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Abstract

Background: Adaptive radiation treatment (ART) for locally advanced pancreatic cancer 

(LAPC) requires consistently accurate segmentation of the extremely mobile gastrointestinal (GI) 

organs at risk (OAR) including the stomach, duodenum, large and small bowel. Also, due to 

lack of sufficiently accurate and fast deformable image registration (DIR), accumulated dose to 

the GI OARs is currently only approximated, further limiting the ability to more precisely adapt 

treatments.

Purpose: Develop a 3-D Progressively refined joint Registration-Segmentation (ProRSeg) deep 

network to deformably align and segment treatment fraction magnetic resonance images (MRI)s, 

then evaluate segmentation accuracy, registration consistency, and feasibility for OAR dose 

accumulation.

Method: ProRSeg was trained using 5-fold cross-validation with 110 T2-weighted MRI acquired 

at 5 treatment fractions from 10 different patients, taking care that same patient scans were 

not placed in training and testing folds. Segmentation accuracy was measured using Dice 

similarity coefficient (DSC) and Hausdorff distance at 95th percentile (HD95). Registration 

consistency was measured using coefficient of variation (CV) in displacement of OARs. Statistical 

comparison to other deep learning and iterative registration methods were done using the Kruskal-

Wallis test, followed by pair-wise comparisons with Bonferroni correction applied for multiple 

testing. Ablation tests and accuracy comparisons against multiple methods were done. Finally, 

applicability of ProRSeg to segment cone-beam CT (CBCT) scans was evaluated on a publicly 

available dataset of 80 scans using 5-fold cross-validation.

Results: ProRSeg processed 3D volumes (128 × 192 × 128) in 3 secs on a NVIDIA Tesla 

V100 GPU. It’s segmentations were significantly more accurate (p < 0.001) than compared 
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methods, achieving a DSC of 0.94±0.02 for liver, 0.88±0.04 for large bowel, 0.78±0.03 for 

small bowel and 0.82±0.04 for stomach-duodenum from MRI. ProRSeg achieved a DSC of 

0.72±0.01 for small bowel and 0.76±0.03 for stomach-duodenum from public CBCT dataset. 

ProRSeg registrations resulted in the lowest CV in displacement (stomach-duodenum CV x:0.75 %, 

CV y:0.73 %, and CV z:0.81 %; small bowel CV x: 0.80 %, CV y: 0.80 %, and CV z: 0.68 %; large bowel 

CV x: 0.71 %, CV y: 0.81 %, and CV z: 0.75 %). ProRSeg based dose accumulation accounting for intra-

fraction (pre-treatment to post-treatment MRI scan) and inter-fraction motion showed that the 

organ dose constraints were violated in 4 patients for stomach-duodenum and for 3 patients for 

small bowel. Study limitations include lack of independent testing and ground truth phantom 

datasets to measure dose accumulation accuracy.

Conclusions: ProRSeg produced more accurate and consistent GI OARs segmentation and DIR 

of MRI and CBCTs compared to multiple methods. Preliminary results indicates feasibility for 

OAR dose accumulation using ProRSeg.
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I. Introduction

MR-guided adaptive radiation therapy (MRgART) is a new treatment that allows for 

radiative dose escalation of locally advanced pancreatic cancers (LAPC) with higher 

precision than conventionally used cone-beam CTs (CBCT) due to improved soft-tissue 

visualization on MRI. MR-LINAC treatments also allow daily treatment adaptation and 

replanning to account for the changing anatomy. Anatomy changes result from day-to-day 

variations in organ shape and configuration as well as motion due to peristalsis and 

breathing, all of which introduce large geometric uncertainties to the delivery of radiation. 

However, widespread adoption of MRgART is hampered by the need for manual contouring 

and plan re-optimization, which together can take 40 to 70 mins1,2 daily. Hence, there is a 

clinical need for consistently accurate and fast auto-segmentation of the gastrointestinal (GI) 

organs at risk (OARs) including the stomach, duodenum, small and large bowel.

Highly accurate segmentation, measured as a Dice similarity coefficient (DSC) exceeding 

0.8 of abdominal organs such as the liver, kidneys, spleen, as well as the stomach 

(excluding duodenum) has been reported by using off-the-shelf deep learning (DL) 

architectures including nnUnet3 and Unet4, as well as customized dense V-Nets5 and new 

transformer based methods6,7 applied to CT images. Slice-wise priors provided as manual 

segmentations8, multi-view methods using inter-slice information from several slices and 

dense connections6 as well as self-supervised learning of transformers9 have shown the 

ability to segment the more challenging GI OARs such as large and small bowel and 

duodenum from MRI. However, the need for manual editing8 and large number of adjacent 

slices6 required to provide priors may reduce the number of available training sets and the 

practicality (due to need for manual editing) of such methods.

Besides segmentation, reliable deformable image registration (DIR) is also needed for 

voxel-wise OAR dose accumulation in order to ensure that the prescription dose was 
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delivered to the targets while sparing organs of unnecessary radiation. DIR based contour 

propagation10,11,12 is a convenient option that is commonly available in commercial 

software to solve both deformable dose accumulation and contour propagation. However, 

commonly available DIR methods often use small deformation frameworks based on 

parameterizing a displacement field added to an identity transform, which cannot preserve 

topology13 for large organ displacements. Deep learning image registration (DLIR) 

methods14,15,16,17 are often faster than iterative registration methods because they directly 

compute the diffeomorphic transformation between images in a single step instead of 

solving a non-linear optimization to align every image pair. DLIR methods often use 

stationary velocity field (SVF) for faster training by reducing the search space to a set 

of diffeomorphisms that are within a Lie structure. However, this assumption limits their 

flexibility to handle large and complex deformations18. Also these methods minimize an 

energy function composed of global similarity and global smoothness regularization, which 

ignores local abrupt and large motion occurring at the organ boundaries19.

Compositional DIR strategies such as used for non-sliding and sliding organs19, adaptive 

anisotropic filtering of the incrementally refined deformation vector field (DVF)20 as well 

as cascaded network formulations13,21,22 increase robustness by using a staged approach 

for refining registrations. However, such methods are limited by the memory requirements 

and often require sequential training of individual networks, which increases training 

time and does not guarantee the preservation of deformations already captured in the 

previous stages. Recurrent registration method (R2N2) that computes local parameterized 

Gaussian deformations23 has demonstrated ability to model large anatomic deformations 

occurring in a respiratory cycle. However, the use of local parametrization restricts its 

flexibility to handle large and continuous deformations such as for tumors24. Our approach 

improves on these works to compute topology preserving (quantified by non-negative 

Jacobian determinant) diffeomorphic deformations and multi-organ segmentations by using 

a progressive joint registration-segmentation (ProRSeg) approach, wherein deformation 

flow computed at a given step is conditioned on the prior step using a 3D convolutional 

long short term memory network (CLSTM)25. ProRSeg is optimized using a multi-tasked 

learning of a registration and segmentation network, which allows it to leverage the implicit 

backpropagated errors from the two networks. Multi-tasked networks have previously 

shown to produce more accurate normal tissue segmentation than individually trained DL 

networks14,15,16,26.

One approach to robustly handle large deformations is to use regularization constraints 

such as rigidity penalty27 and geometry matching constraints used for successfully aligning 

images exhibiting large anatomic deformations such as upper gastrointestinal organs27 and 

female reproductive organs such as the uterus and cervix28. A recent DLIR method by Han 

et.al29 have also shown that using geometry constraints can benefit handling large anatomic 

differences inherent in organs like the small and large bowel when aligning CBCT images 

with CT images. Our proposed method also uses geometry matching losses during training 

to better regularize the registration and segmentation sub-networks with a key difference 

that such losses are used also as deep supervision losses to optimize the incremental 

deformations computed by the network. However, unlike Han et.al29, our method uses the 

entire image volume for computing the DIR instead of a prespecified region of interest and 
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is thus directly applicable to clinical settings. Finally, our approach uses recurrent network 

formulation to compute a progressive sequence of deformations instead of estimating the 

momentum and velocity parameters to drive LDDMM, thus providing a single step approach 

to compute DIR between pairs of images.

ProRSeg is most similar to a prior registration-segmentation method that we developed 

for tracking lung tumor response to radiation therapy24 from cone-beam CT (CBCT) 

images. However, ProRSeg accounts for both respiratory and large organ shape variations, 

while our prior work was only concerned with tracking linearly shrinking tumors 

during radiation treatment. ProRSeg computes a smooth interpolated sequence of dense 

deformation by implementing 3D CLSTM networks in all the encoder layers of both 

registration and segmentation networks. This approach explicitly enforces consistency 

of the computed deformations for the registration and progressively refined geometry 

priors used to refine segmentation. Hence, the segmentation network avails progressively 

refined information about the organs and their geometry from a prior treatment fraction, 

which increases robustness to arbitrary variations occurring in the GI organs. In contrast, 

prior works14,16 used a weaker regularizing constraint to ensure that the outputs of 

registration and segmentation networks matched as additional losses during training. 

Finally, the segmentation consistency loss enforces similarity of segmentations generated by 

registration-based propagation, segmentation network, and the manual delineations, which 

improves accuracy of both networks.

Our contributions are: (i) a simultaneous registration-segmentation approach for segmenting 

GI OARs from MRI while computing voxel-wise deformable dose accumulation, (ii) 

use of registration derived spatially aligned appearance and geometry priors to constrain 

segmentation that increases accuracy, (iii) use of a 3D CLSTM implemented in the encoders 

of both registration and segmentation networks that increases robustness to arbitrary organ 

deformations by modeling such deformations as a progressively varying dense flow field. 

(iv) We also evaluated ProRSeg for segmenting GI organs (stomach-duodenum and small 

bowel) from treatment CBCTs using a publicly available longitudinal CT-CBCT dataset 

provided by Hong et.al30. (v) Finally, we show that the registration-segmentation network 

allows to incorporate organs such as whole pancreas and pancreatic tumors that were never 

used in the network’s training using a subset analysis.

II. Materials and Method

II.A. Pancreas MRI dataset for MR-MR registration-segmentation

The retrospective analysis was approved by the institutional internal review board. One 

hundred and ten 3D T2-weighted MRIs acquired from on treatment MRIs from 10 patients 

undergoing five fraction MR-guided SBRT to a total dose of 50 Gy were analyzed. A 

pneumatic compression belt set according to the patient convenience was used to minimize 

gross tumor volume (GTV) and GI organs motion occurring within 5mm of the GTV31. 

The dose constraints to GI organs were defined as Dmax or D0.035cm3 ≤ 33 Gy and D5cm3 ≤ 25 Gy. 

D5cm3 for large bowel was ≤ 30 Gy. In each treatment fraction, three 3D T2-weighted MRI 

(TR/TE of 1300/87 ms, voxel size of 1 × 1 × 2 mm3, FOV of 400 × 450 × 250 mm3) 

were acquired at pre-treatment, verification (before beam on), and at post-treatment. Six 
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patients had pre-treatment, verification, and post-treatment MRI with segmentation on all 

five fractions with the remaining 4 containing only pre-treatment MRI for all fractions. 

Additional details of treatment planning are in prior study27,31.

Expert contouring details: Stomach-duodenum, large bowel, and small bowel, as well 

as liver were contoured on all the available treatment fraction MRIs by an expert medical 

student and verified by radiation oncologists, and represented the ground truth for verifying 

the ProSeg segmentations and deformable image registration (DIR).

II.B. Pancreas dataset for pCT-CBCT registration-segmentation

ProRSeg was additionally evaluated using a publicly available dataset30 of 80 CBCTs 

acquired from 40 LAPC patients treated with hypofractionated RT on a regular linac. This 

dataset consists of a planning CT (pCT) and 2 CBCT scans acquired on different days in a 

deep inspiration breath hold (DIBH) state using an external respiratory monitor (Real-time 

Position Monitor, Varian Medical Systems). pCT scans were acquired in DIBH with a 

diagnostic quality scanner (Brilliance Big Bore, Phillips Health Systems; or DiscoveryST, 

GE Healthcare). The kilovoltage CBCT scans were acquired with 200-degree gantry 

rotation. The CBCT reconstruction diameter was 25 cm and length was 17.8 cm.

Expert contouring details: Radiation oncologist delineated the OARs within a volume 

of interest defined as 1 cm expansion on the 3D volume including the high and ultra-high 

dose planning target volume on the pCT and CBCT scans29.

II.C. Image preprocessing details

Rigid registration, MRI preprocessing (N4 bias field correction and histogram 

standardization) used methods available in open source CERR software32. MRIs were 

aligned with prior treatment fraction MRI while CBCTs were aligned to pCT scans. Only 

the body region of the images were used for analysis by subjecting them to intensity 

thresholding, hole filling, followed by largest connected region extraction as a preprocessing 

step.

II.D. ProRSeg: Progressively refined joint registration segmentation

II.D.1. Approach Overview: ProRSeg is implemented using 3D convolutional recurrent 

registration or RRN (g) and recurrent segmentation networks or RSN (s). RRN uses a pair 

of source and target images {xm, xf} and computes a dense deformation flow field to warp 

the source image into target (xf) image’s spatial coordinates (or xm
f) by using a progressive 

sequence of deformations (xm
f = {xm

1 , …xm
N}), where N is the number of 3D CLSTM steps. 

The 3D CLSTM is implemented into all the encoder layers of RRN and RSN. The RSN 

generates a segmentation for xf by combining xf with progressively warped moving images 

and contours ym produced by the RRN ({xm
1 , ym

1}, …{xm
N, ym

N}) as inputs to each CLSTM step 

(Figure 1).

II.D.2. Convolutional long short term memory network (CLSTM): CLSTM is a 

type of recurrent neural network, which maintains long term contextual information about 
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the state xt at step t by using gating filters called forget gate ft and memory cells ct, 
implemented using sigmoid activation function and a multiplicative term (Eqn 1). CLSTM 

improves upon long-short term memory network by using convolutional filters to maintain 

the state information using a dense encoding of the spatial neighborhood or the whole 

image. The CLSTM components including the state, forget gate, memory cells, hidden state 

ℎt, input state it, and output gate ot are updated as below:

ft = σ(W xf ∗ xt + W ℎf ∗ ℎt − 1 + bf)
it = σ(W xi ∗ xt + W ℎi ∗ ℎt − 1 + bi)
c t = tanℎ(W xc ∗ xt + W ℎc ∗ ℎt − 1 + bc)
ot = σ(W xo ∗ xt + W ℎo ∗ ℎt − 1 + bo)
ct = ft ⊙ ct − 1 + it ⊙ c t

ℎt = ot ⊙ tanℎ(ct),

(1)

where, σ is the sigmoid activation function, ∗ the convolution operator, ⊙ the Hadamard 

product, and W  the weight matrix.

II.D.3. Recurrent registration network: A schematic of the RRN g architecture is 

depicted in Figure 1 (a). RRN deforms an image xm into xm
f, expressed as g(xm, xf) :θg(xm) xm

f

by computing a sequence of progressive deformation vector fields (DVF) using N > 1
CLSTM steps: ϕm

f = ϕ1 ∘ ϕ2… ∘ ϕN. ϕi :I + ui, where I is the identity and u is the DVF. The 

input to the first layer is a channel-wise concatenated pair of source and target images 

({xm, xf}) and the hidden state ℎg
0 initialized to 0. Subsequent layers use the progressively 

deformed source xm
i − 1 and the hidden state ℎg

i − 1 output from the prior CLSTM step i − 1
together with the target image xf as inputs to the current CLSTM step i. Images are channel-

wise concatenated ({xm
i − 1, xf}) for use in the CLSTM step. A CLSTM step i computes a 

warped image and contour (ym
i ) as:

xm
i = xm

i − 1 ∘ ϕi

ym
i = ym

i − 1 ∘ ϕi .

(2)

Note that the contour ym is not used as an input to constrain the RRN network.

RRN is optimized without any ground truth DVFs. Deep image similarity Lsim and deep 

smoothness losses Lsmootℎ are used to regularize the warped image ym
i  and the DVF ϕi of 

each CLSTM step. A supervised segmentation consistency loss Lcons comparing the warped 

contour ym
f produced after N CLSTM steps of the RRN with the expert delineation yf was 

computed by measuring contour overlaps using Dice similarity coefficient (DSC):

Lcons = ∑
i = 0

N
Lcons

i = 1 − ∑
i = 0

N
DSC(yf, g(xm

i , ym
i , xm, ℎg

i)) .
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(3)

Lsim is computed by comparing the warped images in each CLSTM step with the fixed 

images by using mean square error (MSE) loss for the MR to MR registration. In the case of 

pCT-CBCT registration experiment, Lsim was computed using normalized Cross-Correlation 

(NCC) computed locally using window of 5×5×5 centered on each voxel to improve 

robustness to CT and CBCT intensity differences17. This can be expressed as:

Lsim =
∑i = 1

N MSE(xm
i , xf) if MR to MR

∑i = 1
N NCC(xm

i , xf) if CT to CBCT

(4)

The NCC loss at each CLSTM step i is an average of all the local NCC calculations, thereby 

ensuring robustness to local variations.

Lsmootℎ was used to regularize the incremental deformation flow from each CLSTM step by 

averaging the flow field gradient within each voxel as:

Lsmootℎ = ∑
t = 1

N
Lsmootℎ

t = ∑
t = 1

N
∑

p ∈ Ω
‖∇ϕt(p)‖2 ∕ N .

(5)

The total registration loss is then computed as:

Lreg = Lsim + λsmootℎLsmootℎ + λconsLcons,

(6)

where λsmootℎ and λcons are tradeoff parameters.

Implementation details:  RRN was constructed by modifying the Voxelmorph (a 3D-

Unet backbone)17 such that the convolutional filters in the encoder were replaced with 3D-

CLSTM. Because the CLSTM extracts features by keeping track of prior state information, 

it computes features that capture both the temporal context and the dense spatial context 

(from the convolutional filters used to implement CLSTM). Each CLSTM block was 

composed of encoders implemented with CLSTM, a decoder to convert the features into a 

velocity field, which then was followed by a spatial transformation function based on spatial 

transform networks33 to convert the stationary displacement field into DVF. Diffeomorphic 

deformation from each CLSTM block at time step t was ensured using a integration of 

the stationary velocity field over [1, 7] to obtain the registration field ϕt and implemented 

using scaling and squaring transforms to provide efficient numerical integration34. The 

resampled moving image after each step t was obtained as m ⋅ ϕt, which then was input to 

the subsequent RRN CLSTM step to compute the deformation field ϕt + 1. More details of 
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specific RRN network layers are in Supplemental Table 1. Eight 3D CLSTM steps were 

used for RRN as done in a different work applied to lung tumor segmentation from CBCT24.

II.D.4. Recurrent segmentation network: Schematic of the RSN network s is shown 

in Figure 1(b). RSN progressively refines the multiclass segmentation of a given target 

image xf using N + 1 CLSTM steps. RSN uses one additional CLSTM than the RRN 

because the first CLSTM step uses the undeformed moving image xm and it’s segmentation 

ym with the target image xt as channel-wise concatenated input. The remaining CLSTM steps 

use channel-wise concatenated input {xm
i , ym

i , xf} where xm
i  and ym

i  are produced by the RRN 

CLSTM step i. Segmentation from each one of the RSN CLSTM steps are computed as 

yf
i = s(xm

i , ym
i , xf, ℎs

i), where ℎs
i is the hidden state of the RSN CLSTM step i, 1 ≤ i ≤ N (Eqn. 2).

The RSN is optimized by computing a deep supervision segmentation loss comparing the 

segmentations produced after each CLSTM step with expert segmentation. This loss is 

computed using cross-entropy as:

Lseg = ∑
t = 0

N
Lsig

t = ∑
t = 0

N
logP (yf ∣ s(xt

i, yt
i, xm, ℎm

i )) .

(7)

The losses, Lseg
0 , …Lseg

N − 1 provide deep supervision to train RSN.

Implementation details:  RSN is implemented with a 3D Unet backbone with N + 1
CLSTM steps implemented into the encoder layers. The standard 3DUnet was improved 

by replacing the first convolutional layer with a CLSTM before the max pooling layer. 

Each convolutional block was composed of two convolution units, ReLU activation, and 

max-pooling layer. This resulted in feature sizes of 32,64,128,256, and 512. Nine CLSTM 

steps were used to implement the RSN and GPU memory limitation was addressed using 

truncated backpropagation as used for RRN. The detailed network architecture for RRN and 

RSN are in Supplementary Table 1 and Supplementary Table 2.

II.E. Training details

Both RRN and RSN are trained end-to-end and optimized jointly to use the losses 

computed from both networks for optimizing the networks parameters. The networks were 

implemented using Pytorch library and trained on Nvidia GTX V100 with 16 GB memory. 

The networks were optimized using ADAM algorithm with an initial learning rate of 2e-4 

for the first 30 epochs and then decayed to 0 in the next 30 epochs and a batch size of 1. The 

λsmootℎ was set to 20 and λcons to 1 experimentally.

ProRSeg was trained separately for MR-to-MR and pCT-CBCT registration using five-fold 

cross-validation taking care that the same patient scans were not used in the training and 

corresponding validation folds. In order to increase the number of training examples, 

all possible pairs of images for each patient arising from different treatment fractions 
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were used. In addition, online data augmentation using image rotation and translation was 

implemented to increase data diversity for training.

II.F. Metrics and statistical analysis:

Segmentation accuracy was measured using the Dice similarity coefficient (DSC) and 

Hausdorff distance at 95th percentile (HD95) on the validation set (validation data not used 

for training in each cross-validation fold). Statistical accuracy comparison of all the analyzed 

methods was performed by measuring the differences in the average DSC and HD95 metrics 

using non-parametric Kruskal-Wallis test, followed by individual pairwise comparisons (36 

for all fractions and 49 when including ProRSeg++ for 4 and 5th fractions) using paired, 

two-sided Wilcoxon-signed rank tests at 95% confidence level with Bonferroni correction 

applied for multiple comparisons. Non-parametric tests were used as they do not assume 

normality of distribution of the data. Only p values < 0.05 were considered significant.

Segmentation consistency was computed by using coefficient of variation 

(CVDSC % = σDSC
μDSC

× 100), where σDSC is the standard deviation of the DSC per patient and 

μDSC is the population mean DSC. Variability in segmentation accuracy across treatment 

fractions was analyzed by measuring statistical differences in DSC and HD95 for the GI 

OARs extracted at 5 different treatment fractions for MRI using paired and two-sided 

Kruskal-Wallis tests at 95% significance levels.

Registration smoothness was measured using standard deviation of Jacobian determinant 

(JSD) and the folding fraction ∣ Jϕ ∣. Finally, consistency of registration to variations in 

anatomy was measured using percentage coefficient of variation (CV) in the median 

displacement for each GI OAR at patient level, by varying the source images (different 

treatment fractions) aligned to each treatment fraction MRI (as target). CV for each patient 

was evaluated in all three displacement directions as CV = σ
μ , where σ is the standard 

deviation and μ is the mean displacement.

II.G. Experiments configuration

II.G.1. Comparative experiments—We evaluated our method against baseline 

methods that were most similar to ours, including joint registration-segmentation using the 

UResNet16 and a deep registration only method called VoxelMorph17 and two segmentation 

only methods, namely 3DUnet4 and nnUnet3. Finally, a non deep learning iterative 

registration method from the open-source Elastix35 was also included for comparison. Image 

pairs were pre-aligned using rigid registration in order to bring them into similar spatial 

coordinates prior to application of the DIR methods. The CBCT OAR segmentation results 

by Han et.al29 using the same public dataset30 are included for comparison.

II.H. Ablation experiments

Ablation experiments were done using the MRI dataset. Experiments were performed to 

study differences in accuracy when using RRN based segmentation versus when using 

RSN that combines information from RRN to compute the segmentation. The impact of 

spatially aligned appearance and shape prior provided by RRN to RSN and segmentation 
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consistency loss on the segmentation accuracy were also measured. The impact of number 

of CLSTM steps (1 to 8) on segmentation accuracy produced by RRN and RSN were 

analyzed. Accuracy differences due to the use of Dice vs. cross entropy loss to optimize the 

segmentation sub-network as well as the hyperparameter selection λsmootℎ and λcons experiments 

were done.

III. Results

III.A. GI OAR segmentation accuracy from MRI

Table 1 shows the segmentation accuracies produced by the evaluated methods when 

aligning all consecutive treatment fractions. ProRSeg produced the highest average DSC 

of 0.85 and the lowest average HD95 of 8.23 mm compared to all other baseline methods. 

Kruskal-Wallis test showed significant difference in the DSC (p < 0.001) and HD95 (p < 

0.001) accuracy between the various methods. Pairwise comparison followed by Bonferroni 

correction showed that ProRSeg was significantly more accurate (p < 0.001) than UNet3D 

(average DSC of 0.85 vs. 0.77, average HD95 of 8.23 mm vs. 20.06 mm), the nnUnet 

(average DSC of 0.79, average HD95 of 16.12 mm), and the joint registration-segmentation 

method, UResNet16 (average DSC of 0.763, average HD95 of 12.365 mm). UResNet was 

less accurate than the nnUnet when using the DSC metric but more accurate with the HD95 

metric, with significant difference observed for large bowel (p=0.03 with DSC, p<0.001 

with HD95) and the stomach-duodenum (p<0.001 with HD95) metrics. Supplemental Table 

3 shows the p values measuring the differences between various methods with respect to 

ProRSeg after Bonferroni correction.

Figure. 2 shows segmentation contours produced by the analyzed methods together with the 

expert delineations (in red) on representative examples. The overall DSC accuracy is also 

shown for all the cases and methods. As seen, ProRseg most closely matched the expert 

delineations even for hard to segment small bowel (Figure. 2 row 1, 2 and 4) and stomach-

duodenum (Figure. 2 row 1, 2, 4). On the other hand, iterative registration35 resulted in 

poor segmentations even for large organs such as the liver, indicating the difficulty of 

aligning images using intensity based information alone. Similarly, Voxelmorph17, a deep 

learning registration based segmentation method was unable to match the expert contours 

as closely as either the UResNet16 or ProRSeg. nnUnet, UResNet, and ProRSeg showed 

higher accuracy for the presented cases, except when large differences in organ shape and 

appearance occurred between treatment fractions. An example case with poor segmentation 

of the stomach occurring as a result of filled stomach aligned to empty stomach occurring 

in the prior treatment fraction is shown in Figure. 2, row 3. Figure 3 shows 3D rendering of 

two examples, the best case with an overall DSC of 0.88 and the worst case with an overall 

DSC of 0.81. As shown, for the best case example, ProRSeg closely matched the expert 

delineation of intra-peritoneal small bowel, and achieving a high DSC of 0.81 for small 

bowel. Reduction in overall accuracy in the second case occurred due to lower accuracy in 

segmenting the intra-peritoneal small bowel loops (DSC of 0.72). In comparison, the DSC 

for other OARs were high, stomach-duodenum DSC of 0.85 and large bowel DSC of 0.93.

Motivated by a prior study for MRI-based upper GI organs segmentation12 that fused 

DIR based segmentations from multiple prior fraction MRIs, ensemble segmentations were 
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computed for the treatment fractions 4 and 5 by performing decision level fusion using 

simple majority voting of the segmentations produced by using multiple prior fraction MRIs 

(first to third fraction for treatment fraction 4, and first to fourth fraction for treatment 

fraction 5) as prior images for the registration-segmentation. The ProRSeg ensemble called 

ProRSeg++ applied only to the 4 and 5 fractions, increased the segmentation accuracy for 

large bowel (0.91 ±0.02 vs. 0.90 ± 0.04), small bowel (0.83±0.02 vs. 0.80 ±0.05), and the 

stomach-duodenum (0.85±0.04 vs. 0.80±0.07). ProRSeg++ was not applied to the first three 

fractions because at least three preceding treatment fraction MRIs are required to create 

the ensemble segmentation. Kruskal-Wallis test performed to compare the various methods 

including ProRSeg showed significant difference in both DSC (p < 0.001) and HD95 (p < 

0.001). Pairwise comparisons followed by Bonferroni correction showed that ProRSeg++ 

remained significantly more accurate than all baseline methods (p < 0.001) for both accuracy 

metrics. It was also more accurate than ProSeg for liver using the DSC metric (p = 0.0007) 

as well as for the small bowel using both DSC (p = 0.016) suggesting that combining 

information from prior treatment fractions as an ensemble improves accuracy for some of 

the organs. Significance test results after Bonferroni corrections are shown in Supplementary 

Table 7.

Finally, the ability of the registration subnetwork (RRN) of ProRSeg to produce 

segmentations of structures not included in the training of the segmentation subnetwork 

was evaluated by applying registration based segmentation propagation for whole pancreas 

and the gross tumor volume on a subset of 5 patients. RRN segmentations were compared 

against rigidly propagated segmentation. RRN segmentations improved the accuracy of 

rigidly propagated GTV from 0.64 ± 0.23 to 0.73 ± 0.16 and for the whole pancreas 

from 0.66 ± 0.15 to 0.70 ± 0.07, indicating ability of ProRSeg to generate segmentations 

even for structures never used in the network training. Figure 4 shows two representative 

examples with RRN propagated segmentations and manual delineations. RRN propagated 

the segmentations for GTV with reasonable accuracy as well as for the pancreatic 

head but resulted in a worse accuracy for narrower sections and tail regions of the 

pancreas. Equivalence test was performed to compare the accuracies of pancreas and GTV 

segmentations using two independent one-sided test method with unequal variances36 to 

determine if the accuracies were within a DSC of 0.1. Analysis was performed using 

two one-sided null hypothesis t-tests, which showed that the results were equivalent (p = 

0.035). Furthermore, a two-sided t-test of comparing the means also showed no significant 

difference in accuracies (p = 0.32).

III.B. Segmentation consistency with varying organ configurations

Figure 5 shows the DSC variability for each patient when using all possible combination 

of treatment fraction MRIs as target and moving image pairs, instead of just aligning 

consecutive treatment fraction MRIs. This test was performed to evaluate the robustness 

of segmentation to anatomic configuration of the prior moving image. The median CVDSC

was under 6% for all organs with lowest CVDSC observed for the liver (median of 0.45%, 

inter-quartile range [IQR] of 0.31% to 0.63%) and the highest CVDSC observed for small 

bowel (median of 4.54%, IQR of 3.77% to 5.26%). Stomach-duodenum (median of 4.04%, 

IQR of 3.77% to 5.26%) had the second highest CVDSC and large bowel had relatively 
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smaller variation (median of 1.39%, IQR of 0.61% to 2.66%) than both small bowel and 

stomach-duodenum. The highest overall variation for all organs (combined average of 6.60% 

was observed for patient P4 (see Supplemental Table 4) due to large variability in the 

segmentation of stomach-duodenum (CVDSC of 11.02%). This specific patient MRI depicted 

appearance variability due to differences in stomach filling in one of the treatment fractions 

(3rd row of Figure 2). All the remaining patients were treated on empty stomach. Four 

patients had a CVDSC exceeding 5% for small bowel and stomach-duodenum, 2 such patients 

for large bowel, and none for liver.

Figure 6 depicts the variability in segmentation accuracies measured using DSC and HD95 

across the treatment fractions for the GI OARs. Results produced by iterative deformable 

image registration using SyN35 is also shown for comparison purposes. As shown, ProRSeg 

shows smaller variability in the segmentation accuracies across the treatment fractions for 

the analyzed patients compared to the SyN method. Kruskal-Wallis tests of the segmentation 

accuracies computed across the different fractions showed no difference in DSC (liver: 

p=0.23, large bowel: p=0.88, small bowel: p = 0.18, stomach: p = 0.46) and HD95 (liver: 

p = 0.45, large bowel: p = 0.83, small bowel: p = 0.67, stomach: p = 0.65) with ProRSeg 

method. These results show that ProRSeg generates consistent GI OAR segmentations 

across the treatment fractions.

III.C. Consistency and smoothness of MR-MR DIR

ProRSeg produced smooth deformations, which were within the accepted range of 1% of 

the folding fraction21,22 (Table 2). Higher values of Jsd and the folding fraction compared 

to SyN35 and Voxelmorph17 are expected because ProRSeg allows for more deformation 

needed to better align the GI organs. The coefficient of variation for the displacement in 

three directions (x, y, and z) for small bowel, large bowel, and the stomach-duodenum are 

shown in Table 2. Liver was excluded in this analysis because only stomach-duodenum, 

small and large bowel exhibit large deformations and appearance changes. As shown, 

ProRSeg resulted in the least coefficient of variation in the measured displacements for all 

three organs, which indicates its ability to produce more consistent registrations. The organ 

displacements measured in all three directions using ProRSeg and other methods are shown 

in Supplementary Table 5 and Supplementary Figure 1. ProRSeg measured displacement 

was the largest for small bowel (x median of 4.92 mm, inter-quartile range [IQR] of 2.31 

mm to 8.80 mm; y median of 3.21 mm, IQR of 1.58 mm to 5.48 mm; z median of 4.06 mm, 

IQR of 2.67 mm to 5.57 mm).

III.D. Ablation experiments:

Accuracies computed by combination of the losses and network design are shown in Table 

4. As shown, RRN segmentations were less accurate than RSN, clearly indicating that 

a registration-segmentation network increases accuracy. The importance of multi-tasked 

network optimization is shown by the reduced accuracy when removing the segmentation 

consistency loss. Similarly, joint optimization of the networks using RRN provided spatial 

prior with segmentation loss applied to RSN increased accuracy for hard to segment small 

and large bowel and stomach-duodenum. However, the segmentation loss applied to RSN 

was more critical than RRN provided spatially aligned priors. Finally, removing the CLSTM 
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from RSN lowered accuracy for all analyzed organs. Similarly, the use of RRN without 

CLSTM (row 2 of Table 3), resulted in the largest drop in accuracy.

Figure 7 shows the segmentation accuracy changes due to increasing number of CLSTM 

steps used in the RRN and RSN networks. As shown, when using RRN to generate 

segmentations, there was no benefit in increasing the number of CLSTM steps beyond 4. On 

the other hand, increasing the CLSTM steps in the RSN continued to improve segmentation 

accuracy for small and large bowel. Figure 8 shows segmentations produced with increasing 

number of CLSTM steps for a representative case in both the intra-fraction and inter-fraction 

registration scenario. As seen, the displacements or DVF are progressively refined with 

marked displacements occurring during at different steps for the various organs.

Figure. 9 shows the validation accuracy for the analyzed four organs at risk using a subset 

of 3 patients with 5 daily treatment MRIs, with the range of analyzed hyperparameters 

for optimizing the network, namely λsmootℎ and λcons. As shown, the accuracies were stable 

with λcons and showed a small variation for λsmootℎ. Specifically, small λsmootℎ resulted in highly 

unrealistic deformations, whereas increasing values reduced the amount of deformations. 

Accuracy decreased beyond λsmootℎ of 20, and hence, it was selected for the analysis.Finally, 

the accuracies for the various organs were similar for ProRSeg optimized using cross-

entropy and Dice loss, indicating that either one of these losses were a good choice for 

optimizing the segmentation sub-network (Table 3).

III.E. ProRSeg applied to registration (planning CT to CBCT) based CBCT segmentation

We next evaluated whether ProRSeg was able to generate segmentation of stomach-

duodenum and small bowel from CBCT images. Table 5 shows a comparison of 

segmentation accuracies against the SyN35, Voxelmorph17, and a previously published 

method using this same dataset37 and which combined deep learning to learn the momentum 

parameters to drive the LDDMM. Kruskal-Wallis test showed a significant difference in 

both DSC and HD95 (p < 0.001) for all analyzed methods for both organs. Pairwise 

comparisons followed by Bonferroni correction showed that ProRSeg was significantly more 

accurate than SyN for both organs (p < 0.001 for DSC and HD95), Voxelmorph (stomach 

duodenum p< 0.001 for DSC and p=0.019 for HD95, small bowel p< 0.001 for DSC 

and p=0.031 for HD95), nnUnet for both organs (p < 0.001 for DSC and HD95), and 

UResNet for both organs (p < 0.001 for DSC , but not significantly different for HD95). 

The analysis with CBCT clearly shows that using deep learning registration increases 

accuracy over segmentation only nnUnet method3 as seen for both analyzed organs using 

both metrics with UResNet (p< 0.001), and Voxelmorph (p< 0.001). On the other hand, 

iterative registration based SyN significantly outperformed nnUnet with one of the two 

metrics but not both (stomach duodenum p= 0.25 for DSC, p< 0.001 for HD95, small bowel 

p= 0.005 for DSC, p= 0.25 for HD95). Representative examples from two patients showing 

segmentations produced by the various methods are in Figure 10. As shown, ProRSeg 

closely followed expert delineation compared to SyN35 and Voxelmorph17. nnUnet3 resulted 

in over segmentation for the small bowel and under segmentation for the stomach duodenum 

in both cases.
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III.F. Proof of principle application of ProRSeg to compute accumulated dose to GI OARs

Figure 11 shows the accumulated dose over the course of 5 fractions to the GI OARs 

without and with intra-fraction dose accumulation. Dose accumulation was performed by 

sequential alignment of the treatment fraction images and daily fraction doses (scaled to 5 

fractions). DVF after each deformation was used to interfractionally accumulate doses for 

5 patients who had daily dose maps available from online replanning. Intra-fraction dose 

accumulation was accomplished by aligning the pre-treatment MRI with the post-treatment 

MRI taken after completion of treatment on the same day. The adaptive plan generated on 

the pre-treatment MRI in each fraction was copied to the post-treatment MRI and the doses 

were recalculated, which was then used to compute the intrafraction accumulated doses.

The institutional dose constraint Dmax or D0.035cm3 ≤ 33Gy and D5cm3 ≤ 25Gy are also shown 

(dotted red lines) in Figure 11. Accumulated dose showed dose violation for stomach-

duodenum in four out of 5 patients (Supplemental Table 6). Two patients exceeded both dose 

constraints for (P2 D0.035cm3 = 41.3 Gy, D5cm3 = 28.9 Gy; P4 D0.035cm3 = 40.2 Gy, D5cm3 = 27.8 Gy). 

Three out of the five patients also violated D0.035cm3 = 40.2 Gy dose constraints for the small 

bowel at fraction 5. However, despite the violation of dose constraints, treatment was well-

tolerated in these patients with only one patient (P1) experiencing Grade 1 (mild abdominal 

pain) acute and late abdominal toxicity38. Comparison of the accumulated doses for the 

same patients with LDDMM method used in our prior study38 showed that our method 

produced a higher estimate of the accumulated doses in general. However, it is difficult to 

verify the dosimetric accuracy of the individual methods at a voxel-level due to lack of 

known landmarks to measure target registration error. Also, the prior study38 uses manual 

segmentations of the OARs in both moving and target images for alignment, which makes 

comparison of the two methods using volume overlap measures such as DSC and HD95 

meaningless.

IV. Discussion

In this study, we developed and evaluated a multi-task deep registration and segmentation 

network called ProRSeg to simultaneously segment and deformably align MRI scans 

longitudinally during radiation treatment course. ProRSeg performs progressive alignment 

of images as well as refines segmentations progressively by computing dense pixel-level 

inference using 3D CLSTM implemented into the encoders of registration and segmentation 

networks. Our approach shows clear accuracy gains compared to segmentation only 

3DUnet4, nnUnet3, registration-based segmentation using iterative35 and deep learning17, 

and a current simultaneous registration-segmentation method16. ProRSeg was also 

applicable to segmenting the more challenging CBCT scans and showed a slightly better 

accuracy than a current deep learning based LDDMM method37 using the same dataset. 

Ability of ProRSeg to segment on both MRI and CBCT broadens its applicability for 

radiation treatment planning. Significance testing after adjusting for multiple comparisons 

showed that ProRSeg significantly outperformed segmentation network nnUnet3, which 

is inline with prior works that showed improved accuracy when using multi-tasked 

registration-segmentation networks compared to single task networks14,16,39. The need 

for using registration is most evident for CBCT, where all the deep registration methods 
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outperformed nnUnet3. On the other hand, iterative registration using SyN35 showed mixed 

improvement based on the choice of the metric, indicating that a deep learning segmentation 

is a reasonable approach than iterative registration based segmentation methods.

Additionally, training as a registration-segmentation method allows the method to 

incorporate organs never used in the training by directly using the registration-subnetwork 

for propagating segmentations, as shown for the whole pancreas and pancreatic tumor 

segmentation in a subset of cases. The segmentation accuracy for the pancreatic GTV by 

contour propagation of 0.73 ± 0.13 achieved by our approach is similar to the previously 

reported accuracy for pancreatic GTV segmentation from MRI40. As no further refinement 

following registration propagation was done, the segmentation at the head of pancreas 

was reasonable but worsened at the narrower sections of the pancreas. Although the 

GTV segmentation accuracy appeared to be slightly better than pancreas, equivalence 

tests indicate similar accuracy. One prior work applied to CT-based segmentation reported 

higher accuracy for pancreas and much lower accuracy for the tumor using a multi-staged 

and multi-scale segmentation approach41 using CT scans from patients who underwent 

screening for pancreatic cancers as well as patients with kidney cancers. Their results are 

thus not directly comparable with ours due to differences in the modality used (CT vs. 

MRI), registration-based propagation applied to these structures as opposed to segmentation 

method, and importantly the analysis of LAPC patients who underwent radiation treatment.

ProRSeg also produced consistent segmentations and registrations as shown by low CVDSC

and low coefficient of variation in the computed displacements for organs compared to other 

methods. Patient-specific analysis of segmentation accuracy variations due to differences in 

the anatomical configuration of the prior (or moving images) showed that ProRSeg produced 

variations within a maximum of 10%. The larger variations were observed for more complex 

organs such as the small bowel and stomach-duodenum. At least one patient exhibited 

differences in stomach volume and appearance due to stomach contents between treatment 

fractions. In this regard, appearance and anatomic variabilities not encountered in training 

were difficult to handle in the testing.

Our analysis showed that ProRSeg produced reasonably accurate GI OAR segmentations 

exceeding a DSC of 0.80 even for challenging organs such as the small bowel. ProRSeg 

accuracies are better or comparable to prior published studies applied to different datasets 

used for MR-Linac treatments8,12,19. It is notable that these published methods required 

ensembling of segmentations12 from prior treatment fractions or user editing to drive 

semi-automated semgentations8. ProRSeg does not require user editing or ensembling. 

Nevertheless, given differences in datasets, number of training and testing sets, and the 

way in which the organs were segmented, it’s hard to make a head to head comparison 

of these methods. For example, study by Fu et.al19 separated stomach and duodenum into 

two distinct structures but combined small and large bowel into one structure, whereas 

we combined stomach and duodenum as one structure but separated the small and large 

bowels into two distinct structures, consistent with the treatment planning requirements 

at our institution and others8,42. Consistent with the findings in a prior study by Zhang 

et.al12, incorporating prior knowledge from multiple preceding fractions as an ensemble 

segmentation improved the accuracy for all organs including the small bowel in the later 
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treatment fractions. We will provide our model in the GitHub repository to enable side-by-

side comparison by other works upon acceptance for publication. Furthermore, the CBCT 

analysis was performed using a publicly available dataset by Hong et.al30.

Our results are also consistent with prior multi-task methods14,15,24,43, and clearly showed 

that the inclusion of an additional segmentation network resulted in a higher accuracy than 

the registration-based segmentation alone. Furthermore, ablation tests clearly showed that 

spatially aligned priors provided by the registration increased accuracy of segmentation. 

Finally, incorporating supervised segmentation losses, which is easier to obtain than DVF as 

ground truths also improved accuracy.

In addition to segmentation, our method also showed the ability to deformably align 

images and preliminary feasibility to compute dose accumulation to organs. The computed 

displacements for organs showed largest median displacement exceeding 4mm for small 

bowel, which is far below the computed displacements of 10 mm reported using the 

LDDMM method when applied to a subset of the same patients in a prior study38. 

We believe the differences resulted from the additional number of patients included in 

our study as well as from the averaging of the intra and inter-fraction displacements 

when computing the overall median displacements. Importantly, our analysis of the dose 

accumulation showed that ProRSeg measured dose violations were consistent with the 

findings using LDDMM, albeit ProRSeg produced a higher estimate of accumulated dose 

for the same patients than LDDMM38 (see Supplementary Table 6). However, it is difficult 

to assess the voxel-level registration accuracy of either method in order to ascertain the 

dose accumulation accuracy due to lack of known and visible landmarks to measure 

target registration error, which also represents a limitation of our study. Robust estimate 

of TRE for these organs would potentially require synthesizing digital phantom with known 

landmarks, which was not in the scope of the current study. Also, the prior study38 used 

manual segmentations of OARs in both moving and fixed image volumes for computing the 

alignment, which makes comparison of these two methods using volume overlap measures 

meaningless.

Our study is limited by lack of set aside testing and lack of large training set for further 

improving and evaluating the accuracy of the method as well as by the lack of well defined 

landmarks for measuring target registration error to evaluate registration. Nevertheless, 

our analysis indicates ability to perform both consistently accurate segmentation and dose 

accumulation on pancreatic cancer patients using a computationally fast method, thus 

allowing the use of accumulated doses for potential treatment adaptation in place of the 

currently used conservative dose constraints.

V. Conclusion

A multi-tasked, progressive registration segmentation deep learning approach was developed 

for segmenting upper GI organs from MRI. Our approach showed ability to produce 

consistently accurate segmentations and consistent deformable image registration of 

longitudinal treatment MRI. It was also applicable for segmenting GI organs from cone-

beam CT images.
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Figure 1: 
(a) Schematic of recurrent Registration Network (RRN), where convolutional (Conv) layers 

in the encoder are combined with 3D-CLSTM. (b) Recurrent Segmentation Network (RSN) 

uses a Unet-3D backbone with 3D-CLSTM placed after convolutional blocks in the encoder 

layers. (c) ProRSeg combines RRN and RSN. The unrolled representation showing CLSTM 

in the encoder layers for progressively refining the registration and segmentation are shown. 

RSN combines xt with the progressively aligned images xm
i = 1, …N and segmentations ym

i = 1, …N

produced by RRN as inputs to its CLSTMs to generate segmentation yt in N steps.
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Figure 2: 
Comparison of OAR segmentations generated by multiple methods from MRI on 

representative examples.
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Figure 3: 
Three dimensional rendering of volumetric segmentations produced by expert (first column) 

and ProRSeg (second column) for best case (top row) and worst case (bottom row) patients.
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Figure 4: 
RRN propagated segmentations for GTV and pancreas on two representative cases.
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Figure 5: 
Segmentation consistency for all analyzed patients measured using all possible patient-

specific pairs (any prior treatment fraction to a current fraction for a given patient) for 

producing GI OAR segmentations.
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Figure 6: 
Longitudinal variability of segmentation accuracy (DSC and HD95) for ProRSeg and SyN 

when applied for sequential alignment of treatment fractions as used in the clinic.
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Figure 7: 
Impact of number of CLSTM steps used for RRN and RSN on segmentation accuracy.
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Figure 8: 
Progressive deformation with segmentations produced with ProRSeg shown for aligning 

intra-fraction (pre-treatment and post-treatment MRI after fraction 1) and inter-fraction 

(pre-treatment. fraction 1 to pre-treatment fraction 2) for a representative patient.
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Figure 9: 
The accuracy with different λsmootℎ and λcons. We used the λsmootℎ = 20 in all the experiments.
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Figure 10: 
Segmentations from CBCT produced on two representative patients using the various 

methods.
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Figure 11: 
Box plots showing accumulated dose metrics D0.035cm3(left) and D5cm3 (right) for 

stomach duodenum, small bowel and large bowel from interfraction (top row) and inter 

+ intrafraction (bottom row) accumulated dose of all patients for all 5 fractions. Dotted 

horizontal line represents the instituitional constraint of 33 Gy (left) for D0.035cm3 and 25 

Gy (right) for D5cm3.
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Table 1:

Segmentation accuracy (mean and standard deviation) of various methods applied to T2-w MRI. LG bowel: 

Large bowel, SM bowel: small bowel, Sto-Duo: stomach-duodenum.
†: Segmentations generated for treatment fraction 4 and 5 using majority voting of segmentations produced by 

using 1, 2, and 3 treatment fraction MRI.

°: p < 0.05, *: p < 0.01, **: p < 0.001.

Method
DSC ↑ HD95 mm ↓

Liver LG Bowel SM Bowel Sto-Duo Liver LG Bowel SM Bowel Sto-Duo

SyN35 0.89±0.04** 0.59±0.13** 0.61±0.09** 0.66±0.08** 9.17±3.55** 20.04±8.55** 20.74±7.36** 13.08±5.08**

Voxelmorph17 0.91±0.06** 0.74±0.18** 0.67±0.10** 0.75±0.09** 7.85±3.85** 14.52±9.81** 19.26±7.97** 13.35±13.21**

Unet3D 0.92±0.02** 0.79±0.11** 0.68±0.11** 0.68±0.10** 13.57±15.72** 20.63±13.90** 26.11±9.68** 19.95±11.33**

nnUnet3 0.93±0.02* 0.81±0.10** 0.72±0.09** 0.70±0.10** 8.22±3.14** 18.00±13.43** 18.95±6.19** 19.33±8.48**

UResNet16 0.91±0.04** 0.72±0.15** 0.67±0.07** 0.75±0.08** 6.80±2.76** 11.92±9.18** 18.56±8.53** 12.18±12.87**

ProRSeg 0.94±0.02 0.86±0.08 0.78±0.07 0.82±0.05 5.69±1.72 7.00±5.14 12.11±5.30 8.11±3.54

ProRSeg++† 0.95±0.01** 0.91±0.02 0.83±0.02° 0.85±0.04 5.52±0.85 6.49±3.91 10.70±1.20° 7.35±2.50
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Table 2:

Mean and standard deviation of MR-MR DIR smoothness (Jsd and ∣ Jϕ ∣ ≤ 0 %) and consistency (CV of 

displacement). CV per patient is ratio of standard deviation in displacements to the mean displacements for 

each patient.

Method Jsd ∣ Jϕ ∣
LG Bowel (CV %) SM Bowel (CV %) Stomach-Duo (CV %)

CV x CV y CV z CV x CV y CV z CV x CV y CV z

SyN35
0.04

0.00
1.52 1.16 1.37 1.37 1.29 1.56 1.30 1.32 1.29

0.01 0.25 0.06 0.13 0.10 0.11 0.22 0.18 0.20 0.12

Voxelmorph17
0.06

0.00
0.94 0.89 1.00 0.84 0.85 0.92 0.78 0.78 0.92

0.01 0.05 0.14 0.42 0.17 0.06 0.42 0.10 0.18 0.51

UResNet16
0.09

0.00
0.81 0.80 0.81 0.83 0.80 0.75 0.76 0.77 0.83

0.03 0.21 0.16 0.30 0.11 0.17 0.29 0.14 0.19 0.38

ProRSeg
0.18

0.071
0.71 0.81 0.75 0.80 0.80 0.68 0.75 0.73 0.81

0.03 0.20 0.15 0.29 0.03 0.13 0.27 0.04 0.16 0.36
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Table 3:

Segmentation accuracy (mean and standard deviation) of ProRSeg trained using cross-entropy loss(default) 

and DSC loss applied to T2-w MRI. LG bowel: Large bowel, SM bowel: small bowel, Sto-Duo: stomach-

duodenum.

*: p < 0.05, +: p < 0.01, ‡: p < 0.001.

Method
DSC ↑ HD95 mm ↓

Liver LG Bowel SM Bowel Sto-Duo Liver LG Bowel SM Bowel Sto-Duo

ProRSeg Dice 0.94±0.02 0.87±0.06 0.77±0.07 0.81±0.06 5.85±1.10 6.84±5.14 12.00±3.64 8.65±3.40

ProRSeg 0.94±0.02 0.86±0.08 0.78±0.07 0.82±0.05 5.69±1.72 7.00±5.14 12.11±5.30 8.11±3.54
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Table 4:

Ablation experiments performed using MRI for GI OAR segmentation.

Method
Liver LG Bowel SM Bowel Stomach

Seg consistency Spatial prior Reg-based seg CLSTM

× ✓ ✓ ✓ 0.91±0.03 0.75±0.13 0.69±0.06 0.76±0.08

✓ ✓ ✓ × 0.90±0.03 0.74±0.13 0.68±0.06 0.75±0.08

✓ ✓ ✓ ✓ 0.91±0.03 0.78±0.11 0.70±0.08 0.78±0.06

× ✓ × ✓ 0.93±0.02 0.82±0.08 0.74±0.08 0.78±0.11

✓ ✓ × × 0.93±0.02 0.83±0.08 0.75±0.08 0.79±0.11

✓ × × ✓ 0.93±0.02 0.84±0.08 0.76±0.07 0.79±0.11

× × × ✓ 0.91±0.04 0.74±0.11 0.67±0.08 0.74±0.16

✓ ✓ × ✓ 0.94±0.02 0.86±0.08 0.78±0.07 0.82±0.05
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Table 5:

Segmentation accuracy of various methods applied to CBCT scans. SM Bowel: Small bowel; Stomach-Duo: 

Stomach duodenum. □ HD95 results were not reported. °: p < 0.05, *: p < 0.01, **: p < 0.001.

Method
DSC ↑ HD95 mm ↓

SM Bowel Stomach-Duo SM Bowel Stomach-Duo

SyN35 0.55±0.04** 0.67±0.03** 15.87±2.63** 19.52±8.82**

Voxelmorph17 0.65±0.04** 0.73±0.03** 11.43±3.03* 13.35±1.81*

Han et.al 37 □ 0.71±0.11 0.76±0.11 NA NA

nnUnet3 0.49±0.06** 0.59±0.10** 26.97±3.97** 22.04±4.65**

UResNet16 0.68±0.03** 0.74±0.03** 12.79±1.75 10.97±3.10

ProRSeg 0.74±0.02 0.77±0.03 10.05±2.67 9.68±2.67
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