Skip to main content
. 2024 Mar 28;26:e41065. doi: 10.2196/41065

Table 1.

Performance evaluation of machine-learned models.

Disease and data set Algorithm AUCa (95% CI) Optimal SNb/SPc SP at SN=0.8 Sample size, nd Cases, n (%)
DKDe

SEEDf LRg 0.743 (0.698-0.787) 0.674 0.54 2653 517 (19.5)

SEED LASSOh 0.832 (0.794-0.871) 0.757 0.703 2666 532 (20)

SEED GBDTi 0.838 (0.801-0.874) 0.751 0.709 2668 529 (19.8)

UKBBj LR 0.691 (0.683-0.699) 0.635 0.472 5236 345 (6.6)

UKBB LASSO 0.791 (0.784-0.797) 0.723 0.636 5090 333 (6.5)

UKBB GBDT 0.738 (0.719-0.756) 0.666 0.535 5543 366 (6.6)
DRk

SEED LR 0.764 (0.722-0.806) 0.696 0.594 2597 653 (25.1)

SEED LASSO 0.779 (0.736-0.822) 0.708 0.596 2514 628 (25)

SEED GBDT 0.790 (0.748-0.831) 0.709 0.616 2598 655 (25.2)

UKBB LR 0.760 (0.755-0.765) 0.707 0.571 5492 336 (6.1)

UKBB LASSO 0.778 (0.773-0.782) 0.716 0.617 4678 280 (6)

UKBB GBDT 0.778 (0.769-0.786) 0.715 0.604 4833 296 (6.1)

aAUC: area under the receiver operating characteristic curve.

bSN: sensitivity.

cSP: specificity.

dFinal sample size after variable selection and missing data removal.

eDKD: diabetic kidney disease.

fSEED: Singapore Epidemiology of Eye Diseases.

gLR: logistic regression.

hLASSO: Least Absolute Shrinkage and Selection Operator.

iGBDT: gradient-boosting decision tree.

jUKBB: UK biobank.

kDR: diabetic retinopathy.