasting study of COVID-19 in Germany and Poland during the second 
wave. Nat Commun. 2021; 12(1): 5173.  
PubMed Abstract | Publisher Full Text | Free Full Text 

10.	 Bracher	J,	Wolffram	D,	Deuschel	J,	et al.: National and subnational short-term 
forecasting of COVID-19 in Germany and Poland during early 2021. Commun 
Med (Lond). 2022; 2(1): 136.  
PubMed Abstract | Publisher Full Text | Free Full Text 

11. Sherratt K, Gruson H, Grah R, et al.: Predictive performance of multi-model 
ensemble forecasts of COVID-19 across European nations. eLife. 2023; 12: 
e81916.  
PubMed Abstract | Publisher Full Text | Free Full Text 

12. Bosse N, Abbott S, Bracher J, et al.: Supplementary Information - Human 
Judgement forecasting of COVID-19 in the UK. 2023.  
http://www.doi.org/10.5281/zenodo.7897513 

13. R Core Team: R: A Language and Environment for Statistical Computing.  
R Foundation for Statistical Computing, Vienna, Austria, 2022.  
Reference Source

14. Chang W, Cheng J, Allaire JJ, et al.: shiny: Web Application Framework for R.  
R package version 1.6.0, 2021.  
Reference Source

15. Bosse N, Abbott S, Funk S: epiforecasts/crowdforecastr: beta release. 2021. 
Publisher Full Text 

16. Mathieu E, Ritchie H, Rodés-Guirao L, et al.: Coronavirus pandemic (covid-19). 
Our World in Data. 2020.  
Reference Source

17. Abbott S, Hellewell J, Sherratt K, et al.: EpiNow2: Estimate Real-Time Case 
Counts and Time-Varying Epidemiological Parameters. 2020.  
Reference Source

18. Fraser C: Estimating Individual and Household Reproduction Numbers in 
an Emerging Epidemic. PLoS One. 2007; 2(8): e758.  
PubMed Abstract | Publisher Full Text | Free Full Text 

19. Abbott S, CMMID COVID-19 Working Group, Kucharski AJ, et al.: Estimating the 
increase in reproduction number associated with the Delta variant using 
local area dynamics in England. 2021.11.30.21267056; 2021.  
Reference Source

20. Abbott S, Hellewell J, Thompson RN, et al.: Estimating the time-varying 

reproduction number of SARS-CoV-2 using national and subnational case 
counts [version 1; peer review: awaiting peer review]. Wellcome Open Res. 
2020; 5: 112.  
Publisher Full Text 

21. Sherratt K, Abbott S, Meakin SR, et al.: CMMID Covid-19 working Group, Mark 
Jit and Sebastian Funk. Exploring surveillance data biases when estimating 
the reproduction number: With insights into subpopulation transmission 
of Covid-19 in England. 2020.10.18.20214585, 2021.  
Reference Source

22. Ray EL, Brooks LC, Bien J, et al.: Comparing trained and untrained 
probabilistic ensemble forecasts of COVID-19 cases and deaths in the 
United States. Int J Forecast. 2023; 39(3): 1366–1383.  
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Bracher J, Ray EL, Gneiting T, et al.: Evaluating epidemic forecasts in an 
interval format. PLoS Comput Biol. 2021; 17(2): e1008618.  
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Gneiting T, Balabdaoui F, Raftery AE: Probabilistic forecasts, calibration and 
sharpness. J R Statist Soc B. 2007; 69(Part 2): 243–268.  
Reference Source

25. Bosse NI, Abbott S, Cori A, et al.: Scoring epidemiological forecasts on 
transformed scales. 2023.  
Reference Source 

26. Bosse NI, Gruson H, Cori A, et al.: Evaluating Forecasts with scoringutils in R. 
2022.  
Reference Source

27. Bast E, Tang F, Dahn J, et al.: Increased risk of hospitalisation and death 
with the delta variant in the USA. Lancet Infect Dis. 2021; 21(12): 1629–1630. 
PubMed Abstract | Publisher Full Text | Free Full Text 

28. Perez-Guzman PN, Knock E, Imai N, et al.: Epidemiological drivers of 
transmissibility and severity of SARS-CoV-2 in England. Nat Commun. ISSN 
2041-1723, 2023; 14(1): 4279.  
PubMed Abstract | Publisher Full Text | Free Full Text 

29. Dehning J, Mohr SB, Contreras S, et al.: Impact of the Euro 2020 
championship on the spread of COVID-19. Nat Commun. 2023; 14(1): 122. 
PubMed Abstract | Publisher Full Text | Free Full Text

30. Kendall M, Tsallis D, Wymant C, et al.: Epidemiological impacts of the NHS 
COVID-19 app in England and Wales throughout its first year. Nat Commun. 
ISSN  2041-1723, 2023; 14(1): 858.  
PubMed Abstract | Publisher Full Text | Free Full Text 

31. Twohig KA, Nyberg T, Zaidi A, et al.: Hospital admission and emergency care 
attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha 
(B.1.1.7) variants of concern: A cohort study. Lancet Infect Dis. ISSN 1473-
3099, 1474-4457, 2022; 22(1): 35–42.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 18 of 22

Wellcome Open Research 2024, 8:416 Last updated: 21 MAR 2024

Page 21 of 29

Wellcome Open Research 2024, 8:416 Last updated: 11 APR 2024

http://www.ncbi.nlm.nih.gov/pubmed/28282375
http://dx.doi.org/10.1371/journal.pcbi.1005248
http://www.ncbi.nlm.nih.gov/pmc/articles/5345757
http://www.ncbi.nlm.nih.gov/pubmed/35180542
http://dx.doi.org/10.1016/j.epidem.2022.100547
http://www.ncbi.nlm.nih.gov/pmc/articles/7612598
http://www.ncbi.nlm.nih.gov/pubmed/34453047
http://dx.doi.org/10.1038/s41467-021-25207-0
http://www.ncbi.nlm.nih.gov/pmc/articles/8397791
http://www.ncbi.nlm.nih.gov/pubmed/36352249
http://dx.doi.org/10.1038/s43856-022-00191-8
http://www.ncbi.nlm.nih.gov/pmc/articles/9622804
http://www.ncbi.nlm.nih.gov/pubmed/37083521
http://dx.doi.org/10.7554/eLife.81916
http://www.ncbi.nlm.nih.gov/pmc/articles/10238088
http://www.doi.org/10.5281/zenodo.7897513
http://dx.doi.org/10.5281/zenodo.7897513
https://www.r-project.org/
https://cran.r-project.org/web/packages/shiny/index.html
http://dx.doi.org/10.5281/zenodo.4618520
https://ourworldindata.org/coronavirus
https://epiforecasts.io/EpiNow2/
http://www.ncbi.nlm.nih.gov/pubmed/17712406
http://dx.doi.org/10.1371/journal.pone.0000758
http://www.ncbi.nlm.nih.gov/pmc/articles/1950082
https://www.medrxiv.org/content/10.1101/2021.11.30.21267056v1
http://dx.doi.org/10.12688/wellcomeopenres.16006.1
https://researchonline.lshtm.ac.uk/id/eprint/4660125/
http://www.ncbi.nlm.nih.gov/pubmed/35791416
http://dx.doi.org/10.1016/j.ijforecast.2022.06.005
http://www.ncbi.nlm.nih.gov/pmc/articles/9247236
http://www.ncbi.nlm.nih.gov/pubmed/33577550
http://dx.doi.org/10.1371/journal.pcbi.1008618
http://www.ncbi.nlm.nih.gov/pmc/articles/7880475
https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jrssb.pdf
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v2
https://arxiv.org/pdf/2205.07090.pdf
http://www.ncbi.nlm.nih.gov/pubmed/34838221
http://dx.doi.org/10.1016/S1473-3099(21)00685-X
http://www.ncbi.nlm.nih.gov/pmc/articles/8612715
http://www.ncbi.nlm.nih.gov/pubmed/37460537
http://dx.doi.org/10.1038/s41467-023-39661-5
http://www.ncbi.nlm.nih.gov/pmc/articles/10352350
http://www.ncbi.nlm.nih.gov/pubmed/36653337
http://dx.doi.org/10.1038/s41467-022-35512-x
http://www.ncbi.nlm.nih.gov/pmc/articles/9849464
http://www.ncbi.nlm.nih.gov/pubmed/36813770
http://dx.doi.org/10.1038/s41467-023-36495-z
http://www.ncbi.nlm.nih.gov/pmc/articles/9947127
http://www.ncbi.nlm.nih.gov/pubmed/34461056
http://dx.doi.org/10.1016/S1473-3099(21)00475-8
http://www.ncbi.nlm.nih.gov/pmc/articles/8397301


Open Peer Review
Current Peer Review Status:   

Version 1

Reviewer Report 20 February 2024

https://doi.org/10.21956/wellcomeopenres.21467.r73036

© 2024 Du H. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Hongru Du   
1 Johns Hopkins University, Baltimore, Maryland, USA 
2 Johns Hopkins University, Baltimore, Maryland, USA 

 
 
 
This manuscript extends the investigation presented in reference 3, focusing on applying human 
judgment forecasts for COVID-19 cases and deaths within the United Kingdom. These human-
generated forecasts were provided in two distinct styles: a) direct predictions and b) Rt-based 
forecasts. These forecasts' findings were then compared to those from the EuroCOVIDhub-
ensemble. The overall quality of the paper is commendable, with its content being coherent and 
its main points effectively communicated. Below are further comments:

The assumptions for the Rt forecast need a more precise description. Given that the 
reported cases represent merely a subset of all infections, estimating Rt based on these 
reported cases may not accurately reflect the true Rt value. It's essential to clarify how this 
limitation is addressed in the forecast model.

1. 

The benefits of human-based forecasting should be more prominently emphasized. I think 
the primary advantage of such forecasts lies in the human ability to understand a broader 
spectrum of information, particularly crucial insights that are difficult to quantify and input 
as numerical data. For instance, the period under review coincided with the spread of the 
Delta variant across Europe. Suppose experts were furnished with early official reports 
detailing the relative infectiousness or severity of the Delta variant. Could this have 
enhanced the ability of human forecasters to identify pivotal turning points, such as those 
occurring in early June? Exploring an alternative approach by providing human forecasters 
with more real-time, descriptive information, rather than solely relying on numerical data 
like test positivity and vaccination rates, can be an interesting extension of current work. 

2. 

One minor comment about Figures 2 E and F is what the grey dash line means and why the 
Ensember model is not showing in E for cases. 

3. 
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This manuscript describes the results of a crowd forecasting challenge conducted during the 
summer of 2021 in the United Kingdom. Participants were asked to predict Covid-19 cases and 
deaths in the UK during the period across a collection of forecast horizons and to provide 
uncertainty along with point predictions. The participants could (and were encouraged to) 
participate weekly, with a cash incentive. 
 
The results are somewhat mixed in terms of success of the study, with potentially the largest 
barrier being participant adherence (similar to related work). Nonetheless, participant 
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submissions were (on average) of comparable accuracy to the EuroCOVIDhub-ensemble. The 
manuscript is well-written and provides a detailed and thorough discussion of the results, 
highlighting successes and drawbacks. It also serves as a strong template, illustrating current 
best-practices, for other work evaluating these sorts of forecasts. A few (minor) suggestions for 
improvement are listed below. 

The period of study, May-August 2021, deserves more context as well as a few paragraphs 
in the discussion (see also point 3 below). I would suggest, early on, including a figure (like 
SI.2) that shows the ground truth from the beginning of the pandemic, up to the end of the 
study period (or possibly to the present), highlighting the period of study. This would give 
the reader some context of what was happening during the study, along with some idea of 
the phenomena that the forecasters were basing their forecasts on. Importantly, as seen in 
Figure 3, both cases and deaths followed a general upward trajectory. This is important for 
a number of reasons: (a) possibly explains the over/underprediction at the beginning/end of 
the period; (b) possibly contrasts with conclusions that could be made during flat or 
declining periods or more balanced around a peak; (c) impacts the definition of "around the 
peak" at the end of the Case forecasts section; (d) impacts the relative difficulty of the 
forecast task; (e) informs some of the discussion of log vs natural scale performance. 
 

1. 

One author is mentioned in the body as having participated (presumably as an expert), 
while another won the challenge (according to the Acknowledgements). How many of the 
authors participated in the challenge (and how many of the total submissions are they 
responsible for)? It is worth being more forthcoming about this as well as perhaps analyzing 
how this participation impacts the results. 
 

2. 

The CFR discussion (in the Discussion) is relevant, but could be clarified. Some statements 
about "changes" should be supported more convincingly (is this from literature, some 
estimate not shown, etc). Additionally, it's assumption as constant for the Rt task (described 
in the Discussion) seems less important than the fact that the implied Death forecast wasn't 
shown (described in the Methods). I suspect that changing CFR is less important for the 
accuracy of the forecasts than the period of study, so these probably deserve at least equal 
treatment. 
 

3. 

The comparison to the EuroCOVIDhub-ensemble is illustrative, but it would help to compare 
with the individual forecasters as well. Figure 4, for example, is not particularly illuminating, 
but perhaps with a larger sample of (almost certainly worse) forecasts, it would serve to 
further emphasize the relative accuracy of the human judgement forecasts.  Related, 
because these judgement forecasts were submitted to the Euro COVID hub, they are 
presumably included in the hub-ensemble? How might this impact your results about 
relative performance? 
 

4. 

It is possibly described in Reference 3, but it would be interesting to examine the priming 
effects of the initially displayed “Baseline” forecast (reasonable to defer to future work). If 
the intervals were wider, would the judgement forecasts be better calibrated? If they sloped 
up would the forecasters be more likely to predict an increase? To some degree the Rt 
version is a different type of “priming” (as shown in SI.4).
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This manuscript extends the investigation presented in reference 3, focusing on applying human 
judgment forecasts for COVID-19 cases and deaths within the United Kingdom. These human-
generated forecasts were provided in two distinct styles: a) direct predictions and b) Rt-based 
forecasts. These forecasts' findings were then compared to those from the EuroCOVIDhub-
ensemble. The overall quality of the paper is commendable, with its content being coherent and 
its main points effectively communicated. Below are further comments:

The assumptions for the Rt forecast need a more precise description. Given that the 
reported cases represent merely a subset of all infections, estimating Rt based on these 
reported cases may not accurately reflect the true Rt value. It's essential to clarify how this 
limitation is addressed in the forecast model.

1. 

The benefits of human-based forecasting should be more prominently emphasized. I think 
the primary advantage of such forecasts lies in the human ability to understand a broader 
spectrum of information, particularly crucial insights that are difficult to quantify and input 
as numerical data. For instance, the period under review coincided with the spread of the 
Delta variant across Europe. Suppose experts were furnished with early official reports 
detailing the relative infectiousness or severity of the Delta variant. Could this have 
enhanced the ability of human forecasters to identify pivotal turning points, such as those 
occurring in early June? Exploring an alternative approach by providing human forecasters 
with more real-time, descriptive information, rather than solely relying on numerical data 
like test positivity and vaccination rates, can be an interesting extension of current work. 

2. 

One minor comment about Figures 2 E and F is what the grey dash line means and why the 
Ensember model is not showing in E for cases. 

3. 
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This manuscript describes the results of a crowd forecasting challenge conducted during the 
summer of 2021 in the United Kingdom. Participants were asked to predict Covid-19 cases and 
deaths in the UK during the period across a collection of forecast horizons and to provide 
uncertainty along with point predictions. The participants could (and were encouraged to) 
participate weekly, with a cash incentive. 
 
The results are somewhat mixed in terms of success of the study, with potentially the largest 
barrier being participant adherence (similar to related work). Nonetheless, participant 
submissions were (on average) of comparable accuracy to the EuroCOVIDhub-ensemble. The 
manuscript is well-written and provides a detailed and thorough discussion of the results, 
highlighting successes and drawbacks. It also serves as a strong template, illustrating current 
best-practices, for other work evaluating these sorts of forecasts. A few (minor) suggestions for 
improvement are listed below. 

The period of study, May-August 2021, deserves more context as well as a few paragraphs 
in the discussion (see also point 3 below). I would suggest, early on, including a figure (like 
SI.2) that shows the ground truth from the beginning of the pandemic, up to the end of the 
study period (or possibly to the present), highlighting the period of study. This would give 
the reader some context of what was happening during the study, along with some idea of 
the phenomena that the forecasters were basing their forecasts on. Importantly, as seen in 
Figure 3, both cases and deaths followed a general upward trajectory. This is important for 
a number of reasons: (a) possibly explains the over/underprediction at the beginning/end of 
the period; (b) possibly contrasts with conclusions that could be made during flat or 
declining periods or more balanced around a peak; (c) impacts the definition of "around the 
peak" at the end of the Case forecasts section; (d) impacts the relative difficulty of the 
forecast task; (e) informs some of the discussion of log vs natural scale performance. 
 

1. 

One author is mentioned in the body as having participated (presumably as an expert), 
while another won the challenge (according to the Acknowledgements). How many of the 
authors participated in the challenge (and how many of the total submissions are they 
responsible for)? It is worth being more forthcoming about this as well as perhaps analyzing 
how this participation impacts the results. 
 

2. 

The CFR discussion (in the Discussion) is relevant, but could be clarified. Some statements 
about "changes" should be supported more convincingly (is this from literature, some 
estimate not shown, etc). Additionally, it's assumption as constant for the Rt task (described 
in the Discussion) seems less important than the fact that the implied Death forecast wasn't 
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shown (described in the Methods). I suspect that changing CFR is less important for the 
accuracy of the forecasts than the period of study, so these probably deserve at least equal 
treatment. 
 
The comparison to the EuroCOVIDhub-ensemble is illustrative, but it would help to compare 
with the individual forecasters as well. Figure 4, for example, is not particularly illuminating, 
but perhaps with a larger sample of (almost certainly worse) forecasts, it would serve to 
further emphasize the relative accuracy of the human judgement forecasts.  Related, 
because these judgement forecasts were submitted to the Euro COVID hub, they are 
presumably included in the hub-ensemble? How might this impact your results about 
relative performance? 
 

4. 

It is possibly described in Reference 3, but it would be interesting to examine the priming 
effects of the initially displayed “Baseline” forecast (reasonable to defer to future work). If 
the intervals were wider, would the judgement forecasts be better calibrated? If they sloped 
up would the forecasters be more likely to predict an increase? To some degree the Rt 
version is a different type of “priming” (as shown in SI.4).
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