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BACKGROUND: It is unclear how metabolic syndrome (MetS) and diabetes affect Gal-3 (galectin 3) levels and the resulting im-
plications for heart failure (HF) risk. We assessed relationships of MetS and diabetes with Gal-3, and their joint associations 
with incident HF.

METHODS AND RESULTS: We included 8445 participants without HF (mean age, 63 years; 59% men; 16% Black race) at ARIC 
(Atherosclerosis Risk in Communities) study visit 4 (1996–1999). We categorized participants as having MetS only, MetS with 
diabetes, or neither, and by quartiles of MetS severity Z score. We assessed cross-sectional associations of metabolic risk 
categories with high Gal-3 level (≥75th percentile) using logistic regression. We used Cox regression to evaluate combined as-
sociations of metabolic risk categories and Gal-3 quartiles with HF. In cross-sectional analyses, compared with no MetS and 
no diabetes, MetS only (odds ratio [OR], 1.24 [95% CI, 1.10–1.41]) and MetS with diabetes (OR, 1.59 [95% CI, 1.32–1.92]) were 
associated with elevated Gal-3. Over a median follow-up of 20.5 years, there were 1749 HF events. Compared with individuals 
with neither diabetes nor MetS and with Gal-3 in the lowest quartile, the combination of MetS with diabetes and Gal-3 ≥75th 
percentile was associated with a 4-fold higher HF risk (hazard ratio, 4.35 [95% CI, 3.30–5.73]). Gal-3 provided HF prognostic 
information above and beyond MetS, NT-proBNP (N-terminal pro-B-type natriuretic peptide), high-sensitivity cardiac troponin 
T, and CRP (C-reactive protein) (ΔC statistic for models with versus without Gal-3: 0.003; P=0.004).

CONCLUSIONS: MetS and diabetes are associated with elevated Gal-3. The HF risk significantly increased with the combination 
of greater metabolic risk and higher Gal-3.
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Gal-3 (galectin 3), a β-galactoside–binding lectin ex-
pressed in various cell types, has been implicated 
in several functional pathways, including fibrosis 

and inflammation.1 Gal-3 is expressed at low levels in 
healthy cardiac tissue and at much higher levels during 
cardiac injury.2 Mechanistic studies have suggested 
that Gal-3 may play a critical role in the pathogene-
sis of adverse cardiac remodeling and dysfunction.3 
Several community-based studies have shown a pos-
itive association of circulating levels of Gal-3 with left 

ventricular hypertrophy, left ventricular dysfunction, 
and incident heart failure (HF).4–6 Prior studies have not 
specifically investigated the influence of metabolic syn-
drome (MetS) and diabetes on Gal-3, as well as related 
implications for HF risk.

The pathways leading to elevated Gal-3 and subse-
quent HF remain incompletely understood. Gal-3 can 
interfere in the signaling pathway involved in collagen 
synthesis in vascular smooth muscle cells, which is 
stimulated by high aldosterone levels, thus promoting 
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vascular fibrosis and cardiac remodeling.7 Metabolic 
traits may also play an important role in the pathways 
linking Gal-3 and HF. Studies have shown that elevated 
Gal-3 is associated with impaired glucose regulation, 
diabetes, obesity, and MetS.8 Furthermore, MetS9 and 
diabetes10 are established metabolic risk factors for 
incident HF and are independently associated with 
adverse cardiac remodeling, marked by evidence of fi-
brosis, which predisposes to HF. Extant laboratory and 
clinical data suggest that Gal-3–related myocardial fi-
brosis is likely more pronounced among individuals with 
MetS than among those without MetS.11 Furthermore, 
it is unclear whether the association of Gal-3 with inci-
dent HF differs among subgroups defined by MetS and 
diabetes (given that diabetes confers cardiovascular 
disease risk beyond MetS when present), and whether 
metabolic risk status and Gal-3 provide complemen-
tary prognostic information for HF risk.

Using data from the community-based ARIC 
(Atherosclerosis Risk in Communities) study, we exam-
ined the following: (1) the association of metabolic risk 
status (the presence of MetS with and without diabe-
tes, and levels of MetS severity) with Gal-3 levels and 
(2) the joint associations of Gal-3 and metabolic risk 
status with incident HF.

METHODS
The data that support the findings of this study are 
available from the corresponding author on reason-
able request.

Study Population
The ARIC study recruited 15 792 participants from 4 US 
communities.12 The first study visit took place in 1987 
to 1989, and since then participants have returned for 
subsequent study visits (7 to date), and have undergone 
follow-up for cardiovascular disease events by annual tel-
ephone interviews and active surveillance of ARIC study 
community hospitals and review of death certificates.

Of the 11 656 participants who attended ARIC study 
visit 4 (1996–1998) during which Gal-3 was measured, 
we excluded individuals with a history of coronary 
heart disease or HF (n=1375), race other than Black or 
White (n=69), missing data on Gal-3 or on the rs4644 
variant known to affect the Gal-3 levels13,14 (n=1166), 
missing data on MetS components or diabetes status 
(n=403), and missing data on other covariates, such 
as estimated glomerular filtration rate (eGFR), smoking 
status, or alcohol use (n=15). After exclusions, 8628 
participants were included in the final analysis.

All participants provided written informed con-
sent, and the study protocol was approved by the 
Institutional Review Board at each study site.

Gal-3 Assessment
At visit 4, Gal-3 was measured using a chemiluminescent 
microparticle immunoassay on an Architect i 2000sr 
instrument (Abbott, Abbott Park, IL) in EDTA-plasma 
samples collected and stored at −70 °C before meas-
urement. The assay’s limit of detection is 1.1 ng/mL; limit 
of quantitation is 4.0 ng/mL. The interassay coefficients 
of variation were 5.2%, 3.3%, and 2.3% at mean Gal-3 
levels of 8.8, 19.2, and 72.0 ng/mL, respectively.

The rs4644 variant, a common single-nucleotide 
polymorphism in the gene encoding Gal-3 (LGALS3), 
lies within the epitope of the binding region for the anti-
body used to measure Gal-3 in the ARIC study cohort. It 
can interfere with the plasma Gal-3 assay performance. 
Similar to the approach used in other investigations 
using the ARIC study cohort data,13,14 our analyses ad-
justed for rs4644 to account for the variable frequency 
of this variant across populations. Exome genotyping for 
common variants was performed using HumanExome 
BeadChip Array (Illumina, San Diego, CA).15

Ascertainment of Diabetes Status and 
MetS Status
Prevalent diabetes at visit 4 was defined by a physician-
reported diagnosis of diabetes, self-reported use of 
diabetes medications, a nonfasting blood glucose 

CLINICAL PERSPECTIVE

What Is New?
•	 The metabolic risk factors of metabolic syn-

drome and diabetes and the biomarker Gal-3 
(galectin 3) are individually associated with the 
risk of heart failure. It is unclear how interrela-
tionships among these measures affect heart 
failure risk.

•	 Metabolic risk factors were associated with el-
evated Gal-3 (highest quartile).

•	 Compared with individuals with neither diabe-
tes nor metabolic syndrome and with low Gal-3 
(lowest quartile), the combination of metabolic 
syndrome, diabetes, and elevated Gal-3 was 
associated with ≈4-fold higher risk of heart 
failure.

What Are the Clinical Implications?
•	 Gal-3 can provide heart failure prognostic informa-

tion above and beyond the presence of metabolic 
syndrome and traditional cardiac biomarkers.

Nonstandard Abbreviations and Acronyms

Gal-3	 galectin 3
MetS	 metabolic syndrome
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level ≥200 mg/dL, or a fasting blood glucose level 
≥126 mg/dL.

MetS was defined at baseline (visit 4) using the 
American Heart Association/National Heart, Lung, and 
Blood Institute criteria guidelines,16 as the presence of 
3 of the 5 following criteria: (1) abdominal obesity (waist 
circumference ≥102 cm in men or ≥88 cm in women), (2) 
elevated blood pressure (BP) (systolic BP ≥130 mm Hg, 
diastolic BP ≥85 mm Hg, or use of antihypertensive 
medications), (3) impaired fasting glucose (fasting 
blood glucose level ≥100 mg/dL) without a diagnosis 
of diabetes, (4) low high-density lipoprotein cholesterol 
(≤40 mg/dL in men or ≤50 mg/dL in women), and (5) 
elevated triglycerides (≥150 mg/dL).

We calculated a continuous MetS severity Z score 
at baseline among participants using sex- and race-
based formulas.17 The score was previously derived 
using a confirmatory factor analysis approach for the 
5 traditional MetS components (waist circumference, 
triglycerides, high-density lipoprotein cholesterol, sys-
tolic BP, and fasting blood glucose level) to determine 
the weighted contribution of each component to a 
latent MetS factor on a sex- and race- or ethnicity-
specific basis. The resulting MetS severity scores are 
Z scores (normally distributed and ranging from the-
oretical negative to positive infinity with mean=0 and 
SD=1) of relative MetS severity on a sex- and race- and 
ethnicity-specific basis.17

In the analyses, we considered MetS alone and the 
combination of MetS and diabetes. This is because 
MetS is found in most individuals with type 2 diabetes, 
and when diabetes is present, it confers risk above and 
beyond that of MetS alone.

Incident Outcome Assessment
The outcome of interest in prospective analyses was 
incident HF, defined as the first hospitalization or death 
related to HF occurring after visit 4, with follow-up 
through December 31, 2019. Participants were called 
on a yearly basis to obtain information on hospitaliza-
tions, and vital records were examined for all deaths. 
Hospitalizations and deaths attributable to incident 
HF were defined by HF discharge codes (International 
Classification of Diseases, Ninth Revision [ICD-9], code 
428 for hospitalizations early during follow-up and 
International Classification of Diseases, Tenth Revision 
[ICD-10], code I50 for later follow-up).18

Covariate Assessment
Information on medical history, medication use, alcohol 
use, and current smoking was obtained using stand-
ardized self-report questionnaires. Systolic and dias-
tolic BP measurements were recorded as the mean of 
2 readings. Body mass index was calculated as weight 
in kilograms divided by the square of height in meters, 

and obesity was defined as body mass index ≥30 kg/m2.  
Serum glucose was measured using the hexokinase 
method. Plasma glucose was measured using the 
hexokinase method. Serum, triglycerides, and high-
density lipoprotein cholesterol concentrations were 
measured by using automated enzymatic assays. 
eGFR was calculated from serum creatinine and cys-
tatin C–based new equation.19 NT-proBNP (N-terminal 
pro-B-type natriuretic peptide) was measured using 
an electrochemiluminescent immunoassay on an au-
tomated Cobas e411 analyzer (Roche Diagnostics, 
Mannheim, Germany), and high-sensitivity cardiac 
troponin T levels were measured with a highly sensi-
tive assay, Elecsys Troponin T (Roche Diagnostics, 
Indianapolis, IN) on an automated Cobas e411 ana-
lyzer. CRP (C-reactive protein) was measured via im-
munophelometric assay.

Statistical Analysis
The baseline characteristics of participants were com-
pared across MetS Z score quartiles using the ANOVA 
procedure (for continuous variables) or the χ2 test (for 
categorical variables).

In cross-sectional analyses, elevated Gal-3 lev-
els were defined as ≥75th sex-specific percentile. 
Differences were observed in the distribution of Gal-3 
by sex, as described in other studies.4 Analyses were, 
therefore, conducted using sex-specific quartiles of 
Gal-3.

Adjusted logistic regression was used to explore the 
association of each component of the MetS and of the 
number of MetS components with elevated Gal-3 lev-
els (≥75th percentile). Associations were also assessed 
between the severity of MetS, as assessed by the 
MetS severity Z score (modeled as a continuous and 
categorical [quartile] variables) and elevated Gal-3 lev-
els. Associations were also assessed between 3 met-
abolic risk categories and elevated Gal-3: no diabetes/
MetS (reference); MetS only; and MetS and diabetes. 
Given the small number of individuals with diabetes 
without MetS, and that MetS is frequently a precursor 
to the development of type 2 diabetes, individuals with 
diabetes without MetS were excluded from this anal-
ysis. The logistic regression models were adjusted for 
age, sex, race/center, alcohol use, cigarette smoking, 
rs4644 genotype, and eGFR.

In prospective analyses using visit 4 as the baseline, 
Cox proportional hazard regression models were used 
to estimate the adjusted hazard ratios (HRs) and corre-
sponding 95% CIs for associations of cross-categories 
of quartiles of Gal-3 and quartiles of the MetS severity 
Z score with incident HF, after adjustment for baseline 
risk factors. The use of cross-categories was meant to 
inform on the complementary prognostic information 
provided by Gal-3 and metabolic syndrome severity in 
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relation to HF risk. We also examined the associations 
of cross-categories of metabolic risk category and 
Gal-3 quartiles with incident HF. For all Cox models, 
we adjusted for age, sex, race/center, alcohol use, cig-
arette smoking, rs4644 genotype, eGFR, NT-proBNP, 
high-sensitivity cardiac troponin T, and CRP. The pro-
portional hazards assumption was tested by inspect-
ing the log-log survival plots.

We assessed the additive predictive value of Gal-3 
above and beyond MetS, diabetes, and other risk 
factors (including all the aforementioned adjustment 
variables), by evaluating the changes in C-statistic 
(prediction statistic) associated with the addition of 
Gal-3 to traditional HF risk factors. The C-statistic was 
assessed using the Harrell method,20 and the signif-
icance difference in C-statistics was assessed using 
the likelihood ratio test.

We conducted additional analyses accounting for 
the competing risk of death, because incident death 
may not be negligible among individuals included 
in our study given their age. This was done by fitting 
Fine-Gray proportional subdistribution hazard models. 
We also conducted sensitivity analyses, in which we 
excluded the impaired fasting glycemia criterion from 
the definition of MetS, to assess the extent to which 
elevated glycemia as a component of MetS influences 
the estimates of associations with incident HF.

P<0.05 was used to denote statistical significance. 
P values of trends were derived from linear models ob-
tained by regressing the risk estimates on the midpoint 
of the exposure interval. The trend test was based on 
the slope of the regression line. All analyses were per-
formed using Stata, version 16.

RESULTS
The study population of 8628 individuals had a 
mean±SD age of 63.2±5.6 years, with 57.8% women 
and 16% Black adults. Compared with participants in 
the lowest quartile of the MetS Z score, those in the 
highest quartile of the MetS Z score were older and 
more likely to have obesity, hypertension, diabetes, 
and a lower eGFR but were less likely to be current 
smokers (Table 1).

The proportion of participants with elevated Gal-3 
(≥75th percentile) increased with greater MetS severity, 
with a prevalence of 18.3% among those in the low-
est quartile of the MetS Z score, and 30.5% among 
those in the highest quartile of the MetS Z score. In 
cross-sectional analyses, when examining the individ-
ual components of the MetS (Table S1), higher Gal-3 
levels (≥75th percentile) were significantly associated 
with an elevated BP (odds ratio [OR], 1.53 [95% CI, 
1.35–1.74]), high triglycerides (OR, 1.52 [95% CI, 1.34–
1.72]), and elevated waist circumference (OR, 1.19 

[95% CI, 1.04–1.36]). The proportion of participants 
with elevated Gal-3 also differed by metabolic risk cat-
egories, from a prevalence of 20.0% among those with 
no MetS/diabetes, to 27.7% among those with MetS 
only and 31.7% among those with MetS and diabetes.

In regression analyses, an increasing number of 
MetS components was strongly linked to elevated Gal-
3. The presence of 5 MetS components, relative to no 
MetS components, was associated with 3-fold higher 
likelihood of elevated Gal-3 in model 1 (OR, 3.04 [95% 
CI, 2.27–4.07; Table 2). After additional adjustment for 
eGFR (model 2), this association remained strong but 
was attenuated to an OR of 2.04 (95% CI, 1.50–2.78). 
In the fully adjusted model, the top quartile of the MetS 
Z score was associated with an OR of 1.59 (95% CI, 
1.34–1.89) for elevated Gal-3 relative to the bottom 
quartile (Table S1). The severity of MetS as captured 
by the score was approximately linearly associated 
with Gal-3 levels (Figure  S1). Compared with people 
with no diabetes and no MetS, the presence of MetS 
only (OR, 1.24 [95% CI, 1.10–1.41]) and the presence of 
MetS with diabetes (OR, 1.59 [95% CI, 1.32–1.92]) were 
associated with progressively higher odds of having an 
elevated Gal-3 level (Table 2).

In prospective analyses, over a median follow-up of 
20.5 years, there were 1749 incident HF events. There 
was no significant interaction on the multiplicative 
scale between the MetS Zscore quartile and Gal-3 on 
the outcome of incident HF (P interaction=0.14). When 
considering the joint associations of metabolic status 
and Gal-3 with HF risk, we found that higher Gal-3 was 
associated with greater absolute HF risk (HF incidence 
rate) within each quartile of MetS Z score (Table 3) and 
each level of metabolic risk category defined by the 
presence of MetS, diabetes, or both (Table 4).

Individuals in the highest quartile of MetS Z score 
and highest quartile of Gal-3 had a 3.3-fold higher risk 
of future HF (HR, 3.27 [95% CI, 2.42–4.41]) than those 
in the lowest quartiles of both MetS Z score and Gal-3 
(Table 3). Similarly, compared with individuals with nei-
ther diabetes nor MetS and with Gal-3 in the lowest 
quartile (Table 4), the combination of MetS with diabe-
tes and Gal-3 ≥75th sex-specific percentile was asso-
ciated with an ≈4-fold higher risk of future HF (HR, 4.35 
[95% CI, 3.30–5.73]). There was an increasing trend in 
the risk of HF associated with Gal-3 modeled continu-
ously within each of the increasing levels of metabolic 
risk categories (Table S2).

The addition of Gal-3 to a model including tradi-
tional risk factors, MetS Z score, NT-proBNP, high-
sensitivity cardiac troponin T, and CRP showed that 
Gal-3 significantly improved risk prediction for HF 
(C-statistic for model without Gal-3: 0.759 [95% CI, 
0.748–0.771] versus C-statistic for model with Gal-3: 
0.762 [95% CI, 0.749–0.772]; C-statistic improvement 
[ΔC statistic]: 0.003; P for difference: 0.006). When we 
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used metabolic risk category (no diabetes/MetS, MetS 
only, or MetS and diabetes) instead of MetS Z score in 
the models, Gal-3 similarly improved risk prediction for 
HF (C-statistic for model without Gal-3: 0.759 [95% CI, 
0.750–0.773] versus C-statistic for model with Gal-3: 
0.762 [95% CI, 0.750–0.773]; C-statistic improvement 
[ΔC statistic]: 0.003; P for difference: 0.004).

In additional analyses that account for the com-
peting risk of death, we obtained approximately sim-
ilar results for the joints associations of metabolic risk 
status and Gal-3 with HF (Tables S3 and S4). In these 
competing risk analyses, although there was a slight 
attenuation of the magnitude of the estimates, risk 
associations remained significant (Tables S3 and S4).  

Table 1.  Baseline Characteristics of ARIC Study Participants at Visit 4 (1996–1998) by Metabolic Status Categories

MetS Z score

Characteristic
Total 
(N=8628)

Quartile 1 
(N=2157)

Quartile 2 
(N=2157)

Quartile 3 
(N=2157)

Quartile 4 
(N=2157) P value* P-trend

Age, y 63.2 (5.6) 62.7 (5.7) 63.1 (5.7) 63.4 (5.6) 63.4 (5.6) <0.001 <0.001

Female sex, N (%) 4990 (57.8) 1372 (63.6) 1207 (56.0) 1134 (52.6) 1277 (59.2) <0.001 0.001

Race and center, N (%) <0.001 <0.001

White, Minneapolis, MN 2599 (30.1) 725 (33.6) 678 (31.4) 642 (29.8) 554 (25.7)

White, Washington 
County, MD

2193 (25.4) 441 (20.4) 492 (22.8) 590 (27.4) 670 (31.1)

White, Forsyth County, NC 2098 (24.3) 600 (27.8) 552 (25.6) 519 (24.1) 427 (19.8)

Black, Forsyth County, NC 184 (2.1) 48 (2.2) 47 (2.2) 49 (2.3) 40 (1.9)

Black, Jackson, MS 1554 (18.0) 343 (15.9) 388 (18.0) 357 (16.6) 466 (21.6)

Drinking, N (%) <0.001 <0.001

Current 4428 (51.3) 1286 (59.6) 1158 (53.7) 1056 (49.0) 928 (43.0)

Past 2431 (28.2) 513 (23.8) 575 (26.7) 669 (31.0) 674 (31.2)

Never 1769 (20.5) 358 (16.6) 424 (19.7) 432 (20.0) 555 (25.7)

Smoking, N (%) <0.001 0.001

Current 1238 (14.3) 364 (16.9) 339 (15.7) 277 (12.8) 258 (12.0)

Past 3686 (42.7) 884 (41.0) 902 (41.8) 974 (45.2) 926 (42.9)

Never 3704 (42.9) 909 (42.1) 916 (42.5) 906 (42.0) 973 (45.1)

eGFR-Cr-CysC, mL/min per 
1.73 m2

86.4 (16.0) 90.0 (14.5) 87.0 (15.5) 84.5 (15.6) 83.9 (17.4) <0.001 <0.001

BMI, kg/m2 28.6 (5.5) 24.3 (3.4) 27.2 (3.7) 29.6 (4.1) 33.1 (6.0) <0.001 <0.001

Obese (BMI ≥30 kg/m2), 
N (%)

2897 (33.6) 113 (5.2) 427 (19.8) 924 (42.8) 1433 (66.4) <0.001 <0.001

SBP, mm Hg 126.8 (18.6) 119.7 (17.5) 125.2 (17.5) 128.5 (17.9) 133.9 (18.6) <0.001 <0.001

Hypertension medications, 
N (%)

3337 (38.7) 508 (23.6) 721 (33.4) 918 (42.6) 1190 (55.2) <0.001 <0.001

Total cholesterol, mg/dL 201.8 (36.2) 196.0 (33.2) 200.6 (34.8) 204.0 (36.6) 206.8 (39.2) <0.001 <0.001

HDL cholesterol, mg/dL 50.8 (16.7) 66.4 (17.1) 51.6 (12.6) 44.5 (11.6) 40.7 (11.6) <0.001 <0.001

Fasting glucose, mg/dL 107.2 (30.7) 93.6 (8.6) 98.1 (8.8) 103.2 (12.2) 133.8 (49.6) <0.001 <0.001

Diabetes, N (%) 1123 (13.0) 38 (1.8) 53 (2.5) 157 (7.3) 875 (40.6) <0.001 <0.001

MetS, N (%) 4446 (51.5) 82 (3.8) 690 (32.0) 1631 (75.6) 2043 (94.7) <0.001 <0.001

rs4644 Variant, N (%) 0.90 0.488

AA 1300 (15.1) 325 (15.1) 322 (14.9) 334 (15.5) 319 (14.8)

AC 4058 (47.0) 990 (45.9) 1024 (47.5) 1017 (47.1) 1027 (47.6)

CC 3270 (37.9) 842 (39.0) 811 (37.6) 806 (37.4) 811 (37.6)

Galectin-3, ng/mL 14.1 
(11.9–16.7)

13.7 
(11.6–16.0)

14.0 (11.8–16.4) 14.2 (12.0–16.7) 14.7 (12.4–17.5) <0.001 <0.001

Elevated galectin-3 (≥75th 
percentile), N (%)

2109 (24.4) 395 (18.3) 493 (22.9) 563 (26.1) 658 (30.5) <0.001 <0.001

Values are mean (SD) or median (interquartile range) for continuous variables and number (percentage) for categorical variables. The rs4644 variant is 
included because of its effects on galectin-3 levels. ARIC indicates Atherosclerosis Risk in Communities; BMI, body mass index; eGFR-Cr-CysC, estimated 
glomerular filtration rate using creatinine and cystatin C; HDL, high-density lipoprotein; MetS, metabolic syndrome; and SBP, systolic blood pressure.

*P values for continuous variables are based on ANOVA or Kruskal-Wallis tests, depending on distribution. P values for categorical variables are based on 
χ2 tests.
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In additional sensitivity analyses, the exclusion of fast-
ing glucose measurement from the MetS definition 
resulted in a notable attenuation of the magnitude of 
our estimates (Tables  S5 and S6). Further analyses 
examining the risk of HF in relation to Gal-3 and meta-
bolic risk over the first 5 years (short-term) and beyond 
5 years (long-term) showed no significant difference in 
the risk over the 2 periods (Tables S7 and S8).

DISCUSSION
In a large community-based cohort of Black and White 
adults free of cardiovascular disease, metabolic dys-
regulation was associated with a higher odds of ele-
vated Gal-3, a biomarker of inflammation and fibrosis. 
More important, even after adjustment for covariates in 
prospective analyses, an adverse metabolic profile and 
elevated Gal-3 provided complementary prognostic in-
formation about HF risk. Similarly, the concomitance of 
severe MetS and elevated Gal-3 was associated with 
a 4-fold higher HF risk compared with the lowest level 
of MetS severity and low Gal-3. Moreover, the combi-
nation of MetS/diabetes and elevated Gal-3 was as-
sociated with ≈6-fold higher risk. These findings have 
significant clinical implications, as MetS commonly 
precedes and coexists with type 2 diabetes,21 with 
most individuals with type 2 diabetes having MetS 
(>70%).22,23 Furthermore, MetS, diabetes, and Gal-3 
are each independently associated with an increased 
risk of incident HF.

Prior studies had shown an association between 
diabetes or MetS and Gal-3, as well as between Gal-3 
and HF.4,6,24,25 Indeed, Gal-3 has been associated with 
a variety of metabolic abnormalities, including insulin 
resistance, impaired glucose tolerance/diabetes, and 
obesity.8,26–29 This is corroborated by our findings of 
associations of MetS and its various components with 
elevated Gal-3 levels. Similarly, several studies have 
shown an association of Gal-3 with incident HF4,6,24,25 
and adverse HF prognosis.30–32 However, to date, 
most community-based studies have lacked racial 

and ethnic diversity, have not examined the severity 
of MetS in relation to Gal-3, and have also not inves-
tigated the combined associations of metabolic risk 
status (and its severity) and Gal-3 with the risk of HF 
(including prior analyses of the ARIC study data6,33). 
A single prior study found that Gal-3 was associated 
with stage B HF among individuals with metabolic ab-
normalities compared with those without a metabolic 
abnormality,34 which is congruent with the results in 
our study.

Our findings extend prior research by showing the 
additional prognostic implications of both metabolic 
dysregulation (including its severity) and elevated Gal-3 
levels for incident HF risk. The practical implication of 
our findings is that the combined use of Gal-3, MetS, 
and diabetes can enhance HF risk stratification, pos-
sibly allowing a better selection of candidates for more 
intensive HF prevention. Gal-3 could help stratify high-
risk individuals (eg, individuals with the combination of 
diabetes and MetS) who might benefit the most from 
lifestyle- or pharmacologic-based preventive therapy 
for HF, including cardioprotective therapies, such as 
sodium-glucose cotransporter-2 inhibitors,35,36 and 
glucagon-like peptide receptors antagonists.37 Gal-3 
levels could also help guide the specific use of min-
eralocorticoid receptor antagonists for HF prevention, 
which, in combination to Gal-3 blockade, have been 
shown to reverse isoproterenol-induced left ventricular 
systolic dysfunction and prevent the development of 
myocardial fibrosis.7,38

In animal models, Gal-3 was shown to affect glyce-
mic regulation and adiposity.11 In these models, Gal-3 
increases adipocyte differentiation by activating peroxi-
some proliferator-activated receptor-γ39; consequently, 
Gal-3–deficient mice have a higher frequency of diet-
induced obesity and glucose dysregulation.40,41 Gal-3 
expression in adipocytes can be induced by proinflam-
matory signals, such as circulating free fatty acids and 
interleukin-6.42 Gal-3 upregulation plays a crucial role 
in the initial phases of tissue repair; however, sustained 
overexpression results in myocardial fibrosis.3,43 The 
latter phenomenon may be more pronounced in the 

Table 2.  ORs (95% CIs) for the Associations of MetS and Diabetes Status With Elevated Gal-3 (Top 25%) at Baseline (Visit 
4, 1996–1998), the ARIC Study

OR (95% CI)

Metabolic status Model 1 Model 2

No metabolic syndrome and no diabetes 1 (Reference) 1 (Reference)

Metabolic syndrome only (no diabetes) 1.57 (1.39–1.77)* 1.24 (1.10–1.41)*

Metabolic syndrome and diabetes 1.68 (1.41–2.00)* 1.59 (1.32–1.92)*

P value for trend <0.001 0.001

Model 1 adjusts for age, sex, race and center, smoking, alcohol, and rs4644. Model 2 adjusts for model 1 variables+estimated glomerular filtration rate (linear 
spline at 60 mL/min per 1.73 m2). The rs644 genotype was adjusted for because it influences Gal-3 levels. Individuals with diabetes without MetS excluded 
because of small numbers. ARIC indicates Atherosclerosis Risk in Communities; Gal-3, galectin 3; MetS, metabolic syndrome; and OR, odds ratio.

*P<0.05.
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setting of metabolic dysregulation, which could be as-
sociated with myocardial injury, leading to tissue repair. 
Indeed, a few studies have suggested that Gal-3 me-
diates cardiac remodeling caused by impaired glucose 
and lipid metabolism,44 or by obesity.45

There are limitations to our study. First, the diag-
nosis of incident HF was based on hospital discharge 
and death certificate codes, which may have resulted 
in some misclassification. Second, our analysis does 
not account for the potential impact of medical ther-
apies, especially therapies that may have mitigated 
metabolic risk during the follow-up period. In addition, 
cardiac imaging data were not available to assess the 
subtypes of HF (HF with reduced ejection fraction and 
HF with preserved ejection fraction), as the observed 
associations may vary across HF subtypes. Third, we 
also did not incorporate repeated assessments of 

MetS, diabetes status, or Gal-3; thus, we did not exam-
ine their change in relation to HF risk. Fourth, we only 
used 1 of the 4 proposed definitions of MetS; hence, 
the results could be different if other criteria were 
used (eg, the International Diabetes Federation crite-
ria). Finally, we did not specifically account for dietary 
intake and drugs, such as mineralocorticoid receptor 
antagonists, which can affect the aldosterone-related 
Gal-3 pathway.

The strengths of our study include the community-
based design, the large sample with a significant rep-
resentation of Black and White adults, as well as male 
and female individuals in middle and older age, long-
term follow-up for incident HF events, and the rigorous 
measurement of potential confounding factors, includ-
ing the rs4644 genotype, which likely improved the ac-
curacy of the results.

Table 3.  Incidence Rates and Adjusted HRs (95% CIs) for the Associations of MetS Z-Score Quartiles and Gal-3 Quartiles 
With Risk of Incident HF

Variable Gal-3 quartiles

MetS Z score Quartile 1 Quartile 2 Quartile 3 Quartile 4

Incidence rate-per 1000 person-years (95% CI)

Quartile 1 5.7 (4.5–7.1) 6.5 (5.2–8.2) 7.1 (5.5–9.0) 11.6 (9.2–14.6)

Quartile 2 7.0 (5.6–8.8) 9.6 (7.9–11.8) 9.7 (8.0–11.9) 13.7 (11.4–16.5)

Quartile 3 8.6 (6.9–10.7) 10.0 (8.2–12.3) 10.7 (8.8–13.0) 16.4 (14.0–19.3)

Quartile 4 16.4 (13.8–19.6) 15.1 (12.7–18.0) 19.1 (16.4–22.2) 26.1 (23.0–29.6)

Adjusted HR* (95% CI)

Quartile 1 1.00 (Reference) 1.04 (0.74–1.45) 1.12 (0.79–1.58) 1.40 (0.99–1.98)

Quartile 2 1.19 (0.86–1.66) 1.42 (1.04–1.94)* 1.38 (1.00–1.91)* 1.60 (1.16–2.22)*

Quartile 3 1.48 (1.07–2.05)* 1.53 (1.11–2.10)* 1.49 (1.08–2.04)* 1.97 (1.44–2.69)*

Quartile 4 2.61 (1.94–3.53)* 2.40 (1.77–3.25)* 2.90 (2.16–3.90)* 3.27 (2.42–4.41)*

Model includes age, sex, race and center, alcohol use, cigarette smoking, estimated glomerular filtration rate, rs4644 genotype, NT-proBNP (N-terminal pro-
B-type natriuretic peptide), high-sensitivity cardiac troponin T, and CRP (C-reactive protein). The rs644 genotype was adjusted for because it influences Gal-3 
levels. Gal-3 indicates galectin 3; HF, heart failure; HR, hazard ratio; and MetS, metabolic syndrome.

*P<0.05.

Table 4.  Incidence Rates and Adjusted HRs for the Associations of Cross-Categories of Metabolic Risk Group and Gal-3 
Quartiles With Risk of Incident HF

Gal-3 quartiles

Metabolic status Quartile 1 Quartile 2 Quartile 3 Quartile 4

Incidence rate-per 1000 person-years (95% CI)

No diabetes and no MetS 6.2 (5.2–7.3) 7.4 (6.3–8.7) 8.0 (6.8–9.5) 12.0 (10.3–14.0)

MetS only 10.8 (9.2–12.6) 11.2 (9.6–13.0) 12.8 (11.1–14.7) 17.4 (15.4–19.6)

Diabetes and MetS 17.7 (13.8–22.7) 19.3 (15.1–24.7) 24.1 (19.6–29.7) 39.4 (33.4–46.5)

Adjusted HR* (95% CI) for cross-category diabetes, MetS, and Gal-3 comparisons

No diabetes–no MetS 1 (Reference) 1.07 (0.84–1.35) 1.14 (0.89–1.46) 1.35 (1.04–1.74)*

No diabetes–MetS only 1.58 (1.25–2.00)* 1.50 (1.18–1.90)* 1.64 (1.29–2.08)* 1.89 (1.48–2.40)*

Diabetes and MetS 2.62 (1.91–3.58)* 2.68 (1.97–3.66)* 2.98 (2.24–3.98)* 4.35 (3.30–5.73)*

Model includes age, sex, race and center, alcohol use, cigarette smoking, estimated glomerular filtration rate, rs4644 genotype, NT-proBNP (N-terminal pro-
B-type natriuretic peptide), high-sensitivity cardiac troponin T, and CRP (C-reactive protein). The rs644 genotype was adjusted for because it influences Gal-3 
levels. Gal-3 indicates galectin 3; HF, heart failure; HR, hazard ratio; and MetS, metabolic syndrome.

*P<0.05.
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CONCLUSIONS
Our study showed that greater severity of metabolic 
risk is independently associated with elevated Gal-3, a 
marker of inflammation and fibrosis. Furthermore, the 
combination of adverse metabolic risk and elevated 
Gal-3 identifies a subgroup at particularly high risk of 
future HF. This subpopulation could benefit in particu-
lar from aggressive pharmacologic and lifestyle meas-
ures to prevent HF.
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