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Contingency tables, data represented as counts matrices, are ubiquitous across quan-
titative research and data-science applications. Existing statistical tests are insufficient
however, as none are simultaneously computationally efficient and statistically valid
for a finite number of observations. In this work, motivated by a recent application
in reference-free genomic inference [K. Chaung et al., Cell 186, 5440–5456 (2023)],
we develop Optimized Adaptive Statistic for Inferring Structure (OASIS), a family of
statistical tests for contingency tables. OASIS constructs a test statistic which is linear
in the normalized data matrix, providing closed-form P-value bounds through classical
concentration inequalities. In the process, OASIS provides a decomposition of the
table, lending interpretability to its rejection of the null. We derive the asymptotic
distribution of the OASIS test statistic, showing that these finite-sample bounds
correctly characterize the test statistic’s P-value up to a variance term. Experiments
on genomic sequencing data highlight the power and interpretability of OASIS.
Using OASIS, we develop a method that can detect SARS-CoV-2 and Mycobacterium
tuberculosis strains de novo, which existing approaches cannot achieve. We demonstrate
in simulations that OASIS is robust to overdispersion, a common feature in genomic
data like single-cell RNA sequencing, where under accepted noise models OASIS
provides good control of the false discovery rate, while Pearson’s X 2 consistently
rejects the null. Additionally, we show in simulations that OASIS is more powerful than
Pearson’s X 2 in certain regimes, including for some important two group alternatives,
which we corroborate with approximate power calculations.

computational genomics | reference genome free inference | contingency table | finite-sample P-value

Discrete data on contingency tables are ubiquitous in data science and are central in
the social sciences and quantitative research disciplines, including biology. In modern
applications, these tables are frequently large and sparse, leading to a continued interest
in new statistical tests for contingency tables (1). One recent motivating application is
SPLASH (2), a method for genomic inference which maps myriad problems in genomic
sequence analysis to the study of contingency tables. These disparate applications include
detecting phylogenetically distinct strains or alternative splicing in single-cell RNA
sequencing, among others.

There is a rich literature that addresses testing for row and column independence
in contingency tables beginning with the work of Pearson, who designed the widely
used X 2 test in the early 1900s (3, 4). Other approaches include the likelihood ratio
test, permutation, or Markov chain Monte Carlo (MCMC) methods (5), limited-
information methods (6), and modeling parametric deviations from the null with
log–linear models (4).

Despite the prominence of Pearson’s X 2 test, it suffers from multiple statistical
drawbacks which limit its utility for scientific inference. First, the X 2 test lacks robustness:
it has high power against many scientifically uninteresting alternatives, for example against
models where technical or biological noise causes a table to formally deviate from the
specified null. We expand on this point in Section 6.1 and provide simulation evidence
for noise stemming from biological overdispersion and contamination.

Second, the X 2 test does not provide statistically valid P-values for any finite number of
observations. There is substantial work on estimating significance thresholds, primarily
centered on an asymptotic theory that assumes a fixed table size with the number of
observations tending to infinity. For example, common guidelines (4) indicate that the
�2 distribution is a bad approximation when more than 20% of the entries take a value
less than 5. However, in modern tables of interest, this is often the case; the biological
tables which motivated this test’s design have many rows (tens or hundreds) relative to
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the total number of observations per column (similarly in the
tens or hundreds), violating X 2 use guidelines (2).

Other methods such as log–linear models suffer from similar
limitations: namely, lack of robustness and of calibration for finite
observations (4). Limited-information tests (6), developed for
multidimensional contingency tables modeling user responses to
n questions each with K options (i.e., K n possible rows), consider
quadratic forms of univariate or bivariate residuals. Specializing
to n = 1, a standard contingency table, this method can be seen as
working to denoise X 2 by ignoring higher-order dependencies.
While this method has good empirical performance in sparse
multidimensional settings, it is conceptually and statistically
distinct from OASIS and is critically only able to provide asymp-
totic P-values, relying on the same distributional assumptions
as X 2. MCMC-based methods have also been developed, which
provide statistically valid P-values, but despite significant recent
works, the sampling required renders them too computationally
intensive for large tables in practice (1, 5). Additionally, for
resampling-based tests, B samples from the null can at best yield
a P-value of 1/(B + 1). Thus, many samples are required to obtain
sufficiently small P-values to reject the null, especially under the
burden of multiple hypothesis correction. Finally, MCMC-based
methods suffer from the same robustness issues as X 2. To our
knowledge, no nontrivial P-values exist for contingency tables
that are computable in closed form and are valid for a finite
number of observations.

In this work, we introduce OASIS, a powerful and general
family of interpretable tests, motivated by and building on earlier

work in genomic inference (2). OASIS provides P-value bounds
that 1) are valid for a finite number of observations, 2) have
a closed-form expression, 3) are empirically robust to small
deviations from the null, and 4) in practice enable scientific
inference that cannot be achieved with X 2.

To build intuition for a task we seek OASIS to perform, con-
sider the following setting generated by SPLASH (2) (discussed
further in Section 6). A total of 103 patients are infected with po-
tentially different variants of SARS-CoV-2 (7). For each, a black
box produces counts of the nucleotide composition of a segment
of the SARS-CoV-2 variant’s genome, which can be considered
a categorical variable. Under the null hypothesis, each patient is
infected with the same variant of the virus, and so all columns
in the table will be drawn from the same distribution over rows.
If a new strain has infected a group of patients, then the row
distribution for these patients will be different. The desired test
should detect this deviation and provide post-inferential guidance
on why the table was rejected, ideally discriminating populations
of patients on the basis of which strains infected them.

To understand why an alternative test is needed, we consider
Pearson’s X 2 in more detail. The X 2 test statistic sums squared
residuals after normalization (Fig. 1B and Eq. 3). The resulting
sum is asymptotically �2 distributed under the null, but can
significantly deviate from this for a finite number of observa-
tions. When it rejects the null, Pearson’s X 2 test provides no
framework for interpreting why, leading practitioners to develop
and use exploratory data-analysis tools such as correspondence
analysis (8–11).
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Fig. 1. Comparison of OASIS and Pearson’s X2 test for input matrix X ∈ NI×J . (A) OASIS computes a matrix of residuals X̃ as in Eq. 2. Row (column) embeddings
f ∈ RI (c ∈ RJ ) are generated by one of several options. These vectors are used to compute the OASIS test statistic S in Eq. 1, which admits a finite-sample P-value
bound using classical concentration inequalities. (B) X2 computes a matrix of residuals Xcorr as in Eq. 4, which is sensitive to deviations in low count rows, as
seen in the Bottom four rows in the example matrix X and Xcorr. The X2 test then provides an asymptotically valid P-value via a distributional approximation.
For interpretability, practitioners often use correspondence analysis (4) to interpret rejection of the null, a procedure with no statistical guarantees, which can
fail to detect the desired structure. (C) depicts two example counts tables. The one on the left corresponds to concentrated (strong) signal, while the one on
the right corresponds to diffuse (weak) signal. Both tables have 100 counts distributed evenly over 10 columns, with 12 rows. X2 assigns both of them similar
significance, but OASIS assigns a much smaller P-value to the Left table than the Right, agreeing with our intuition. (D) plots the empirical CDF of the P-values of
OASIS and Pearson’s X2. This is shown for the two classes of tables; ones with a strong concentrated two-group signal, and ones with a diffuse signal. OASIS
yields significantly improved P-values for the case with strong signal, and substantially worse power than X2 in the weak signal case, which visually looks like
noise. X2 on the other hand yields much more similar performance in the two settings. Here, OASIS-opt is shown, which is run over five independent splits of
the dataset. The generative model for these tables is detailed in SI Appendix, section S.6.A, with additional plots showing e.g., the spectra of the centered and
normalized contingency tables in (C), illustrating that OASIS prioritizes the first table with a more concentrated spectrum.
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OASIS seeks to improve these shortcomings by building in
interpretability and analytic tractability in its construction of a
linear test statistic (Fig. 1A and Eq. 2). This construction enables
the use of classical concentration inequalities to yield P-value
bounds that are valid for finite numbers of observations. As
opposed to X 2 which sums squared residuals, OASIS computes a
bilinear form of residuals, similar in spirit but methodologically
distinct from a Lancaster decomposition of X 2 (12) and related
polynomial decomposition methods (13). Residuals lacking
structure are thus averaged out and are unlikely to generate a large
test statistic. We make this observation precise via linear algebraic
characterizations of these approaches. The most similar method
to OASIS regarding interpretable decompositions of contingency
tables is correspondence analysis, (8–11), an exploratory method
for post facto interpretation with no statistical guarantees.

One recent work which shares some similarities with ours
provides a method for estimating graph dimension with cross-
validated eigenvalues (14). Their method, like ours, is based on
splitting the data into two portions, generating embeddings on
one part, and testing the signal strength on the held-out portion.
While general, this method requires additional assumptions on
the embeddings used for inference and critically is only able
to provide asymptotically valid P-values. In this work, with
our more analytically tractable test statistic, we construct a
closed-form P-value bound which is valid for any number of
observations.

In the rest of this paper, we formalize OASIS, state several
of its theoretical properties, contrast it with X 2, and present
several variants and extensions of the OASIS test. We do not
seek to expound on the full theoretical generality of OASIS, but
instead provide an applied exposition and disciplined framework
for computing some optimization-based instantiations of the
statistic, illustrating the performance of OASIS in simulations
and in real biological data. Simulations show that OASIS is
a robust test with low statistical power against a variety of
alternatives where the null is formally violated, but without a
biological or scientific meaning. Simulated alternatives show that
OASIS has power in many settings of interest, and in fact has
more power than X 2 in a variety of settings including for some
important two group alternatives. Biological examples show that,
with no parameter tuning, OASIS enables scientific inference
currently impossible with Pearson’s X 2 test; for example, OASIS
has 100% accuracy in distinguishing patient populations infected
with Omicron-BA.1 and BA.2 from those infected with the
Delta variant without knowledge of a reference genome or any
sample metadata (7). In a different biological domain, analyz-
ing M. tuberculosis sequencing data, OASIS precisely partitions
samples from two sub-sub-lineages, again with no metadata or
reference genome (15). Finally, the OASIS framework enables
more general tests and analyses which we discuss in the conclu-
sion, including a disciplined alternative statistical framework for
matrix decomposition beyond the singular value decomposition
(SVD), and inference on multiple tables defined on the same set
of columns.

1. Problem Formulation
As is standard in contingency table analysis, the observed matrix
of counts is taken as X ∈ NI×J . Defining [m] = {1, 2, . . . , m},
a contingency table is then defined by pairs of observations of
a row ([I ]-valued) categorical random variable, and a column
([J ]-valued) categorical random variable. In this work, we focus
on the case where the columns correspond to biological samples
(explanatory random variable) and the rows correspond to the

response variable (4). Thus, we are interested in whether the
conditional row distribution is the same for each column. Define
X (j) as the j-th column of X , and nj =

∑I
i=1 Xij as the total

number of counts in column j. Without loss of generality, we
assume that nj > 0 for all j, as otherwise this column can be
omitted. Let M =

∑
j nj be the total number of counts in the

table, equivalently obtainable by summing row or column sums.
The null model studied is:

Definition 1(Null Model). Conditional on the column to-
tals {nj}

J
j=1, each column of the contingency table X is

X (j)
∼ multinomial(nj, p), drawn independently for all j, for

some common vector of (unknown) row probabilities p.

Contingency tables are well studied, and we refer the reader
to ref. 4 for further background. A classical example studies the
relationship between aspirin use and heart attacks, where the
columns correspond to aspirin or placebo use, and the rows
correspond to Fatal Attack, Nonfatal Attack, or No Attack. It is
found that conditioning on whether the subject takes aspirin or
not yields a statistically significant difference in outcome.

Notationally, ‖ · ‖ denotes the vector `2 norm or spectral
norm for matrices, unless otherwise specified. ‖A‖F denotes
the Frobenius norm of a matrix A. vmax(A) denotes a principal
eigenvector of a symmetric matrix A (any unit eigenvector with
maximal eigenvalue). The operation diag(·) maps a length n
vector v to an n× n matrix A, where all off diagonal entries of A
are 0 and Aii = vi for i ∈ [n]. A(j) denotes the j- th column of
a matrix. When applied to a vector, scalar operators (such as

√
·

or 1/·) are applied entrywise. 1 (0) is the all ones (zeros) vector
of appropriate dimension. Φ denotes the CDF of a standard
Gaussian random variable, and we use D

→ to denote convergence
in distribution. For two probability distributions p, q over [I ],
�TV(p, q) = 1

2‖p−q‖1 is the total variation distance between the
two, and �2(p, q) = 2

∑
i(pi − qi)2/(pi + qi) is the symmetric

chi-squared distance. sign(x) is 1 if x > 0, 0 if x = 0, and −1
if x < 0.

2. OASIS Test Statistic
The OASIS test statistic has a natural linear algebraic formulation
Eq. 1. This statistic is computed using two input vectors f ∈ RI

and c ∈ RJ , where a significant P-value will be obtained if the
contingency table X ∈ NI×J can be well partitioned according to
f and c. These vectors should be thought of as row and column
embeddings respectively and can be generated with the assistance
of metadata (if available), by random selection, or through an
optimization framework we develop in Section 4. To compute
the OASIS test statistic S, we first define the expected matrix
E ∈ RI×J and the centered and normalized table X̃ ∈ RI×J :

E =
1
M

X11>X,

X̃ = (X − E) diag
(

1/
√

X>1
)

, [1]

S = S(f , c) = f >X̃ c. [2]

X̃ is normalized so that under the null, the variance of f >X̃ (j)

is constant across all j up to the dependence between X (j) and
E . This linearity enables the construction of a finite-sample valid
P-value bound for any fixed f and c. In preliminary work, these
vectors were chosen randomly (2), leading to a specific case of
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the OASIS test we call OASIS-rand, albeit with a looser analysis
and worse P-value bound. In this work, we construct f and
c by directly optimizing the P-value bound. Other approaches
based on experimental design or interpretability criterion are also
possible.

2.1. Comparison with Pearson’s X2. The linear algebraic formu-
lation of Pearson’s X 2 statistic reveals its fundamental differences
from OASIS. X 2 is computed as:

X 2 =
∑

i,j

(Xij − Eij)2

Eij
= M

∥∥Xcorr
∥∥2

F [3]

Xcorr = diag
(

1/
√

X1
)

(X − E) diag
(

1/
√

X>1
)

. [4]

In contrast, OASIS’s P-value depends on S2 in Eq.2, highlighting
two main differences between X 2 and OASIS. First, X 2 left
normalizes using empirical row frequencies, which from a tech-
nical perspective makes finite-sample analysis of the test statistic
difficult, and from a practical perspective upweights minor
deviations in low count rows. OASIS treats rows and columns
asymmetrically and only normalizes by column frequencies,
which are given by the model. Second, X 2 squares each residual,
and then sums these quantities. OASIS computes a bilinear form
of the residual matrix with f and c and squares the resulting
sum. This allows residuals resulting from unstructured deviations
to average out, focusing the power of the test on structured
deviations from the null. We make this intuition precise in
Section 4.1.

Since Pearson’s X 2 test does not provide guidance for the
reason the null is rejected, practitioners commonly employ cor-
respondence analysis for this task (9). Correspondence analysis
studies the matrix of standardized residuals Xcorr defined in Eq. 4.
This method computes the SVD of Xcorr, and projects rows
and columns along the first few principal vectors to obtain low
dimensional embeddings for both the rows and the columns. As
we show, OASIS provides a statistically grounded alternative to
this approach by analyzing X̃ , which in our experiments better
identifies latent structure.

In addition, the power of Pearson’s X 2 test decays as the table
size increases, as X 2 is approximated as being �2-distributed
with (I − 1)(J − 1) degrees of freedom under the null for an
I × J table. This yields several important classes of alternative
hypotheses where OASIS is predicted (and empirically shown)
to have higher power than X 2, such as time series or 2-group
alternatives when the total number of counts M is small relative
to I × J (details in Section 6.2).

3. Analysis of OASIS
The bilinear form of OASIS’s test statistic admits both an exact
asymptotic P-value, and a finite-sample P-value bound. We
additionally construct an effect size measure which quantifies
the magnitude of deviation from the null, deconfounding the
total number of observations M .

3.1.P-Value Bound. A preliminary version of OASIS was designed
so that P-value bounds could easily be obtained via classical
concentration inequalities (2); here, we improve these bounds,
derive the asymptotic distribution of the test statistic, and show
the finite-sample bounds that we derive have a matching form
with the asymptotic P-value. For notational convenience, we

define the quantity 
 which measures the similarity between the
column embedding vector c and the vector of column counts
n = X>1 as


 = 
(n, c) =
〈

c
‖c‖

,
√

n
M

〉2

, [5]

where we drop the dependence on n and c when clear from
context. Observe that 
 ∈ [0, 1] by Cauchy–Schwarz. While
the P-value bound can be computed for any f , c, we provide a
constrained variant below for simplicity.

Proposition 1. Under the null hypothesis, for any fixed f ∈ [0, 1]I

and c ∈ RJ with ‖c‖2 ≤ 1, if 
 < 1, the OASIS test statistic
S = S(f , c) satisfies

P (|S| ≥ s) ≤ 2 exp
(
−

2s2

1− 


)
.

We prove this proposition by rewriting S as a weighted sum
of the observations, which are independent and identically
distributed under the null, enabling the use of Hoeffding’s
inequality to bound the probability that S is large. We provide an
unconstrained version of this bound along with the proof details
in SI Appendix, section S.2.B.

3.2. Asymptotic Normality. As intuition predicts, since the OA-
SIS test statistic is a sum of independent increments, it converges
in distribution to a Gaussian as the number of observations goes
to infinity, as long as 
 6= 1. For any fixed f , define the row
variance �2

f = VarZ∼p(fZ ) =
∑

i pif 2
i − (

∑
i pifi)2, where p is

the common row distribution under the null. Then, we can state
the following asymptotic normality result.

Proposition 2. Consider any fixed f ∈ RI , c ∈ RJ , proba-
bility distribution p ∈ ΔI with �2

f > 0, and any sequence

of column counts {n(t)
}
∞
t=1 where each n(t)

∈ NJ , with

minj∈[J ] n(t)
j

t→∞
−→ ∞ and 
(n(t), c) < 1 for all t. Then,

the random sequence of OASIS test statistics {St}
∞
t=1, where

St = S(Xt , f , c) and X (j)
t ∼ multinomial(n(t)

j , p) independently
across j and t, satisfies

1√
1− 
(n(t), c)

St
D
→ N

(
0, �2

f ‖c‖
2
)

.

The intuition for this result is that each entry of X̃>f
is asymptotically distributed as N (0, �2

f ), up to the negative
correlation stemming from the unknown � = EZ∼p[fZ ]. Then,
S is a linear combination of f >X̃ with weights c, and so
S has variance �2

f ‖c‖
2 up to the (1 − 
) factor. We prove

this proposition using a Lyapunov central limit theorem in SI
Appendix, section S.2.C.

As a direct corollary, by Slutsky’s theorem an asymptotically
valid P-value can be constructed using the sample variance �̂2

f ,
based on the empirical row distribution p̂ = X1.
Corollary 1. Under the conditions of Proposition 2,

2Φ

(
−

|S|
�̂f ‖c‖

√
1− 


)
,

is an asymptotically valid P-value.
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Using a standard Gaussian tail bound this asymptotic P-value
can be upper bounded as

2 exp

(
−

S2

2�̂2
f (1− 
)

)
[6]

for ‖c‖2 = 1. This exactly matches the upper bound derived
in Proposition 1 up to �̂2

f , which essentially upper bounds the
variance of fZ , a [0, 1]-valued random variable, as �2

f ≤
1
4 .

3.3. Effect Size. Through f and c, OASIS assigns scalar values
to each row and column. The preliminary version of OASIS (2)
assigned each sample to one of two groups by utilizing cj = ±1.
Building on this, we formalize an effect size measure for OASIS,
which is computed as the difference in mean as measured by
f between the two sample groups induced by the sign of cj.
Defining A+ = {j : cj > 0} and A− = {j : cj < 0}, the effect
size is computed as

Δ̂ ,

∣∣∣∣∣∣ 1∑
j∈A+

nj

∑
j∈A+

nj�̂j −
1∑

j∈A− nj

∑
j∈A−

nj�̂j

∣∣∣∣∣∣ , [7]

where �̂ = X>f diag(1/n). Defining p̂+ as the empirical
row distribution over samples in A+ (similarly for p̂

−
), the

effect size measure Δ̂ in Eq. 7 satisfies for all f ∈ [0, 1]I that
0 ≤ Δ̂ ≤ �TV(p̂+, p̂

−
).

The proof of the relationship between effect size and total
variation distance and the motivation for this effect size measure
stem from a simple two group alternative (SI Appendix, section
S.2.D). Empirically, this effect size measure allows OASIS to
prioritize scientifically interesting tables.

4. Optimization-Based Approach to
Constructing f, c
Discussion heretofore has focused on studying OASIS’s test
statistic for a fixed f and c. The natural question is then, how
to choose f and c? Here, we focus on an intuitive method,
OASIS-opt, that partitions the observed counts into independent
“train” and “test” datasets, constructs c and f that optimize the
P-value (bound) on the training data, and computes a statistically
valid P-value (bound) on the held-out test data (Fig. 2A and SI
Appendix, section S.2.E).

4.1. Minimizing the P-value bound. Examining Proposition 1,
our goal is to identify f , c that minimize this P-value bound. We
begin by simplifying the optimization objective, observing that
the P-value bound is minimized by maximizing the test statistic.
Defining the two optimization problems:

argmin
0 ≤ f ≤ 1,‖c‖2 ≤ 1

2 exp

− 2
(

f >X̃ c
)2

1− 1
M
〈
c,
√

n
〉2
 , [8]

argmax
0 ≤ f ≤ 1,‖c‖2 ≤ 1

f >X̃ c, [9]

we prove the following lemma (details in SI Appendix, section
S.3.A).

Lemma 1. The set of optimal solutions to Eq. 9 is contained within
the set of optimal solutions to Eq. 8.

B  Embedding-aggregation

C  Counts-aggregation

Consensus 
(e.g. SVD)

OASIS-opt

OASIS-opt

OASIS-opt

A  OASIS-opt
p-value

computation
Random
splitting

Optimized 
row / column 
embeddings

Statistically
valid p-value

Input Data 

OASIS-iter

Fig. 2. Figure showing the algorithms we build using OASIS. (A) OASIS-opt
employs data-splitting to generate optimized, data-dependent f and c, before
generating a statistically valid P-value bound using the held-out test data.
(B and C) depict two algorithms we propose for inferring latent structure from
a collection of tables defined on the same set of columns. As building blocks,
we use OASIS-opt for embedding-aggregation, and OASIS-iter (Section 5.1)
for counts-aggregation. (B) Embedding-aggregation (Algorithm 2) performs
inference on each table marginally using OASIS-opt and aggregates the
resulting sample embeddings. (C) Counts-aggregation (Algorithm 1) stacks
the contingency tables into one large matrix Xagg, and performs iterative
analysis on this aggregated table using OASIS-iter.

Thus, to identify an optimal solution to Eq. 8, it suffices to
optimize Eq. 9. Since the objective is bilinear the maximum value
must be attained at a corner point. Further, since ‖·‖2 is self-dual,
an optimal f in Eq. 9 can be identified as

argmax
f ∈{0,1}I

‖X̃>f ‖2. [10]

In graph contexts, a similar combinatorial optimization problem
arises in the determination of the max-cut, which is known
to be NP-complete. In particular, Eq. 10 is in general APX-
hard, meaning that no polynomial-time approximation scheme
exists for arbitrarily good approximations (16). For small I , the
problem can be solved exactly by enumerating all 2I possible f .
For large I more sophisticated algorithms can be used, such
as SDP relaxations (discussed in SI Appendix, section S.3.D).
However, due to the structure of X̃ and the biconvex nature of
Eq. 9, alternating maximization is computationally efficient and
yields empirically good performance.

Alternating maximization converges to a local maximum,
computing iterates as f (t+1) = sign(X̃ X̃>f (t)), implicitly
computing c(t)

∝ X̃>f (t). Due to the nonconvexity of the
overall objective, several random f initializations are used in
practice, which we encapsulate in an algorithm called OASIS-opt
(details in SI Appendix, section S.3). Note that there are two
sources of randomness in OASIS-opt; statistical randomness in
data-splitting, and the random f initializations for approximately
solving the inner maximization problem. These are distinct,
with the former being necessary and the latter being a compu-
tational tool to improve alternating maximization. Additional

PNAS 2024 Vol. 121 No. 15 e2304671121 https://doi.org/10.1073/pnas.2304671121 5 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2304671121#supplementary-materials


random train/test splits can be utilized with Bonferroni cor-
rection to improve empirical performance, ensuring rejection
of highly significant tables at the expense of a higher burden
of multiple hypothesis correction (discussed in SI Appendix,
section S.6.A).

4.2. Relation to the Singular Value Decomposition. Examining
the optimization problem in Eq. 9, observe that if f were `2
constrained then the optimal solution would take f (resp. c) as the
principal left (resp. right) singular vector of X̃ , where the optimal
value would be the maximum singular value by the variational
characterization of the SVD. OASIS-opt provides an alternative
decomposition of a contingency table to the ubiquitous SVD,
within a disciplined statistical framework. While the SVD has
a statistical interpretation in some settings (e.g., under additive
white Gaussian noise), OASIS-opt’s alternative decomposition is
tailored for multinomial data, a better fit for the application at
hand (17).

As in Eq. 3, the X 2 test statistic can be expressed as
X 2 = ‖Xcorr‖

2
F , where Xcorr = diag

(
1/
√

X1
)

X̃ . Compara-
tively, the OASIS test statistic attains a maximum value (up
to the `2 as opposed to `∞ constraint on f ) of ‖X̃‖2. Note
that the `2 ball is contained within the `∞ ball, so the optimal
value of the OASIS test statistic is in fact lower bounded by
‖X̃‖2. The Frobenius norm is the sum of squared singular values,
and so X 2 is summing over all possible directions of deviation.
This makes it powerful, but overpowered against uninteresting
alternatives such as those with a flat spectrum. OASIS on the
other hand computes significance by projecting deviations from
the expectation in a single direction. Intuitively, this denoises all
the lower signal components, and ensures that OASIS remains
robust to biological noise and yields interpretable results. This
is exactly why X 2 fails to distinguish between the two tables in
Fig. 1C (spectra plotted in SI Appendix, Fig. S1).

An SVD of X̃ or Xcorr offers one approach to generating c, f
for inference with OASIS. However, this choice gives worse
P-value bounds (as the SVD is optimizing a fundamentally
different objective), with empirically less meaningful f and c
than OASIS-opt, as shown for SARS-CoV-2 data in Section
6.3, and a toy example in SI Appendix, Fig. S8. From a statistical
perspective, directly optimizing OASIS’s `∞-constrained P-value
bound naturally yields improved P-value bounds to optimizing
the SVD’s `2-constrained objective. OASIS-opt provides a
promising alternative to correspondence analysis, but further
experiments and analysis are required to validate the quality of
these embeddings in more general settings.

4.3. Minimizing the Asymptotic P-Value. While optimizing the
finite-sample P-value bound yields a combinatorially hard op-
timization problem, the asymptotic P-value can be optimized
efficiently. As we detail in SI Appendix, section S.3.C, an optimal
f ? which minimizes the asymptotic P-value objective given in
Corollary 1 can be efficiently computed as

f ?
∝ D−1/2vmax

(
D−1/2X̃ X̃>D−1/2

)
, [11]

where D = diag(p̂) and vmax(A) is a principal eigenvector of A. A
corresponding c? is then computed as c?

∝ X̃>f ?. This provides
an interesting contrast with the classical SVD, where correspon-
dence analysis would take as the row embeddings a principal
eigenvector of the matrix XcorrX>corr = D−1/2X̃ X̃>D−1/2. While

correspondence analysis primarily places weight on high count
rows, OASIS upweights low count rows, prioritizing those that
have meaningful between-class differences. Note that the optimal
f is continuous-valued in this setting; the binary nature of f in the
finite-sample case is due to the use of Hoeffding’s inequality in
the construction of the P-value bound. Alternative finite-sample
bounds based on Bernstein’s inequality, for example, would also
yield continuous-valued optimal f .

5. A Statistical Framework for Subgroup
Classification with OASIS-opt
OASIS at its core is a statistical test for contingency tables.
However, after the null has been rejected, many follow-up
questions often remain. One natural question, after the samples
have been found to violate the null when combined using c, is
whether there exist different ways of grouping samples to still
yield statistically significant deviations. A more general question
is whether, studying many tables defined on the same sets of
columns, there is some global inference that can be drawn
regarding the underlying clustering of the samples. Some related
data fusion methods have been proposed, and we refer the reader
to ref. 18 for a more complete survey.

5.1. Iterative Analysis of Contingency Tables with OASIS-iter.
Addressing the first question of iterative testing of a single
contingency table, we first define a method OASIS-perp, which
takes in a table X and a set of vectors {c(k)

}, and optimizes the
following objective:

f ?, c?
∈ argmax

0 ≤ f ≤ 1,‖c‖2 ≤ 1
c⊥c(k)

∀k∈[K ]

f >X̃ c. [12]

This objective is identical to that of OASIS-opt, with the added
constraint that c is orthogonal to all vectors in {c(k)

}. This retains
the biconvexity of the original problem, enabling the use of
alternating maximization.

To iteratively analyze a table, we propose a simple wrapper on
top of OASIS-perp called OASIS-iter. OASIS-iter decomposes a
contingency table by first identifying f (1), c(1) from OASIS-opt,
then iteratively identifying f (i), c(i) optimizing Eq. 12 subject
to the identified c(i) being orthogonal to {c(j)

}j<i. This provides
a statistical stopping criterion for cluster identification; for each
(c(i), f (i)) pair we compute OASIS’s P-value bound, and once
the obtained P(i+1) exceeds the desired significance level (e.g.,
� = 0.05), the number of clusters can be estimated as i. Each c(i)

outputted by this procedure represents an orthogonal direction
along which this table can be partitioned so as to yield a significant
partitioning. The algorithm is made explicit in SI Appendix,
section S.3.B.

5.2. Counts-Aggregation. With this primitive of iterative analysis
of a single table, one candidate approach to identifying clusters
across multiple tables is by aggregating counts across many
tables, and running OASIS-iter to iteratively identify underlying
clusters. We design a method for this task called counts-
aggregation (Algorithm 1), shown graphically in Fig. 2B. Counts-
aggregation takes as input a set of tables, which are defined on
the same set of columns and should have shared latent structure.
In our setting, these tables are generated by SPLASH, where we
filter OASIS-opt’s calls for tables with a large effect size, many
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Algorithm 1: Counts-aggregation

1: Input: List of contingency tables X (1), X (2), . . . , X (m)

2: For each i ∈ [m], discard all rows of X (i) with fewer than 10
counts, then compute Mi as the total remaining counts

3: Construct Xagg =

 X1/
√

M1
...

Xm/
√

Mm


4: [c(1), . . .], [f (1), . . .], [p(1), . . .]← OASIS-iter(Xagg)
5: # Can use {p(i)

} to determine number of components
6: return c(1), c(2), f (1), f (2)

observations, and a significant P-value bound after performing
Benjamini–Yekutieli (BY) correction (19) across a much larger
list of tables outputted from SPLASH (2). These tables are then
vertically concatenated into one larger table, Xagg, upon which
OASIS-iter is run. For ease of visualization, we only utilize the
first two outputted c(1) and c(2) as the 2D sample embeddings.

Note that this aggregated table need not satisfy the contingency
table null, due to the correlation in entries from different
subtables. Algorithmically, we discard rows in this table with
fewer than 10 observations to minimize the computational bur-
den. Additionally, to avoid having a single high-count subtable
dominate all the others in this computation, we normalize the
counts in each subtable by 1/

√
M , the total number of counts

in that subtable.

5.3. Embedding-Aggregation. Due to the statistical dependencies
and practical issues with normalizing and aggregating tables
before performing statistical testing, we additionally propose a
second clustering approach which independently identifies 1D
embeddings for each table and then aggregates these results.
Embedding-aggregation (Algorithm 2), utilizes OASIS-opt to
generate a vector c for each table, collects these vectors into a
matrix C , and then computes a low dimensional embedding for
the samples with an SVD (Fig. 2C ). As before, the tables used
as input could be SPLASH outputs filtered for those with a large
effect size, many observations, and a significant postcorrection
P-value bound. Entries may be missing from C due to samples
not appearing in all tables: We impute these with a value of 0 for
simplicity, but more sophisticated approaches are possible.

6. Numerical Results
Many problems in modern data science, including in genomics,
map to contingency tables. We show that OASIS is robust
to some important classes of noise models, and that OASIS
has substantial power against several classes of alternative hy-
potheses of interest. Analyzing raw sequencing data, OASIS
can perform classification tasks not possible with Pearson’s X 2,
enabling reference-free strain classification in SARS-CoV-2 and
M. tuberculosis.

6.1. Robustness against Uninteresting Alternatives. Next-
generation sequencing data are commonly treated as matrices
of discrete counts, for example, with single-cell RNA sequencing
data often represented as a cell-by-gene counts matrix. While
the statistical null posits that observations in each sample are
identically distributed, biochemical noise introduced during
sampling generates overdispersed counts, violating this null. The

Algorithm 2: Embedding-aggregation

1: Input: List of contingency tables X (1), X (2), . . . , X (m)

2: f (i), c(i)
← OASIS-opt(X (i)) for all i ∈ [m]

3: Construct C =

– c1 –
...

– cm –


4: Impute missing entries in C with 0
5: Compute SVD of C = UΣV>
6: # Can use Σ to determine number of components
7: return v1, v2, the first two right singular vectors

field has converged on modeling such data with negative binomial
distributions (20, 21). Probabilistically, a negative binomial
random variable is equivalent to a Poisson random variable with
a random, gamma-distributed, mean. This yields an alternative
probabilistic model where Xij ∼ Pois(Λ), Λ ∼ Γ(�/�, �), � is
the expected number of observations, and under the true null
Xij ∼ Pois(�) counts would be observed (� = 0). This does not
satisfy the contingency table null for � > 0, but also does not
represent biologically meaningful deviation.

To test the robustness of OASIS and X 2, we simulate this
uninteresting alternative in Table 1, showing the fraction of
rejected tables (for � = 0.05) at the level of negative binomial
overdispersion predicted by the sampling depth (20). As expected,
Pearson’s X 2 rejects nearly all tables generated under this negative
binomial sampling model, while OASIS retains robustness across
a wide range of parameters, due to the unstructured deviations.
For all tests, the rejection fraction is monotonic in the number
of rows and columns. Taking a table with a mean of � ≈ 129
observations per sample with a uniform row distribution, for
20 rows and 10 columns OASIS-opt rejects 7.5% of tables, while
Pearson’s X 2 test rejects 95.7% of tables. Additional experiments
and simulation details in SI Appendix, section S.6.B.1.

More generally, an applied task in genomics and other
applications is to reject the null only when it is “interesting.”
Below, we refer to an alternative as uninteresting if it can be
explained by a small number of outlying matrix counts, or from
sampling from a set of distributions {p(j)

} where p(j) is the row
distribution of the j-th column, and ‖p(j)

− p(k)
‖1 ≤ � for

all j, k. Such distributions, while statistically deviant from the

Table 1. Power against negative binomial overdisper-
sion
num rows num cols X2 OASIS-rand OASIS-opt

5 10 0.143 0.003 0.010
50 0.318 0.006 0.019

400 0.318 0.006 0.019
20 10 0.957 0.054 0.075

50 1.000 0.065 0.193
400 1.000 0.078 0.874

100 10 1.000 0.947 0.996
50 1.000 0.996 1.000

400 1.000 0.998 1.000

Uniform target distribution, expected number of counts per column � ≈ 129, full plots
and details in SI Appendix, section S.6.B.1.
Power against null generated by negative binomial sampling as modeled for single-cell
sequencing data (20).
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Table 2. Summary of approximate power calculations
Alternative OASIS P-value bound Pearson’s X2 asymptotic P-value Notes

Two-group exp
(
−M�2

TV
(
p(1),p(2)

))
exp

(
−

M2
(
�2
(
p(1) ,p(2)

))2

I×J

)
OASIS is more powerful when M

I×J is
small

Time series exp
(
−M�2

TV(p(1),p(2))
)

exp
(
−

M2
(
�2
(
p(1) ,p(2)

))2

I×J

)
Same behavior as two group setting

Unique per-sample expression exp(−M) exp(−M2) X2 more powerful, but OASIS has
power going to 1

One deviant sample exp (−M/J) exp
(
−M2/J2

)
X2 has too much power

p(1) ,p(2) are distributions, indicating the target distributions of the two groups in the first setting, and the extremal distributions in the time series setting. Constants omitted for clarity.
Details in SI Appendix, section S.7.

null, represent small effects that may be due to contamination or
equipment error, and are not a priority to detect. OASIS provides
robustness against these sources of unstructured noise that
represent biologically uninteresting alternatives, as we show with
simulations against `1 corruption of each individual column’s
probability distribution (SI Appendix, Fig. S5).

6.2. Power against Simulated Alternatives. OASIS has sub-
stantial power (in some regimes more than X 2) against large,
structured deviations from independence, such as when the
samples can be partitioned into two groups with nearly disjoint
supports. These examples arise in important applications, such as
detecting viral mutations, recombination in B cells that generate
antibodies—V(D)J recombination—and differentially regulated
alternative splicing, among others.

We show this empirically in SI Appendix, section S.6.C, and
provide approximate power calculations in SI Appendix, section
S.7 that corroborate these numerical results. Approximate power
calculations are derived, for a given alternative, by considering the
toy setting where we observe the expected underlying alternative
matrix. Concretely, for sample j with row probabilities p(j), we
assume that we observe X (j) = njp(j) instead of the random
draw X (j)

∼ multinomial(nj, p(j)). In this deterministic setting,
OASIS’s P-value bound is comparable to and in some regimes
better than X 2, in particular when the number of rows is large,
as shown in Table 2. We conjecture that while OASIS may
not exhibit the optimal asymptotic rate against certain classes
of alternatives (as shown by the unique per-sample expression
setting), it does have power going to 1 as the number of
observations goes to infinity across a broad class of alternatives.

6.3. SARS-CoV-2 Variant Detection. To illustrate OASIS’s perfor-
mance, we study a public dataset of SARS-CoV-2 coinfections
generated in France, which sequences patients during a period
of Omicron and Delta cocirculation (7). We show that OASIS

detects variants in SARS-CoV-2 by analyzing sequencing data
from 103 patients’ nasal swabs as contingency tables via SPLASH,
as described in ref. 2. SPLASH generates a contingency table for
each length k-subsequence present (called an anchor k-mer) from
genomic sequencing (Fig. 3). A statistical test with good scientific
performance will identify anchors near known mutations in the
SARS-CoV-2 genome that distinguish Omicron and Delta. Data
processing details are deferred to SI Appendix, section S.4.

OASIS and X 2 yield substantially different results on the
100,914 tables generated by SPLASH. We demonstrate the
improvement in biological inference enabled by OASIS, utilizing
as a measure of biological relevance for each method’s called
tables how well these calls can predict sample metadata. For
each sample, we have associated metadata indicating the clinical
ground truth of whether the patient (sample) was infected with
Delta. For each table called by OASIS-opt, we use as its 1D
sample embedding the vector c, taking the sign of each entry
to generate a two-group partitioning. The measure of biological
relevance used is then computed as the absolute cosine similarity,
s(x, y) = 1

‖x‖‖y‖ |〈x, y〉|, between the sample metadata and the
sign of c. This corresponds to the fraction of agreed-upon
coordinates in x, y (up to a global sign flip). For X 2 this process is
mirrored, where instead of c, the principal right singular vector
for correspondence analysis is used.

Out of the 100,914 tables, OASIS rejects 28,430, and
Pearson’s X 2 test rejects 71,543 tables. However, when the tables
that X 2 rejects are decomposed, they do not yield signal that
correlates well with the ground truth (Table 3). Examining
quantiles of the two empirical distributions of absolute cosine
similarities, the 0.5 and 0.9 quantiles of these distributions are
0.22 and 0.66 for OASIS, as opposed to 0.10, 0.52 for X 2. For
these significant tables correspondence analysis yields similarly
high correlation, indicating that in this setting it is primarily the
focused rejection of OASIS that is yielding the larger similarities
(SI Appendix, Fig. S9). In addition, of the 389 anchors that

Table 3. Concordance between sample metadata and identified embeddings
X2 OASIS OASIS called, X2 did not X2 pv = 0 OASIS pv = 0 OASIS filtered

Number of anchors 71,543 28,430 389 16,611 2,114 2,495
0.5 quantile cosine similarity 0.10 0.22 0.15 0.09 0.69 0.72
0.9 quantile cosine similarity 0.52 0.66 0.76 0.40 0.79 0.82

For each set of calls, we display the number of anchors called, the median cosine similarity, and the 90-th quantile of cosine similarity.
Absolute cosine similarities between ground truth clinical metadata (whether a sample is infected with Delta or not) and the binarized sample embeddings identified by X2 (correspondence
analysis) and OASIS-opt (c vector).
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Delta-
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Fig. 3. (A) SPLASH (2) generates contingency tables from genomic sequencing data, here FASTQ files, for all 4k possible anchor k-mers (length k genomic
sequences). (B) Shown in greater detail is the process for one specific anchor, TGAAATTA. This anchor highlights a mutation between two strains of SARS-CoV-2,
Omicron (purple) and Delta (orange). Below, viral sequencing data from four individuals (samples) infected with SARS-CoV-2 is shown. However, it is a priori
unknown which strain each individual was infected with, and no reference genome is available. For the fixed anchor sequence (shown in blue), SPLASH counts
for each sample the frequency of sequences that occur immediately after (target sequence), and generates a contingency table, where the columns are indexed
by the samples and the rows are indexed by the sequences. Shown in (B) is one read in sample A which underwent sequencing error, highlighted in red, and
thus yielded an additional discrete observation—a sequence—resulting in an extra row. Sequencing error leads to tables with many rows with low counts.
Note that we cannot know a priori which rows of this table are due to sequencing error, as we simply observe raw sequencing data. (C) The contingency tables
generated by SPLASH are defined over the same set of samples (patients), so we can use these tables to jointly infer sample origin. The plot shown depicts the
results of embedding-aggregation (Algorithm 2) on SARS-CoV-2 data (7), perfectly predicting whether a patient has Delta or not, and yielding high predictive
accuracy (92%) for subvariant classification (Omicron BA.1 versus BA.2). Counts-aggregation (Algorithm 1) can also be used to predict the strain of mutated
targets, with 93% classification accuracy of whether a target was Delta or not. In the depicted toy example, this would correspond to grouping targets and
individuals by strain as shown.

OASIS calls that X 2 does not, the 0.5 and 0.9 quantiles of the
absolute cosine similarities are 0.15 and 0.76, showing that many
biologically relevant tables were missed by X 2.

Analyzing all 16,611 tables rejected by X 2 with a P-value
of 0 (up to numerical precision), the 1D embeddings obtained
from correspondence analysis had low absolute cosine similarity
with the biological ground truth, with 0.5 and 0.9 quantiles
of 0.087 and 0.40. In SI Appendix, Fig. S11 we zoom in on
two of the most significant tables rejected by X 2 but not by
OASIS-opt. Correspondence analysis yields embeddings with
minimal correlation with the ground truth, 0.15 and 0.02 for
the two tables selected, one of which visually appears to have just
detected one deviating sample.

In contrast, OASIS-opt yields significantly more biologically
relevant calls. For the 2,114 tables that OASIS-opt assigns a
P-value bound of 0, the absolute cosine similarities with ground
truth have 0.5 and 0.9 quantiles of 0.69 and 0.79. We similarly
see that OASIS-opt’s filtered significance calls have extremely
high concordance with clinical metadata. We filter for significant
tables with effect size in the top 10% and total counts M > 1000

as these are predicted to delineate strains, yielding 2,495 tables. Of
these, the absolute cosine similarity has 0.5 and 0.9 quantiles of
0.72 and 0.82. The ECDF of the absolute cosine similarities of all
of OASIS-opt’s and X 2’s calls are shown in SI Appendix, Fig. S9,
highlighting an order of magnitude difference in the fraction of
identified tables with, e.g., >0.6 absolute cosine similarity.

Comparing with the original statistic used in SPLASH (2),
OASIS-rand identifies 5,932 significant tables. All except 48 of
these are identified by OASIS-opt. The two most significant
tables that are called by OASIS-opt (with an effect size in the
top 10% and counts greater than 1,000) and not by OASIS-rand
are shown in SI Appendix, Fig. S10, both having high absolute
cosine similarity with sample metadata, 0.76, showing that the
additional calls OASIS-opt provides are biologically relevant. We
further show that OASIS provides calls beyond those possible
with X 2, showing in SI Appendix, Fig. S12 the five tables in the
reduced anchor list above (effect size and counts filtered), which
all have large cosine similarities with the ground truth metadata.
6.3.1. Counts-aggregation. Running counts-aggregation (Algo-
rithm 1) on the SARS-CoV-2 dataset yields valuable inference
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on both targets and samples. We select the first two components
for simplicity of visualization, as the first component contains
57% of the total power as measured by �2

1/
∑

k �
2
k , and with

the second contains 76% of the cumulative power (full spectrum
shown in SI Appendix, Fig. S9). Focusing first on samples, the
first two c identified by counts-aggregation have high predictive
power over strain information. A simple threshold on c(1) yields
perfect prediction of whether a patient has Delta or not. The
second vector, c(2), enables classification of Omicron subvariants.
A linear predictor on c(1) and c(2) yields 94/103 (91%) accuracy
in predicting whether the primary strain is Omicron BA.1, shown
in Fig. 4B.

Running counts-aggregation on these matrices also enables
joint inference on targets from different tables. The outputted
f (1) of this procedure has significant predictive power over
whether a target corresponds to an Omicron mutation or not.
We validate this by using Bowtie (22) to check whether a target
perfectly aligns to the Wuhan reference, a Delta assembly, an
Omicron BA.1 assembly, or an Omicron BA.2 assembly (details
in SI Appendix, section S.4). Comparing with this ground truth

vector of whether a target was classified as Delta or not, f correctly
classified 4,496/4,836 (93%) targets (up to a global flip). This
is with no parameter tuning. The targets that are incorrectly
classified have the potential to uncover novel biology, which is
beyond the scope of this paper. Analyzing the first two anchors
with targets that are considered misclassified, the first corresponds
to a known Omicron deletion not present in the used reference
genome, while the second perfectly identifies and predicts an
annotated Omicron deletion; however, due to parameter choices
(SPLASH’s “lookahead distance” (2)), both targets perfectly map
to the Wuhan reference. We provide alignments for these results
in SI Appendix, Fig. S13.
6.3.2. Embedding-aggregation. We additionally run embedding-
aggregation (Algorithm 2) on this SARS-CoV-2 dataset, restrict-
ing our attention to the first two right singular vectors of C .
The first singular vector of the matrix C perfectly partitions
individuals infected with the Delta strain from those that were
not (at the threshold c(1) ≷ 0). The second singular vector
differentiates between the Omicron BA.1 and BA.2 subvariants
as shown in Fig. 4A where the x-axis is the principal right singular
vector and the y-axis is the second right singular vector. When

A B

C D

Fig. 4. Analysis of SARS-CoV-2 coinfection data (7). Tables were generated by SPLASH (2) and tested with OASIS-opt. (A and B) depict the two dimensional
embeddings generated by embedding-aggregation and counts-aggregation respectively, and (C and D) show only the one dimensional embedding. (A and C)
depict the results of embedding-aggregation (Algorithm 2). (A) shows the generated 2D embeddings, which perfectly classify whether a patient has Delta or not
at c(1) ≷ 0, highlighted in (C). (B and D) depict the results of counts-aggregation (Algorithm 1). Perfect separation of Delta versus non-Delta samples, no longer
at c(1) ≷ 0. Analysis details in SI Appendix, section S.4.
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tasked with predicting whether a sample has BA.1 as its primary
variant, a simple linear classifier in this two dimensional space is
able to correctly classify 95/103 (92%) of the samples (details in
SI Appendix, section S.4.A).

Since embedding-aggregation provides inference on the sam-
ples, it can be used to indirectly provide inference on the targets.
We show this by utilizing ŷ = sign(Xaggc(1)) as a predictor
of whether a patient is infected with Delta or not, which
yields correct predictions on 4,357/4,836 targets (90%), up to
a global flip. This highlights the power of counts-aggregation in
performing joint inference directly on the rows.

Together, these analyses suggest that OASIS finds tables
representing important biological differences and generates
scientifically valuable low-dimensional embeddings through a
disciplined statistical framework, features absent from X 2.

6.4. M. tuberculosis Lineage Identification. We tested the gener-
ality of OASIS-opt’s inferential power to classify microbial vari-
ants in a different microorganism, the bacterium M. tuberculosis.
We processed data from 25 isolates from two sub-sub-lineages
known to derive from sublineage 3.1: 3.1.1 and 3.1.2 (15).
Currently, bacterial typing is based on manual curation and
SNPs, is highly manually intensive, and requires mapping to
a reference genome.

As with SARS-CoV-2, we utilized SPLASH to generate tables
which we tested with OASIS-opt. 80,519 tables were called by
OASIS-opt (BY corrected P-value bound ≤ 0.05), 258 with
effect size in the 90-th quantile and total count M >1,000.
To avoid biological noise, we preemptively filtered out tables
with targets with repetitive sequences (>10 repeated basepairs).
OASIS-opt was run blind to sample metadata and the M.
tuberculosis reference genome.
6.4.1. Counts-aggregation. We run counts-aggregation on the
filtered M. tuberculosis tables described above. The first identified
vector c(1) yields a well-separated partitioning in terms of sub-
sub-lineage as shown in Fig. 5A. Two samples are misclassified,
with the rest being perfectly predicted by c(1) ≷ 0, yielding an
accuracy of 23/25 (92%).
6.4.2. Embedding-aggregation. We run embedding-aggregation
on the same set of filtered tables. The first singular value consti-
tutes 50% of the power in the matrix, and the top two singular

values comprise 72% of the spectrum’s power. A 1D embedding
from the first singular vector leads to a perfectly separation of
sub-sub-lineages, classifying at the threshold c(1) ≷ 0, as shown
in Fig. 5B.

7. Discussion
In this paper, we proposed a framework for interpretable and
finite-sample valid inference for contingency tables, describing
several applications and extensions of OASIS. There are many
exciting directions of ongoing and future work, some of which
we discuss below (details in SI Appendix, section S.5). A
known failing of X 2 is its inability to utilize available metadata
regarding the rows and columns of the matrix (e.g., ordinal
structure). OASIS however can incorporate this knowledge in
its construction of f and c. Additionally, with its natural effect
size measure, OASIS can be used as a coefficient of correlation
between two random variables, even continuous valued ones.
While Hoeffding’s inequality for sums of bounded random vari-
ables provides one candidate P-value bound, alternatives can be
constructed using different methods, such as empirical variants of
Bernstein’s inequality (23) or ones based on Stein’s method (24),
leading to alternative optimization objectives for f , c. OASIS’s
statistic can also be extended to different nulls, e.g., volume-
based (25), by using alternative concentration inequalities (26).
While OASIS currently analyzes two-dimensional tables, its
simple and theoretically tractable approach of centering, nor-
malizing, and projecting naturally extends to tensors. As we have
shown, OASIS empirically has power against a wide variety of
alternatives, outperforming Pearson’s X 2 test in some regimes (SI
Appendix, section S.7); a more precise power analysis would help
practitioners know when to best use OASIS. Finally, as currently
presented, in a setting with large numbers of tables generated in a
single experiment over the same set of samples, OASIS performs
testing on each table independently. We have introduced two
approaches for jointly analyzing tables, counts-aggregation, and
embedding-aggregation, to identify latent relationships between
samples. Ongoing and future work investigates other approaches,
including adaptive ones, to perform this statistical inference and
testing on tensors. While we would not be surprised if such tests
have been previously introduced, we have not been able to locate
them in the literature.

A B

Fig. 5. Interpretation of OASIS-rejected null from M. tuberculosis data (7). Tables were generated by SPLASH (2) and tested with OASIS. (A) shows the generated
1D embeddings from embedding-aggregation (Algorithm 2), which perfectly classifies patients based on sub-sub-lineage at c(1) ≷ 0. (B) depicts the results of
counts-aggregation (Algorithm 1). Two samples are misclassified (visually, one on top of the other), but with a much larger margin for the rest. 2D plots with
c(2) shown in SI Appendix, Fig. S14.
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8. Conclusion
This paper provides a theoretical framework for and an applied
extension of OASIS, a test that maps statistical problems
involving discrete data to a statistic that admits a closed-form
finite-sample P-value bound. Here, we focused on practical
scientific problems, applying OASIS to data in contingency
tables. We develop OASIS with an emphasis toward genomics
applications, a rapidly expanding field with diverse scientific
applications from single-cell genomic inference to viral and
microbial strain detection. The field still relies heavily on classical
statistical tests and parametric models. OASIS provides an
alternative to these approaches that is both empirically robust and
scientifically powerful. On real and simulated data, OASIS-opt
prioritizes biologically significant signals: Without a reference
genome, any metadata, or specialization to the application at
hand, it can classify viral variants including Omicron subvariants
and Delta in SARS-CoV-2 as well as sub-sub-lineages of M.
tuberculosis. Moreover, it is robust to noise introduced during
sequencing, the genomic data generation process, including
in single-cell genomics (27). OASIS provides a tool toward
answering questions in mechanistic biology that are manual labor
intensive (7) or impossible to address with current statistical
approaches. In addition to its statistically calibrated output,
OASIS’s lineage assignment is performed in a rigorous statistical
framework that promises further theoretical extensions in
clustering.

In summary, OASIS is a finite-sample valid test that has many
important statistical properties not enjoyed by X 2 which will
enable its use across many disciplines in modern data science. It
is computationally simple, robust against deviations from the
null in scientifically uninteresting directions, and provides a
statistical method for the analyst to interpret rejections of the
null hypothesis. In addition to a finite-sample P-value bound,
we characterize the asymptotic distribution of OASIS’s test
statistic under the null. We construct an optimization framework
for generating row and column embeddings that optimize
the P-value bound or the asymptotic P-value. Simulations
corroborate the theoretical guarantees provided for OASIS, with
experiments on genomic data showing a glimpse of the discovery
power enabled by OASIS.

Data, Materials, and Software Availability. Previously published data were
used for this work (7, 15). M. tuberculosis data is publicly available under
Accession ID PRJEB41116 (28). SARS-CoV-2 data is publicly available under
Accession ID PRJNA817806 (29). Software available at: https://github.com/
refresh-bio/SPLASH (30).
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