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ABSTRACT: The band alignment of semiconductors, insulators,
and dielectrics is relevant to diverse material properties and device
structures utilizing their surfaces and interfaces. In particular, the
ionization potential and electron affinity are fundamental quantities
that describe surface-dependent band-edge positions with respect
to the vacuum level. Their accurate and systematic determination,
however, demands elaborate experiments or simulations for well-
characterized surfaces. Here, we report machine learning for the
band alignment of nonmetallic oxides using a high-throughput first-
principles calculation data set containing about 3000 oxide
surfaces. Our neural network accurately predicts the band positions
for relaxed surfaces of binary oxides simply by using the
information on bulk structures and surface termination planes.
Moreover, we extend the model to naturally include multiple-cation effects and transfer it to ternary oxides. The present approach
enables the band alignment of a vast number of solid surfaces, thereby opening the way to a systematic understanding and materials
screening.

■ INTRODUCTION
The ionization potential (IP) and electron affinity (EA) of a
nonmetallic solid are defined as the energy levels of the valence
band maximum (VBM) and conduction band minimum
(CBM) with respect to the vacuum level, respectively. They
show not only how easily an electron is released or accepted
but also information about the relative band positions of
materials. Such band alignments or lineups play crucial roles in
our understanding, design, and development of materials and
devices utilizing surfaces and heterointerfaces, including
photocatalysts,1−3 photovoltaics,4−6 and all other heterostruc-
tured electronic and optoelectronic devices.7−13 The lattice
mismatch, local atomic structure, and charge transfer should
also be considered for depicting complete band alignments at
heterointerfaces; nevertheless, IPs and EAs are fundamental
information for designing interfacial functionalities in addition
to surface-related properties.7

The IPs and EAs of solids involve contributions of surface
dipole moments. Thus, they significantly depend on the atomic
and electronic structures in the vicinity of the surfaces and
therefore on the surface orientation and composition.14−16

Computationally, first-principles calculations have successfully
quantified IPs and EAs.15−23 Separate calculations of bulk and
surface systems are performed in a typical procedure for the
evaluation of IPs and EAs. Bulk calculations offer VBM and
CBM positions with respect to a reference level; surface
calculations offer the differences between the vacuum and
reference levels, which include the surface dipole contributions

to electrostatic potentials. IPs and EAs are then obtained by
the alignment of the bulk and surface reference levels.
However, an accurate and high-throughput evaluation of IPs

and EAs is not straightforward because both processes are
time-consuming. Density functional theory calculations using
standard local and semilocal functionals produce large errors in
the VBM and CBM positions, requiring us to use more
elaborate and computationally demanding approaches, e.g.,
hybrid functionals including nonlocal exchange contributions
and GW approximations based on many-body perturbation
theory.15−20,24,25 Surfaces have both macroscopic and micro-
scopic degrees of freedom, namely, the surface orientation as
given by Miller indices and the location of the termination
plane. Substantial reconstruction from ideal structures also
takes place at some surfaces,26−33 which can significantly affect
band positions as reported for perovskite oxides and TiO2.

32,33

Therefore, even one material has a large variety of surface
atomic structures, and systematic evaluation of their IPs and
EAs requires huge amounts of computation.
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Recently, machine learning has been widespread in materials
science. Virtual screening based on machine learning is an
efficient way to explore new materials with desired functions,
where a surrogate model enables us to virtually predict material
properties.34−39 In particular, theoretical calculations can
generate comparatively large data sets that are prerequisites
for constructing accurate surrogate models. Previous studies
have reported successful materials screening for various
properties by machine learning in combination with theoretical
calculations.35−38,40−44

In this article, we present a regression model based on an
artificial neural network (ANN) using the smooth overlap of
atom positions (SOAPs)45 as input descriptors to predict the
IPs and EAs of nonmetallic oxides (see Figure 1). First-

principles calculations based on a non-self-consistent dielectric-
dependent hybrid functional approach21 allow for the accurate
and efficient evaluation of the IPs and EAs of about 3000
binary and ternary oxide surfaces. The ANN model
constructed using this data set accurately predicts the IPs
and EAs of binary oxides despite the model using the
information before structural relaxation at surfaces as the
input, namely, bulk crystal structures and surface termination
planes of the oxides of interest. Moreover, we enable the ANN
model to be applied to ternary oxides by developing
“learnable” SOAPs, which can incorporate atom species
varieties while keeping low descriptor dimensions.

■ RESULTS AND DISCUSSION
High-Throughput First-Principles Calculations of IPs

and EAs of Binary Oxides. Figure 2a shows distributions of
the theoretical IPs and EAs in the binary oxide data set for
2195 nonpolar surfaces; all IP and EA values can be found in
the Supporting Information. Here, we focus on nonpolar
surfaces because the modeling of polar surfaces requires the
consideration of system- and environment-dependent charge-
compensation mechanisms26,27,46 and therefore their high-
throughput calculations are not straightforward. The horizontal
axis in Figure 2a is the constituent cation species, each of
which contains various surfaces of several polymorphs. We find
the tendency that the IP and EA values depend largely on the
cation species, although the variety in the crystal and surface
atomic structures leads to deviations of ∼ ±1 eV from their
average values. The calculated IPs and EAs for selected
surfaces are shown with available experimental values in Figure
2b. Although the IPs and EAs are, by nature, rather sensitive to
the detailed structures and conditions of the experimentally
investigated surfaces, reasonable agreement between the
experiment and theory is recognized overall. The non-self-
consistent dielectric-dependent hybrid functional approach
taken here also well-reproduces the experimental IPs and EAs
of group IV, III−V, and II−VI semiconductor surfaces.21

These comparisons with the experimental results demonstrate
the accuracy of our high-throughput surface calculation data.
Construction of ANN Models. Using the binary oxide

data set, we constructed the ANN (hereinafter called simple-
ANN) as shown in Figure 3a. The SOAP descriptors, which
sophisticatedly include structural information such as the bond
length, bond angle, and coordination number,45 are evaluated
for unrelaxed surfaces and inputted in the first layer to describe
the IPs and EAs at relaxed surfaces. The SOAPs in this study
were preprocessed as follows. When multiple elements are
included in a system, the concatenations of the SOAPs based
on the elemental pairs (hereinafter called element-pair SOAPs)
are generally used for describing atomic structures in a
system47 as shown in the bottom left panel of Figure 4. Here,
we consider 41 atom species simultaneously. Thus, the
element-pair SOAPs have several tens of thousands of
dimensions because SOAPs of a pair of elements have several
tens to several hundreds of dimensions. To reduce the number
of descriptor dimensions and prevent overfitting, we dealt with
the 40 cation species as the same species when calculating
SOAPs and oxygen as an anion, resulting in calculating the
SOAPs of three pairs, namely, cation−cation, cation−anion,
and anion−anion combinations (hereinafter called cation−
anion-pair SOAPs), as shown in the bottom center panel of
Figure 4. The cation−anion-pair SOAPs were calculated on
each atom site in a system while the IP and EA need one-to-
one correspondence with a system. Thus, we averaged the
cation−anion-pair SOAPs in a system for inputs. Assuming
that the information about the vicinity of the surfaces is critical
to the IPs and EAs, we extracted the surface-region atoms by
the scheme developed in ref 48 and averaged their SOAPs.
More details of the architecture of the simple-ANN and
SOAPs are described in “Machine Learning: SOAP Descrip-
tors” and “Procedures for Regression” in Methods. The best
combinations of nmax and lmax, which are hyperparameters for
SOAPs (see “Machine Learning: SOAP Descriptors” in
Methods), are 3 and 7 based on root mean squared errors
(RMSEs) and 5 and 3 based on mean absolute errors (MAEs),

Figure 1. Schematic of prediction of IPs and EAs in nonmetallic
solids by theoretical calculations and machine learning. The
theoretical calculations from first principles typically use a
combination of surface and bulk models to evaluate the energy
difference between the vacuum level and the VBM (IP) or CBM
(EA). Our ANN predicts the IPs and EAs of relaxed surfaces by
simply inputting the information on the bulk crystal structure and the
surface index and termination plane.
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respectively (see Figure S1). Hereinafter, we show the results
for nmax and lmax of 5 and 3, respectively; the other case is
shown in Table S1. It should be noted that the results do not
depend much on the combinations of nmax and lmax.
Figure 5a,b show the predicted IPs and EAs of the training

data (gray dots) and test data (orange and green dots),
respectively. Most of the data points are located near the
diagonal lines, which means that the IPs and EAs predicted by
the ANN are considerably close to the corresponding
theoretical values from first-principles calculations. The
coefficient of determination (R2), RMSE, and MAE of the
test data are 0.90, 0.31, and 0.22 eV for the IPs and 0.90, 0.32,
and 0.23 eV for the EAs, respectively. The high prediction
accuracy indicates that the ANN model has learned to
differentiate the cation species through structural information,

even though elemental information is not explicitly given. In
addition, the errors are much smaller than the aforementioned
distributions of the IPs and EAs for each cation species in the
data set, which indicates proper learning of the surface
structure dependence. It is noteworthy that our ANN model
can also learn and predict surface energies at the level of
accuracy shown in Table S2, enabling us to screen out unstable
or unreasonable surfaces without explicit first-principles
calculations.
Although the simple-ANN model shows valuable prediction

accuracy, it has a disadvantage; that is, it equally weights
surface-region atoms in a system when averaging their SOAPs.
To overcome this disadvantage and further enhance the
prediction accuracy, we introduced an attention layer into our
ANN architecture.49,50 Figure 3b shows the ANN architecture

Figure 2. Distribution of theoretical IPs and EAs of binary oxides and comparison with experiments. (a) Upper panel shows the distribution of the
IPs and EAs of the respective binary oxides. Orange and green dots are IPs and EAs, respectively. Cross and circle symbols are Tasker’s type I and II
surfaces,64 respectively. The bottom panel is the number of surfaces, where yellow and dark blue bars are types I and II, respectively. (b)
Theoretical IPs and EAs versus reported experimental values for selected binary oxides. The upper edges of the pale orange bars and the lower
edges of the light green bars are calculated VBMs and CBMs with respect to the vacuum level (set at 0 eV), respectively. The orange and green
solid lines are experimentally reported IPs and EAs, respectively; the dashed lines are derived by combining experimental IPs or EAs and
experimental band gaps. The experimental data are taken from refs 70 and 71 for MgO, refs 72 and 73 for Al2O3, ref 74 for TiO2, ref 75 for V2O5,
ref 76 for Cu2O, refs 77−79 for ZnO, refs 80 and 81 for Ga2O3, ref 82 for MoO3, refs 83 and 84 for Ag2O, refs 85 and 86 for In2O3, ref 87 for CeO2,
ref 83 for Ta2O5, and ref 88 for WO3. The surface orientations have not been presented in the experimental reports for V2O5, Cu2O, MoO3, Ag2O,
In2O3, Ta2O5, and WO3. Therefore, all theoretical IPs and EAs of binary oxides with the indicated space groups are depicted in the figure. Note that
there are many types of surfaces for V2O5, MoO3, and Ta2O5, and the bars for each surface are extremely narrow.
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with an attention layer (hereinafter called ANN w/AL). In
contrast to the simple-ANN model, cation−anion-pair SOAPs
of a system are inputted into the ANN without averaging and
then averaged after passing through the inserted attention layer
just before the output layer. The attention layer outputs a
scalar value, and afterward, the value is input into a softmax
function. Thus, each SOAP in a system has a weight, the sum
of which is one. The transformed cation−anion-pair SOAPs
are multiplied with the weights, averaged, and finally input into
the output layer. As shown in Figures 5c,d, the prediction
accuracy is evidently improved by introducing the attention

layer, with an R2 of 0.90, RMSE of 0.29 eV, and MAE of 0.21
eV for the IPs, and 0.93, 0.27, and 0.19 eV, respectively, for the
EAs.
Furthermore, the ANN w/AL can automatically estimate the

magnitude of the impact of each atom site on the IPs and EAs.
Figure 5e exemplifies this feature for the case of a (001) surface
of Sb2O3 (space group: Pccn). The IP prediction clearly shows
the higher importance of the antimony and oxygen atoms in
the vicinity of the surface, while the halves of the antimony
atoms on the surface are especially relevant to the EA. The
weight profiles of some other binary oxides are shown in

Figure 3. Architecture of ANNs. (a) Simple-ANN, (b) ANN w/AL, and (c) ANN w/L-SOAP. Each circle in the figure is a node where the input
and output are scalars. Edges between nodes in two adjacent layers are fully connected but omitted for easy visualization.
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Figure S2. The profiles depend on the oxides and the IP or EA
but have features common to the surfaces of the same oxides.
Generally, the atoms on the second layers from the surfaces
tend to have the smallest weights and the IPs put more
importance on the surface atoms than the EAs.
Extension of SOAPs and Application to Ternary

Oxides. Next, we focus on ternary systems. Figure 6a shows
the theoretical IPs and EAs for 718 ternary oxide surfaces, with

respect to the constituent cation species. The distributions of
IPs and EAs are much larger than those in the binary systems
partly because of the inclusion of multiple cation species in the
ternary systems, as well as differences in the crystal and surface
structures between the binary and ternary systems.
In the element-pair SOAPs, information about elements can

be explicitly incorporated by concatenation of the SOAPs of
each elemental pair (see bottom left panel of Figure 4), but

Figure 4. Schematic of conventional and learnable SOAP descriptors. The element-pair SOAPs (bottom left panel) are concatenations of the
SOAPs of each elemental pair; the cation−anion-pair SOAPs (bottom center panel) are concatenations of three pairs, namely, cation−cation,
cation−anion, and anion−anion combinations; and L-SOAPs (bottom right panel) have element-based learnable weights, which are automatically
adjusted during ANN training.

Figure 5. Theoretical and predicted IPs and EAs using simple-ANN and ANN w/AL. (a) IPs and (b) EAs obtained by first-principles calculations
versus those predicted by the simple-ANN. (c) IPs and (d) EAs by first-principles calculations versus those predicted by the ANN w/AL. The
orange or green and gray dots represent the test and training data, respectively. (e) Atom-site weights from the attention layer in the IP and EA
prediction of a (001) surface of Sb2O3 whose space group is Pccn (index is 20 in Table S3). The frame indicates the surface supercell where the
upper vacant region corresponds to the vacuum layer. Larger and smaller circles are the Sb and O atoms, respectively. The weights are represented
by the shades of the atom colors: blue for Sb and pink for O. The weights are normalized so that the largest weight is one.
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Figure 6. Distribution of theoretical IPs and EAs of ternary oxides and prediction accuracy of transfer learning. (a) Distribution of theoretical IPs
and EAs. Ternary oxides include two cation species, and the same data points are shown at both cation species. The other details are the same as
those for Figure 2a. (b,c) Prediction accuracy of transfer learning for IPs and EAs, respectively. The filled and open symbols are the results of the
ANN w/L-SOAP and the ANN w/AL, respectively. The horizontal axis is the ratio of the ternary data for training to all ternary data.
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this results in several thousands of dimensions in multispecies
systems (see “Machine Learning: SOAP Descriptors” in
Methods). The cation−anion-pair SOAPs have manageable
dimensions but cannot differentiate cations in a system, which
may be crucial for the ternary systems. Hence, we developed
element-based learnable-weighted SOAPs (L-SOAPs), which
have sufficient information about atomic species despite the
considerably small number of dimensions. The details of the L-
SOAPs are described in “Machine Learning: SOAP Descrip-
tors” in Methods.
The new architecture of the ANN with L-SOAP (hereinafter

called ANN w/L-SOAP) showed an R2 of 0.90, RMSE of 0.31
eV, and MAE of 0.23 eV for the IPs, and 0.91, 0.29, and 0.21
eV, respectively, for the EAs of the binary systems; this is
comparable to the accuracy of the ANN w/AL. It is
noteworthy that the L-SOAP has only one-third of the number
of dimensions of the cation−anion-pair SOAP. The number of
dimensions of element-pair SOAPs rapidly increases with the
number of atomic species, whereas the L-SOAP keeps the
same number of dimensions. This feature of the ANN w/L-
SOAP model is a great advantage for dealing with multiple-
element systems.
The trained model, however, cannot be directly applied to

ternary systems, unlike the simple-ANN and the ANN w/AL
models, because multiple-cation effects (eq 10 in Methods) are
not learned from the binary systems. Thus, we trained the
models using the binary oxide data set and afterward retrained
them using the ternary oxide data set. In other words, we
performed transfer learning from the binary systems to the
ternary systems, where all the learning parameters in the ANN
w/AL were retrained using the ternary oxide data set. The ratio
of the ternary data for training to all ternary data was set at 10,
30, 50, and 70%, where the residues were used as test data. The
effectiveness of “transferring” is shown in Figure S3. A clear
improvement in the prediction accuracy is found for transfer
learning compared with learning from scratch.
Figure 6b shows the performance of the IP prediction with

an nmax of 5 and lmax of 3; see Figure S4 for the parity plots and
Figure S5 for the case of an nmax of 3 and lmax of 7. For
comparison, the results of the transferred ANN w/AL are
included in Figure 6. The ANN w/L-SOAP and the ANN w/
AL exhibit almost the same levels of performance in all the
ratios of training and test data. The IPs relate to the VBMs, in
which oxygen 2p-orbitals are the major components in most
binary oxides. This fact also applies to the ternary oxides
although the weak multiple-cation effects on the VBMs exist.
Because the ANN w/L-SOAP mainly learns cation−cation
interactions here, both of the ANNs show similar performances
regarding the IPs.
We now move on to the prediction of the EAs. The main

components of the CBMs are cation orbitals that are system-
dependent. Because an accurate prediction of the EAs requires
learning such CBM characters, one expects that the ANN w/
AL, which cannot explicitly incorporate the effects of the
variety of cations, would be inaccurate. Indeed, the ANN w/
AL shows considerably poor accuracy when the ratio of the
training data is 10% (Figure 6c). On the other hand, the ANN
w/L-SOAP is clearly more accurate at the same training/test
data ratio. Surprisingly, the performance of the ANN w/L-
SOAP at the 10% ratio is almost equal to that of the ANN w/
AL at the 70% ratio, and the performance at the 70% ratio is
comparable to that of the IPs, indicating the successful
incorporation of the multiple-cation effects during training.

Thus, the ANN w/L-SOAP in combination with transfer
learning makes accurate and systematic prediction of both IPs
and EAs of ternary systems feasible.

■ CONCLUSIONS
Our high-throughput first-principles calculations based on the
non-self-consistent dielectric-dependent hybrid functional
approach have enabled the construction of a large data set of
IPs and EAs for 2195 binary and 718 ternary oxide surfaces.
The accuracy of the calculated IPs and EAs has been confirmed
by comparison with available experimental values for the
selected binary oxides as shown in Figure 2b. Using the data
set, we constructed the simple-ANN model to predict the IPs
and EAs of the binary oxides. The cation−anion-pair SOAPs
were used to describe surface atomic structures before
structural relaxation, by simply inputting the crystal structures
and surface termination planes. The IPs and EAs of relaxed
surfaces were accurately predicted using the SOAP structural
descriptors even though elemental information was not
explicitly given. Furthermore, introducing an attention layer
to the simple-ANN model allows for automatically determining
relevant atoms in surface regions and enhancing the prediction
performance. This feature of the attention layer can collaterally
help us to analyze chemical and physical origins of target
properties. Finally, we extended the SOAPs to transfer the
model to the ternary oxides by introducing the element-based
learnable weights to the calculation of the SOAPs and by
connecting this process to the ANN w/AL. This transfer
learning model based on the ANN w/L-SOAP was able to
incorporate the small effects of the cations on the VBMs with
the small data set in the IP prediction. Moreover, apparent
improvement was demonstrated regarding the EA prediction,
indicating that diverse cation effects on the CBMs were well
incorporated.
The ANN w/L-SOAP developed here enables the band

alignment of a vast number of metal oxide surfaces, which is
fundamental to the design of various materials and devices.
Moreover, it is not restricted to the prediction of surface
properties of metal oxides but can be naturally applied to other
multicomponent systems and other properties in the same way
as crystal graph convolutional neural networks.38 Thus, we
believe that our new model paves the way for the high-
throughput prediction of diverse materials and properties.

■ METHODS
Screening of First-Principles Calculation Data: Binary

Oxides. The binary oxides considered in this work are listed in
Table S3. The table contains 134 nonmetallic oxides whose band
structures are formally constructed by fully occupied or empty atomic
orbitals, including 41 types of atom species. To cover a wide variety of
stable and metastable polymorphs, experimentally determined crystal
structures of binary oxides were used as prototypes, and the cations of
the prototypes were substituted with isovalent cations. The details of
the cation substitution procedures are described in ref 51.

We excluded the oxides without the special isometry that nonpolar
slabs should have.52 In addition, we screened out binary oxides with
rather narrow theoretical band gaps using criteria of band gaps smaller
than 0.1 eV and ion-clamped static dielectric constants larger than 20,
resulting in the 127 binary oxides with cation species other than those
in the parentheses in Table S3. Then, we generated 3383 nonpolar
surface models for the 127 binary oxides with relatively small Miller
indices as listed in Table S3. To exclude unreasonable surface
structures, we selected surfaces that were smoothly optimized during
first-principles calculations and those with surface energies higher
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than 0 J/m2. In addition, we excluded the outliers in surface energy,
which did not fulfill the following inequality

E E

E

E E

3

3

surface,mean surface,std

surface

surface,mean surface,std

×

<
< + × (1)

where Esurface is the surface energy of the objective surface, and
Esurface,mean and Esurface,std are the mean and standard deviations of the
surface energies, respectively, in which the surfaces are generated from
the common bulk system to the objective surface, resulting in the data
set with 2195 binary oxide surfaces for machine learning.
Ternary Oxides. We screened and collected ternary oxide data

from the Materials Project database53 in the following manner: (1)
extract the most stable binary oxides of A and B, where A and B are
any of the 40 cation elements; (2) draw a convex hull of the formation
energies of A−B ternary oxides with respect to the A binary oxide and
the B binary oxide; (3) select the ternary oxides on the convex hull;
and (4) exclude the ternary oxides without the special isometry and
with band gaps smaller than 0.1 eV. We then evaluated the band gaps
using non-self-consistent dielectric-dependent hybrid functional
calculations and screened the ternary oxides in the same way as the
binary oxides. We obtained 344 ternary oxides through these
processes. Then, we made the nonpolar surface models, where the
maximum Miller indices were set to be 2. These surfaces were
screened in the same way as the binary cases, resulting in 718 ternary
oxide surface data.
First-Principles Calculations of Band Positions. IPs and EAs

are estimated as follows16

IP ( ) ( )vac
surface

ref
surface,far

VBM
bulk

ref
bulk= (2)

EA ( ) ( )vac
surface

ref
surface,far

CBM
bulk

ref
bulk= (3)

where vac
surface and ref

surface,far are the vacuum level and the electrostatic
reference level in the bulk-like region far from the surface,
respectively. These quantities are obtained by calculations using
surface supercells, each of which is composed of a slab of an oxide and
a vacuum layer. VBM

bulk , CBM
bulk , and ref

bulk are the VBM, CBM, and
electrostatic reference levels in the corresponding bulk model,
respectively. These three values are obtained by calculations using
bulk primitive cells.
Computational Procedures for Bulk Systems. The calcu-

lations were performed using the projector augmented-wave (PAW)
method54 as implemented in the Vienna ab initio simulation package
(VASP).55,56 The VBM

bulk and CBM
bulk were calculated by the approach

reported in ref 21. In this scheme, the nonlocal exchange mixing
parameter in the full-range hybrid functional of the Perdew−Burke−
Ernzerhof (PBE0) form57,58 is set to be the inverse of the ion-clamped
static dielectric constant of the system.59,60 The PBE functional tuned
for solids (PBEsol)61 was used for the semilocal part of the hybrid
functional. Non-self-consistent hybrid functional calculations21,62

were performed on top of PBEsol with Hubbard U corrections to
localized orbitals63 to simultaneously attain low computational cost
and high accuracy. This approach is particularly advantageous in the
high-throughput evaluation of IPs and EAs as it allows for the direct
alignment of the bulk hybrid functional eigenvalues with the vacuum
levels in surface supercells obtained using PBEsol(+U) through the
common electrostatic reference levels.21 For the reference level ref

bulk ,
we used the averaged local potentials at the oxygen sites.

PBEsol(+U) was used for obtaining optimized structures, static
dielectric constants, and wave functions for the non-self-consistent
dielectric-dependent hybrid functional calculations. The means of the
diagonal elements of the ion-clamped static dielectric tensors obtained
using the random phase approximation were taken to determine the
values of the nonlocal exchange mixing parameter for respective
systems.

Computational Procedures for Surfaces. We focus on high-
throughput calculations of nonpolar surfaces in this study because
specific treatments are necessary for modeling polar surfaces as
mentioned above. We prepared slab models for nonpolar surfaces of
Tasker’s types I and II64 for the binary and ternary oxides. Their
maximum Miller indices were set to be those listed in Table S3 for
binary oxides and 2 for ternary oxides. Each slab model has a slab
layer thicker than 20 Å and a vacuum layer thicker than 15 Å, which
are large enough for the electrostatic potential to converge
sufficiently.21 The convergence test results of IPs, EAs, and surface
energies with respect to the vacuum and slab layer thicknesses are
shown for selected systems in Figure S6. The slab models were
automatically created using the code developed in ref 52. The surfaces
were structurally relaxed with their lattice constants fixed by using
PBEsol(+U). vac

surface was estimated as the electrostatic potential at the
midpoint of the vacuum layer, and ref

surface,far was taken to be the
average of the local potentials of the oxygen sites around the midpoint
of the slab layer.
Computational Details. The PAW data set used in the

calculations is detailed in Table S4. The plane-wave cutoff energy
was set to 520 eV for the bulk structure optimization, including lattice
parameter relaxation, and 400 eV for the other calculations with the
lattice parameters fixed. The k-point mesh spacings for structure
optimization were set to be smaller than 0.2 Å−1 and reduced to be
less than 0.1 Å−1 in the calculations of the ion-clamped static
dielectric tensors. The band path for estimating the VBM and CBM of
each bulk system was generated using SeeK-path.65,66 Hubbard U
corrections were applied to localized orbitals by using the parameters
listed in Table S4.
Machine Learning: SOAP Descriptors. For input descriptors to

describe surface atomic configurations, we employed SOAPs, which
are often used to construct machine learning potentials and analyze
complicated systems.67,68 In SOAPs, the positions of atoms labeled
with Z (usually atomic species) are smeared with three-dimensional
Gaussian functions as

r e( ) r RZ

i

Z 1
2 i2=

| |
| |

(4)

where Ri is the position of the i-th atom surrounding r. |Z| is the
number of atoms labeled Z within the cutoff radius and σ is a standard
deviation of the Gaussian function. The summation of the smeared
atom positions is then expanded by linear combinations of radial basis
functions with a cutoff radius and spherical harmonics considering the
local point of interest. The coefficients are defined as

r rc Vg Yd ( ) ( , ) ( )nlm
Z

n lm
Z

3
= | |

(5)

where gn and Ylm are radial basis functions and spherical harmonics,
respectively. The former generally depends on location r from the
center and the latter on polar angle θ and azimuth ϕ in the polar
coordinates around the center. n is the degree of the radial basis
function; l and m are the degree and order of the spherical harmonics,
respectively. The partial power spectrum vector is defined as

p
l

c c8
2 1nn l

Z Z

m
nlm
Z

n lm
Z1 2 1 2=

+ (6)

where Z1 and Z2 are the symbols of elements. The element-pair and
cation−anion-pair SOAPs were obtained on the basis of these
procedures by using the DScribe code.47

In the L-SOAP, atomic positions are not separately considered for
every atom species, unlike the usual SOAP procedure. Instead, we
weighted the broadened atomic positions in eq 4 on every atom as

r we( ) r R

i

N

i

1
2 i2= | |

(7)

where wi is its weight and N is the number of atoms within the cutoff
radius. The bottom right panel of Figure 4 shows the schematic of the
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L-SOAP. Here, we replaced the Gaussian function in eq 7 with the
delta function for easy calculation, resulting in changing the operation
of integration in eq 5 to a summation as

rc g Y w( ) ( , )nlm
i

N

n i lm i i i= | |
(8)

We connected the L-SOAPs to the ANN w/AL (see Figure 3c),
which enables the model to learn the weights wi in eq 8 during
training. Atomic species described by one-hot vectors are encoded at
an embedding layer to atomic feature vectors as

v xWi iemb= (9)

where xi is a one-hot vector of an i-th atom in a system for describing
its atomic species. Wemb is a weight matrix for encoding the one-hot
vectors into the feature vectors vi. Here, the dimensions of the feature
vectors were set to 32. Then, the weights for the L-SOAPs in eq 8 are
calculated as

v v rw f ( , , )i i icenter= | | (10)

where vcenter is the atomic feature vector of the centered atom and vi is
that of the atom located at |ri| from the center. The function f is a
simple neural network with two hidden layers. The coefficients and
SOAPs are then calculated according to eqs 6 and 8. The rest of the
processes are the same as those for the ANN w/AL.

SOAPs are typically inputted into a kernel function; however, we
used nonkernel SOAPs, namely, the partial power spectrum vector in
this study. The maxima of n (nmax) and l (lmax) for the radial basis
functions and spherical harmonics were surveyed in combinations 3,
5, and 7. The cutoff radius for the radial basis functions was fixed to
7.0 Å and the standard deviation of the Gaussian function in eqs 4 and
7 was set at 1.0 Å. The relatively large cutoff radius was used to
include the surface effects in the SOAPs for atoms on layers below the
surfaces, thereby improving prediction accuracy. For instance, a
smaller cutoff radius of 5.0 Å in the Simple-NN for the IP prediction
shows an MAE of 0.38 eV for the test data, which is clearly less
accurate than the case of 7.0 Å, 0.23 eV.
Procedures for Regression. Among various regression techni-

ques, we selected ANNs for predicting IPs and EAs in this study
because they offer flexible architecture, automatic extraction of
relevant surface-region atoms, as described in Results and Discussion,
and transferability to other systems.

The simple-ANN shown in Figure 3a has a typical architecture with
input, hidden, and output layers. The input vectors are averaged
SOAPs of a system. Its hyperparameters, e.g., the number of hidden
layers, are listed in Table S5. The rectified linear unit was used as an
activation function, and the dropout rate was fixed at 0.5 in hidden
layers that were not linked with the output layer.

The data sets used in the regression were divided into training,
validation, and test data sets with a ratio of 8:1:1, where we did not
care about the distribution of the cation species in respective data sets.
Fivefold cross validation using the validation data sets was performed
for tuning the hyperparameters of the ANNs. We used back-
propagation based on the Adam scheme69 to optimize all the learning
parameters in the network, thereby minimizing the mean squared
errors between the model outputs and the training targets. The
learning rate for the optimization was 0.001, and the maximum epoch
was 200. The training was terminated when the prediction accuracy of
the validation data was converged to be almost constant as
exemplified by the IP learning curve for the simple-NN in Figure
S7. All of the training converged well within 200 epochs.
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