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Abstract

Mental health conversational agents (a.k.a. chatbots) are widely studied for their potential to offer 

accessible support to those experiencing mental health challenges. Previous surveys on the topic 

primarily consider papers published in either computer science or medicine, leading to a divide in 

understanding and hindering the sharing of beneficial knowledge between both domains. To bridge 

this gap, we conduct a comprehensive literature review using the PRISMA framework, reviewing 

534 papers published in both computer science and medicine. Our systematic review reveals 136 

key papers on building mental health-related conversational agents with diverse characteristics of 

modeling and experimental design techniques. We find that computer science papers focus on 

LLM techniques and evaluating response quality using automated metrics with little attention to 

the application while medical papers use rule-based conversational agents and outcome metrics 

to measure the health outcomes of participants. Based on our findings on transparency, ethics, 

and cultural heterogeneity in this review, we provide a few recommendations to help bridge the 

disciplinary divide and enable the cross-disciplinary development of mental health conversational 

agents.

1 Introduction

The proliferation of conversational agents (CAs), also known as chatbots or dialog systems, 

has been spurred by advancements in Natural Language Processing (NLP) technologies. 

Their application spans diverse sectors, from education (Okonkwo and Ade-Ibijola, 2021; 

Durall and Kapros, 2020) to e-commerce (Shenoy et al., 2021), demonstrating their 

increasing ubiquity and potency.

The utility of CAs within the mental health domain has been gaining recognition. Over 30% 

of the world’s population suffers from one or more mental health conditions; about 75% 

individuals in low and middle-income countries and about 50% individuals in high-income 

countries do not receive care and treatment (Kohn et al., 2004; Arias et al., 2022). The 

sensitive (and often stigmatized) nature of mental health discussions further exacerbates this 
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problem, as many individuals find it difficult to disclose their struggles openly (Corrigan and 

Matthews, 2003).

Conversational agents like Woebot (Fitzpatrick et al., 2017) and Wysa (Inkster et al., 2018) 

were some of the first mobile applications to address this issue. They provide an accessible 

and considerably less intimidating platform for mental health support, thereby assisting a 

substantial number of individuals. Their effectiveness highlights the potential of mental 

health-focused CAs as one of the viable solutions to ease the mental health disclosure and 

treatment gap.

Despite the successful implementation of certain CAs in mental health, a significant 

disconnect persists between research in computer science (CS) and medicine. This 

disconnect is particularly evident when we consider the limited adoption of advanced 

NLP (e.g. large language models) models in the research published in medicine. While 

CS researchers have made substantial strides in NLP, there is a lack of focus on the 

human evaluation and direct impacts these developments have on patients. Furthermore, 

we observe that mental health CAs are drawing significant attention in medicine, yet remain 

underrepresented in health-applications-focused research in NLP. This imbalance calls for 

a more integrated approach in future studies to optimize the potential of these evolving 

technologies for mental health applications.

In this paper, we present a comprehensive analysis of academic research related to 

mental health conversational agents, conducted within the domains of CS and medicine1. 

Employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) framework (Moher et al., 2010), we systematically reviewed 136 pertinent papers 

to discern the trends and research directions in the domain of mental health conversational 

agents over the past five years. We find that there is a disparity in research focus and 

technology across communities, which is also shown in the differences in evaluation. 

Furthermore, we point out the issues that apply across domains, including transparency 

and language/cultural heterogeneity.

The primary objective of our study is to conduct a systematic and transparent review of 

mental health CA research papers across the domains of CS and medicine. This process aims 

not only to bridge the existing gap between these two broad disciplines but also to facilitate 

reciprocal learning and strengths sharing. In this paper, we aim to address the following key 

questions:

1. What are the prevailing focus and direction of research in each of these domains?

2. What key differences can be identified between the research approaches taken by 

each domain?

3. How can we augment and improve mental health CA research methods?

1Our data and papers are available on our GitHub: https://github.com/JeffreyCh0/mental_chatbot_survey
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2 Prior Survey Papers

Mental health conversational agents are discussed in several non-CS survey papers, with 

an emphasis on their usability in psychiatry (Vaidyam et al., 2019; Montenegro et al., 

2019; Laranjo et al., 2018), and users’ acceptability (Koulouri et al., 2022; Gaffney et 

al., 2019). These survey papers focus on underpinning theory (Martinengo et al., 2022), 

standardized psychological outcomes for evaluation (Vaidyam et al., 2019; Gaffney et al., 

2019) in addition to accessibility (Su et al., 2020), safety (Parmar et al., 2022) and validity 
(Pacheco-Lorenzo et al., 2021; Wilson and Marasoiu, 2022) of CAs.

Contrary to surveys for medical audiences, NLP studies mostly focus on the quality of the 

generated response from the standpoint of text generation. Valizadeh and Parde (2022) in 

their latest survey, reviewed 70 articles and investigated task-oriented healthcare dialogue 

systems from a technical perspective. The discussion focuses on the system architecture and 

design of CAs. The majority of healthcare CAs were found to have pipeline architecture 

despite the growing popularity of end-to-end architectures in the NLP domain. A similar 

technical review by Safi et al. (2020) also reports a high reliance on static dialogue systems 

in CAs developed for medical applications. Task-oriented dialogue systems usually deploy a 

guided conversation style which fits well with rule-based systems. However, Su et al. (2020); 

Abd-Alrazaq et al. (2021) pointed to the problem of robotic conversation style in mental 

health apps where users prefer an unconstrained conversation style and may even want to 

lead the conversation (Abd-Alrazaq et al., 2019). Huang (2022) further underlines the need 

for self-evolving CAs to keep up with evolving habits and topics during the course of app 

usage.

Surveys from the rest of CS cover HCI (de Souza et al., 2022) and the system design of 

CAs (Dev et al., 2022; Narynov et al., 2021a). de Souza et al. (2022) analyzed 6 mental 

health mobile applications from an HCI perspective and suggested 24 design considerations 

including empathetic conversation style, probing, and session duration for effective dialogue. 

Damij and Bhattacharya (2022) proposed three key dimensions namely people (citizen 

centric goals ), process (regulations and governance) and AI technology to consider when 

designing public care CAs.

These survey papers independently provide an in-depth understanding of advancements and 

challenges in the CS and medical domains. However, there is a lack of studies that can 

provide a joint appraisal of developments to enable cross-learning across these domains. 

With this goal, we consider research papers from medicine (PubMed), NLP (the ACL 

Anthology), and the rest of CS (ACM, AAAI, IEEE) to examine the disparities in goals, 

methods, and evaluations of research related to mental health conversational agents.

3 Methods

3.1 Paper Databases

We source papers from eminent databases in the fields of NLP, the rest of CS, and 

medicine, as these are integral knowledge areas in the study of mental health CA. These 

databases include the ACL Anthology (referred to as ACL throughout this paper)2, AAAI3, 
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IEEE4, ACM5, and PubMed6. ACL is recognized as a leading repository that highlights 

pioneering research in NLP. AAAI features cutting-edge studies in AI. IEEE, a leading 

community, embodies the forefront of engineering and technology research. ACM represents 

the latest trends in Human Computer Interaction (HCI) along with several other domains 

of CS. PubMed, the largest search engine for science and biomedical topics including 

psychology, psychiatry, and informatics among others provides extensive coverage of the 

medical spectrum.

Drawing on insights from prior literature reviews (Valizadeh and Parde, 2022; Montenegro 

et al., 2019; Laranjo et al., 2018) and discussion with experts from both the CS and medical 

domains, we opt for a combination of specific keywords. These search terms represent both 

our areas of focus: conversational agents (“conversational agent”, “chatbot”) and mental 

health (“mental health”, “depression”). Furthermore, we limit our search criteria to the paper 

between 2017 to 2022 to cover the most recent articles. We also apply the “research article” 

filter on ACM search, and “Free Full Text or Full Text” for PubMed search. Moreover, 

we manually add 3 papers recommended by the domain experts (Fitzpatrick et al., 2017; 

Laranjo et al., 2018; Montenegro et al., 2019). This results in 534 papers.

3.2 Screening Process

For subsequent steps in the screening process, we adhere to a set of defined inclusion 

criteria. Specifically, we include a paper if it met the following conditions for a focused and 

relevant review of the literature that aligns with the objectives of our study:

• Primarily focused on CAs irrespective of modality, such as text, speech, or 

embodied.

• Related to mental health and well-being. These could be related to depression, 

PTSD, or other conditions defined in the DSM-IV (Bell, 1994) or other emotion-

related intervention targets such as stress.

• Contribute towards directly improving mental health CAs. This could be 

proposing novel models or conducting user studies.

The initial step in our screening process is title screening, in which we examine all titles, 

retaining those that are related to either CA or mental health. Our approach is deliberately 

inclusive during this phase to maximize the recall. As a result, out of 534 papers, we keep 

302 for the next step.

Following this, we proceed with abstract screening. In this stage, we evaluate whether 

each paper meets our inclusion criteria. To enhance the accuracy and efficiency of our 

decision-making process, we extract the ten most frequent words from the full text of each 

paper to serve as keywords. These keywords provide an additional layer of verification, 

2 https://aclanthology.org/ 
3 https://aaai.org/aaai-publications/ 
4 https://ieeexplore.ieee.org/ 
5 https://dl.acm.org/ 
6 https://pubmed.ncbi.nlm.nih.gov/ 
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assisting our decision-making process. Following this step, we are left with a selection of 

157 papers.

The final step is full-text screening. When we verify if a paper meets the inclusion criteria, 

we extract key features (such as model techniques and evaluations) from the paper and 

summarize them in tables (see appendix). Simultaneously, we highlight and annotate the 

papers’ PDF files to provide evidence supporting our claims about each feature similar to 

the methodology used in Howcroft et al. (2020). This process is independently conducted 

by two co-authors on a subset of 25 papers, and the annotations agree with each other. 

Furthermore, the two co-authors also agree upon the definition of features, following which 

all the remaining papers receive one annotation.7

The final corpus contains 136 papers: 9 from ACL, 4 from AAAI, 20 from IEEE, 

40 from ACM, and 63 from PubMed. We categorize these papers into four distinct 

groups: 102 model/experiment papers, 20 survey papers, and the remaining 14 papers are 

classified as ‘other’. Model papers are articles whose primary focus is on the construction 

and explanation of a theoretical model, while experimental papers are research studies 

that conduct specific experiments on the models to answer pertinent research questions. 

We combine experiment and model papers together because experimental papers often 

involve testing on models, while model papers frequently incorporate evaluations through 

experiments. The ‘other’ papers include dataset papers, summary papers describing the 

proceedings of a workshop, perspectives/viewpoint papers, and design science research 

papers. In this paper, we focus on analyzing the experiment/model and survey papers, which 

have a more uniform set of features.

3.3 Feature Extraction

We extract a set of 24 features to have a detailed and complete overview of the recent 

trend. They include general features (“paper type”, “language”, “mental health category”, 
“background”, “target group”, “target demographic”), techniques (“chatbot name”, “chatbot 
type”, “model technique”, “off the shelf”, “outsourced model name”, “training data”), 

appearance (“interface”, “embodiment”, “platform”, “public access”), and experiment 

(“study design”, “recruitment”, “sample size”, “duration”, “automatic evaluation”, “human 
evaluation”, “statistical test”, “ethics”). Due to the limited space, we present a subset of the 

features in the main paper. Description of other features can be found in Appendix.8

4 Results

Under the category of model and experiment papers, there are 6 papers from ACL, 3 from 

AAAI, 15 from IEEE, 35 from ACM, and 43 from PubMed. In this section, we briefly 

summarize the observations from the different features we extracted.

7Annotated PDF files with evidence of each feature are available in our GitHub.
8Full feature table is available in the supplemental material.
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4.1 Language

We identify if there is a predominant language associated with either the data used for the 

models or if there is a certain language proficiency that was a part of the inclusion criteria 

for participants. Our findings, summarized in Table 2, reveal that English dominates these 

studies with over 71% of the papers utilizing data and/or participants proficient in English. 

Despite a few (17%) papers emerging from East Asia and Europe, we notice that studies in 

low-resource languages are relatively rare.

4.2 Mental Health Category

Most of the papers (43%) we reviewed do not deal with a specific mental health condition 

but work towards general mental health well-being (Saha et al., 2022a). The methods 

proposed in such papers are applicable to the symptoms associated with a broad range of 

mental health issues (e.g. emotional dysregulation). Some papers, on the other hand, are 

more tailored to address the characteristics of targeted mental health conditions. As shown 

in Table 3, depression and anxiety are two major mental health categories being dealt 

with, reflecting the prevalence of these conditions (Eagle et al., 2022). Other categories 

include stress management (Park et al., 2019; Gabrielli et al., 2021); sexual abuse, to help 

survivors of sexual abuse (Maeng and Lee, 2022; Park and Lee, 2021), and social isolation, 

mainly targeted toward older adults (Sidner et al., 2018; Razavi et al., 2022). Less-studied 

categories include affective disorders (Maharjan et al., 2022a,b), COVID-19-related mental 

health issues (Kim et al., 2022; Ludin et al., 2022), eating disorders (Beilharz et al., 2021), 

and PTSD (Han et al., 2021).

4.3 Target Demographic

Most of the papers (>65%) do not specify the target demographic of users for their CAs. 

The target demographic distribution is shown in Table 4. An advantage of the models 

proposed in these papers is that they could potentially offer support to a broad group 

of users irrespective of the underlying mental health condition. Papers without a target 

demographic and a target mental health category focus on proposing methods such as using 

generative language models for psychotherapy (Das et al., 2022a), or to address specific 

modules of the CAs such as leveraging reinforcement learning for response generation (Saha 

et al., 2022b). On the other hand, 31% papers focus on one specific user group such as 

young individuals, students, women, older adults, etc, to give advanced assistance. Young 

individuals, including adolescents and teenagers, received the maximum attention (Rahman 

et al., 2021). Several papers also focus on the mental health care of women, for instance 

in prenatal and postpartum women (Green et al., 2019; Chung et al., 2021) and sexual 

abuse survivors (Maeng and Lee, 2022; Park and Lee, 2021). Papers targeting older adults 

are mainly designed for companionship and supporting isolated elders (Sidner et al., 2018; 

Razavi et al., 2022).

4.4 Model Technique

Development of Large Language Models such as GPT-series (Radford et al., 2019; Brown 

et al., 2020)greatly enhanced the performance of generative models, which in turn made a 

significant impact on the development of CAs (Das et al., 2022b; Nie et al., 2022). However, 
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as shown in Table 5, LLMs are yet to be utilized in the development of mental health CAs 

(as of the papers reviewed in this study), especially in medicine. No paper from PubMed 

in our final list dealt with generative models, with the primary focus being rule-based and 

retrieval-based CAs.

Rule-based models operate on predefined rules and patterns such as if-then statements 

or decision trees to match user inputs with predefined responses. The execution of Rule-

based CAs can be straightforward and inexpensive, but developing and maintaining a 

comprehensive set of rules can be challenging. Retrieval-based models rely on a predefined 

database of responses to generate replies. They use techniques like keyword matching 

(Daley et al., 2020), similarity measures (Collins et al., 2022), or information retrieval 

(Morris et al., 2018) to select the most appropriate response from the database based on 

the user’s input. Generative model-based CAs are mostly developed using deep learning 

techniques such as recurrent neural networks (RNNs) or transformers, which learn from 

large amounts of text data and generate responses based on the learned patterns and 

structures. While they can often generate more diverse and contextually relevant responses 

compared to rule-based or retrieval-based models, they could suffer from hallucination and 

inaccuracies (Azaria and Mitchell, 2023).

4.5 Outsourced Models

Building a CA model from scratch could be challenging for several reasons such as a lack 

of sufficient data, compute resources, or generalizability. Publicly available models and 

architectures have made building CAs accessible. Google Dialogflow (Google, 2021) and 

Rasa (Bocklisch et al., 2017) are the two most used outsourced platforms and frameworks. 

Alexa, DialoGPT (Zhang et al., 2019), GPT (2 and 3) (Radford et al., 2019; Brown et al., 

2020) and X2AI (now called Cass) (Cass, 2023) are also frequently used for building CA 

models. A summary can be found in Table 6.

Google Dialogflow is a conversational AI platform developed by Google that enables 

developers to build and deploy chatbots and virtual assistants across various platforms. 

Rasa is an open-source conversational AI framework that empowers developers to create 

and deploy contextual chatbots and virtual assistants with advanced natural language 

understanding capabilities. Alexa is a voice-controlled virtual assistant developed by 

Amazon. It enables users to interact with a wide range of devices and services using voice 

commands, offering capabilities such as playing music, answering questions, and providing 

personalized recommendations. DialoGPT is a large, pre-trained neural conversational 

response generation model that is trained on the GPT2 model with 147M conversation-like 

exchanges from Reddit. X2AI is the leading mental health AI assistant that supports over 

30M individuals with easy access.

4.6 Evaluation

Automatic: Mental health CAs are evaluated with various methods and metrics. Multiple 

factors, including user activity (total sessions, total time, days used, total word count), 

user utterance (sentiment analysis, LIWC (Pennebaker et al., 2015)), CA response quality 

(BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), lexical diversity, perplexity), and 
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performance of CA’s submodules (classification f1 score, negative log-likelihood) are 

measured and tested. We find that papers published in the CS domain focus more on 

technical evaluation, while the papers published in medicine are more interested in user data.

Human outcomes: Human evaluation using survey assessment is the most prevalent 

method to gauge mental health CAs’ performance. Some survey instruments measure the 

pre- and post-study status of participants and evaluate the impact of the CA by comparing 

mental health (e.g. PHQ-9 (Kroenke et al., 2001), GAD-7 (Spitzer et al., 2006), BFI-10 

(Rammstedt et al., 2013)) and mood scores (e.g. WHO-5 (Topp et al., 2015)), or collecting 

user feedback on CA models (usability, difficulty, appropriateness), or asking a group of 

individuals to annotate user logs or utterances to collect passive feedbacks (self-disclosure 

level, competence, motivational).

4.7 Ethical Considerations

Mental health CAs inevitably work with sensitive data, including demographics, Personal 

Identifiable Information (PII), and Personal Health Information (PHI). Thus, careful ethical 

consideration and a high standard of data privacy must be applied in the studies. Out of the 

89 papers that include human evaluations, approximately 70% (62 papers) indicate that they 

either have been granted approval by Institutional Review Boards (IRB) or ethics review 

committees or specified that ethical approval is not a requirement based on local policy. 

On the other hand, there are 24 papers that do not mention seeking ethical approval or 

consequent considerations in the paper. Out of these 24 papers that lack a statement on 

ethical concerns, 21 papers are published in the field of CS.

5 Discussion

5.1 Disparity in Research Focus

Mental health Conversational Agents require expert knowledge from different domains. 

However, the papers we reviewed, treat this task quite differently, evidenced by the base 

rates of the number of papers matching our inclusion criteria. For instance, there are 

over 28,000 articles published in the ACL Anthology with the keywords “chatbot” or 

“conversational agent”, which reveals the popularity of this topic in the NLP domain. 

However, there are only 9 papers related to both mental health and CA, which shows that 

the focus of NLP researchers is primarily concentrated on the technical development of CA 

models, less on its applications, including mental health. AAAI shares a similar trend as 

ACL. However, there are a lot of related papers to mental health CAs in IEEE and ACM, 

which show great interest from the engineering and HCI community. PubMed represents the 

latest trend of research in the medical domain, and it has the largest number of publications 

that fit our inclusion criteria. While CS papers mostly do not have a specific focus on 

the mental health category for which CAs are being built, papers published in the medical 

domain often tackle specific mental health categories.

5.2 Technology Gap

CS and medical domains are also different in the technical aspects of the CA model. In 

the CS domain (ACL, AAAI, IEEE, ACM), 41 (of 73 papers) developed CA models, 
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while 14 (out of 63) from the medical domain (PubMed) developed models. Among 

these papers, 8 from the CS domain are based on generative methods, but no paper 

in PubMed uses this technology. The NLP community is actively exploring the role of 

generative LLMs (e.g. GPT-4) in designing CAs including mental healthcare-related CAs 

(Das et al., 2022a; Saha et al., 2022b; Yan and Nakashole, 2021). With the advent of 

more sophisticated LLMs, fluency, repetitions and, ungrammatical formations are no longer 

concerns for dialogue generation. However, stochastic text generation coupled with black 

box architecture prevents wider adoption of these models in the health sector (Vaidyam et 

al., 2019). Unlike task-oriented dialogues, mental health domain CAs predominantly involve 

unconstrained conversation style for talk-therapy that can benefit from the advancements in 

LLMs (Abd-Alrazaq et al., 2021).

PubMed papers rather focus on retrieval-based and rule-based methods, which are, arguably, 

previous-generation CA models as far as the technical complexity is concerned. This could 

be due to a variety of factors such as explainability, accuracy, and reliability which are 

crucial when dealing with patients.

5.3 Response Quality vs Health Outcome

The difference in evaluation also reveals the varying focus across CS and medicine domains. 

From the CS domains, 30 (of 59 papers) applied automatic evaluation, which checks both 

model’s performance (e.g. BLEU, ROUGE-L, perplexity) and participant’s CA usage (total 

sessions, word count, interaction time). In contrast, only 13 out of 43 papers from PubMed 

used automatic evaluation, and none of them investigated the models’ performance.

The difference is also spotted in human evaluation. 40 (of 43 papers) from PubMed consist 

of human outcome evaluation, and they cover a wide range of questionnaires to determine 

participants’ status (e.g. PHQ-9, GAD-7, WHO-5). The focus is on users’ psychological 

well-being and evaluating the chatbot’s suitability in the clinical setup (Martinengo et al., 

2022). Although these papers do not test the CA model’s performance through automatic 

evaluation, they asked for participants’ ratings to oversee their model’s quality (e.g. 

helpfulness, System Usability Scale (Brooke et al., 1996), WAI-SR (Munder et al., 2010)).

All 6 ACL papers that satisfied our search criteria, solely focus on dialogue quality (e.g. 

fluency, friendliness etc.) with no discussion on CA’s effect on users’ well-being through 

clinical measures such as PHQ-9. CAs that aim to be the first point of contact for users 

seeking mental health support, should have clinically validated mechanisms to monitor 

the well-being of their users (Pacheco-Lorenzo et al., 2021; Wilson and Marasoiu, 2022). 

Moreover, the mental health CAs we review are designed without any underlying theory for 

psychotherapy or behavior change that puts the utility of CAs providing emotional support 
to those suffering from mental health challenges in doubt.

5.4 Transparency

None of the ACL papers that we reviewed released their model or API. Additionally, a 

baseline or comparison with the existing state-of-the-art model is often missing in the 

papers. There is no standardized outcome reporting procedure in both medicine and CS 

domains (Vaidyam et al., 2019). For instance, Valizadeh and Parde (2022) raised concerns 
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about the replicability of evaluation results and transparency for healthcare CAs. We 

acknowledge the restrictions posed to making the models public due to the sensitive nature 

of the data. However, providing APIs could be a possible alternative to enable comparison 

for future studies. To gauge the true advantage of mental health CAs in a clinical setup, 

randomized control trials are an important consideration that is not observed in NLP papers. 

Further, standardized benchmark datasets for evaluating mental health CAs could be useful 

in increasing transparency.

5.5 Language and Cultural Heterogeneity

Over 75% of the research papers in our review cater to English-speaking participants 

struggling with depression and anxiety. Chinese and Korean are the two languages with 

the highest number of research papers following English, even though Chinese is the most 

populous language in the world. Future works could consider tapping into a diverse set 

of languages that also have a lot of data available - for instance, Hindi, Arabic, French, 

Russian, and Japanese, which are among the top 10 most spoken languages in the world. 

The growing prowess of multilingual LLMs could be an incredible opportunity to transfer 

universally applicable development in mental health CAs to low-resource languages while 

being mindful of the racial and cultural heterogeneity which several multilingual models 

might miss due to being trained on largely English data (Bang et al., 2023).

6 Conclusion

In this paper, we used the PRISMA framework to systematically review the recent studies 

about mental health CA across both CS and medical domains. From the well-represented 

databases in both domains, we begin with 865 papers based on a keyword search to identify 

mental health-related conversational agent papers and use title, abstract, and full-text 

screening to retain 136 papers that fit our inclusion criteria. Furthermore, we extract a wide 

range of features from model and experiment papers, summarizing attributes in the fields 

of general features, techniques, appearance, and experiment. Based on this information, we 

find that there is a gap between CS and medicine in mental health CA studies. They vary in 

research focus, technology, and evaluation purposes. We also identify common issues that lie 

between domains, including transparency and language/cultural heterogeneity.

Potential Recommendations

We systematically study the difference between domains and show that learning from each 

other is highly beneficial. Since interdisciplinary works consist of a small portion of our 

final list (20 over 102 based on author affiliations on papers; 7 from ACM, 2 from IEEE, 

and 11 from PubMed), we suggest more collaborations to help bridge the gap between 

the two communities. For instance, NLP (and broadly CS) papers on mental health CAs 

would benefit from adding pre-post analysis on human feedback and considering ethical 

challenges by requesting a review of an ethics committee. Further, studies in medicine could 

benefit by tapping into the latest developments in generative methods in addition to the 

commonly used rule-based methods. In terms of evaluation, both the quality of response by 

the CAs (in terms of automatic metrics such as BLEU, ROUGE-L, perplexity, and measures 

of dialogue quality) as well as the effect of CA on users’ mental states (in terms of mental 
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health-specific survey inventories) could be used to assess the performance of mental health 

CAs. Moreover, increasing the language coverage to include non-English data/participants 

and adding cultural heterogeneity while providing APIs to compare against current mental 

health CAs would help in addressing the challenge of mental health care support with a 

cross-disciplinary effort.

Limitations

This survey paper has several limitations. Our search criteria are between January 2017 to 

December 2022, which likely did not reflect the development of advanced CA and large 

language models like ChatGPT and GPT4 (Sanderson, 2023). We couldn’t include more 

recent publications to meet the EMNLP submission date. Nonetheless, we have included 

relevant comments across the different sections on the applicability of more sophisticated 

models.

Further, search engines (e.g. Google Scholar) are not deterministic. Our search keywords, 

filters, and chosen databases do not guarantee the exact same search results. However, we 

have tested multiple times on database searching and they returned consistent results. We 

have downloaded PDFs of all the papers and have saved the annotated them to reflect the 

different steps used in this review paper. These annotations will be made public.

For some databases, the number of papers in the final list may be (surprisingly!) small to 

represent the general research trends in the respective domains. However, it also indicates 

the lack of focus on mental health CA from these domains, which also proposes further 

attention is required in the field.

Ethics Statement

Mental Health CAs, despite their accessibility, potential ability, and anonymity, cannot 

replace human therapists in providing mental health care. There are a lot of ongoing 

discussions about the range of availability of mental health CAs, and many raise several 

challenges and suspicions about automated conversations. Rule-based and retrieval-based 

models can be controlled for content generation, but cannot answer out-of-domain questions. 

Generative models are still a developing field, their non-deterministic nature raises concerns 

about the safety and reliability of the content. Thus at the current stage, CA could play 

a great supporting complementary role in mental healthcare to identify individuals who 

potentially need more immediate care in an already burdened healthcare system.

Since the patient’s personal information and medical status are extremely sensitive, we 

highly encourage researchers and developers to pay extra attention to data security and 

ethics Arias et al. (2022). The development, validation, and deployment of mental health 

CAs should involve multiple diverse stakeholders to determine how, when, and which 

data is being used to train and infer participants’ mental health. This effort requires a 

multidisciplinary effort to address the complex challenges of mental health care (Chancellor 

et al., 2019).
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A: Venues of Selected Papers

In this paper, we searched all venues indexed under 5 databases to cover most of the 

venues that are interested in mental health conversational agents. In Table 7, we show the 

distribution of venues under each database for the papers that are selected for the final list.

Table 7:

Venues in each database that have at least one paper in our final list and the corresponding 

number of model/experiment papers.

AAAI ACL ACM IEEE PubMed

Venue Count Venue Count Venue Count Venue Count Venue Count

HCOMP 2 EMNLP 1 CHI 9 ICIRCA 2 JMIR Form 
Res

9

AAAI 1 SIGDIAL 1 ACM-TiiS 4 ACII 2 J Med 
Internet 
Res

7

BioNLP 1 IVA 4 ICoICT 1 Front Digit 
Health

4

NAACL 1 ACM-HCI 3 UCET 1 JMIR 
Mhealth 
Uhealth

3

NLP4PI 1 UbiComp-
ISWC

2 ICCCI 1 JMIR Res 
Protoc

3

LREC 1 CUI 2 ICHCI 1 Digit 
Health

2

PervasiveHealth 2 ICACCS 1 JMIR Ment 
Health

2

CHItaly 1 ISCC 1 JMIR Hum 
Factors

2

ACSW 1 IEEE 
Trans. 
Emerg.

1 Internet 
Interv

2

H3 1 SIEDS 1 Curr 
Psychol

1

Asian CHI 1 IEEE 
Pervasive 
Comput.

1 Comput 
Math 
Methods 
Med

1

DIS 1 ICCAS 1 Inf Process 
Manag

1

CHIuXiD 1 INCET 1 Front 
Psychol

1

ACM-HEALTH 1 Trials 1

IASA 1 Front 
Psychiatry

1
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AAAI ACL ACM IEEE PubMed

Venue Count Venue Count Venue Count Venue Count Venue Count

ECCE 1 Drug 
Alcohol 
Depend

1

Sensors 
(Basel)

1

JMIR Med 
Inform

1

B: Full Table Explanation

We show our final list of model/experiment papers in Table 8, Table 9 and Table 10. Due to 

the limited size of the paper, some columns (“background”) are removed and long values are 

truncated. The full table is available on our GitHub.

For an easier understanding of our full table, we briefly introduce each feature we extracted 

below.

• Paper: The citation of the selected paper.

• Database: The source of the paper.

• Paper Type: The type of the paper. We here only show model or experiment 

papers.

• Language: Target language used in this paper.

• Mental Health Category: Target mental health category in this paper.

• Target Group: Target group of this paper. Could be patients, caregivers, or 

clinicians.

• Target Demographic: Target demographic of this paper. If it is not specified or 

can be used by anyone, we mark it as General.

• Chatbot Name: The name of the chatbot model used in this paper.

• Chatbot Type: Type of the mental health CA. Could be QA, open domain, or 

task-oriented.

• Model Technique: Type of technique used to build the model. Could be rule-

based, retrieval-based, or generative.

• Off the Shelf: Information about the usage of off-the-shelf models in the system. 

We limit Off-the-shelf models to pre-trained models or applications. Could be 

yes (directly used), used as a part (off-the-shelf model is a part of the pipeline), 

or finetuned.

• Outsourced Model Name: The name of the off-the-shelf model, if any.

• Training Data: The name or source of the training data, if any.

• Interface: Type of input the model takes. Could be text, voice, visual, or button.
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• Embodiment: Embodiment of the model. Could be physical or visual.

• Platform: The platform the model run on. Could be Web, Mobile, PC, or other 

devices.

• Public Access: If the availability of the model is disclosed in the paper. Could be 

fully open (parameter level) or API (able to use).

• Study Design: Type of user study performed in the paper. Could be RCT 

(Randomized Controlled Trial), user study (ask participants to use and evaluate), 

or comparative analysis (divide users with different conditions and compare the 

results).

• Recruitment: How participants are recruited.

• Sample Size: Size of the participants.

• Duration: Duration of the user study.

• Automatic Evaluation: List of automatic evaluation metrics used in this paper.

• Human Evaluation: List of parameters/metrics derived from Human Evaluation 

used in this paper.

• Statistical Test: List of statistical tests used for measuring significance in this 

paper.

• Ethics: Whether the paper mentioned ethical consideration. Could be IRB 

(Institutional Review Board), or yes (ethical consideration is mentioned in the 

paper).

Table 8:

All method/experiment papers in the final list of this survey. This table only shows general 

and appearance features.

Paper Database Paper 
Type

Language Mental 
Health 
Category

Target 
Group

Target 
Demographic

Interface Embodiment Platform Public 
Access

Jiang et al. 
(2022)

PubMed Experiment Chinese General Patients Women Text Virtual Mobile, 
PC

API

Bennion et al. 
(2020)

PubMed Experiment English General Patients Older Adults Text / Web /

Suganuma et 
al. (2018)

PubMed Experiment Japanese General Patients General Button / Web /

Goonesekera 
and Donkin 
(2022)

PubMed Experiment English Anxiety Patients General Text / Mobile, 
PC

/

Gaffney et al. 
(2020)

PubMed Experiment English General Patients General Text / Web /

Mariamo et al. 
(2021)

PubMed Experiment English General Patients Adolescents / / / /

Provoost et al. 
(2020)

PubMed Experiment English Low mood, 
Depression

Patients General Text Virtual Mobile, 
Web

/

Greer et al. 
(2019)

PubMed Experiment English After 
Cancer 
Treatment

Patients Young Adults Text / Mobile, 
PC

/
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Paper Database Paper 
Type

Language Mental 
Health 
Category

Target 
Group

Target 
Demographic

Interface Embodiment Platform Public 
Access

Klos et al. 
(2021)

PubMed Experiment Spanish Depression, 
Anxiety

Patients General Text / Mobile, 
PC

/

Liu et al. 
(2022)

PubMed Experiment Chinese Depression Patients University 
Students

Text, 
Voice

/ Mobile, 
PC

API

Linden et al. 
(2020)

PubMed Experiment English Anxiety, 
Depression, 
PTSD

Patients Military 
Community

Text / Mobile /

Gupta et al. 
(2022)

PubMed Experiment English General Patients General Text / Mobile /

Prochaska et 
al. (2021a)

PubMed Experiment English Substance 
Use 
Disorder

Patients General Text / Mobile, 
PC

/

Prochaska et 
al. (2021b)

PubMed Experiment English Substance 
Use 
Disorder

Patients General Text / Mobile, 
PC

API

Darcy et al. 
(2021)

PubMed Experiment English Depression, 
Anxiety

Patients General Text / Mobile, 
PC

API

Green et al. 
(2020)

PubMed Experiment English Depression Patients Pregnant 
Women, New 
Mothers

Text / Mobile /

Sinha et al. 
(2022)

PubMed Experiment English General Patients General / / Mobile API

Schick et al. 
(2022)

PubMed Experiment German Mental 
Disorders

Patients Adolescence, 
Young 
Adulthood

Text, 
Button

/ PC /

Beatty et al. 
(2022)

PubMed Experiment English General Patients General Text / Mobile /

Meheli et al. 
(2022)

PubMed Experiment English General Patients General Text / Mobile /

Dosovitsky et 
al. (2020)

PubMed Experiment English General Patients General Text / / /

Dosovitsky et 
al. (2021)

PubMed Experiment English Depression Patients General Text / Mobile, 
PC

/

Hungerbuehler 
et al. (2021)

PubMed Experiment Portuguese General Patients Employee Text Nan Mobile, 
PC

/

Daley et al. 
(2020)

PubMed Experiment Portuguese Anxiety, 
Depression, 
Stress

Patients General Text Nan Internet-
Enabled 
Device

API

Ly et al. 
(2017)

PubMed Experiment Swedish General Patients General Text / Mobile /

Gabrielli et al. 
(2021)

PubMed Experiment Italian Stress, 
Anxiety

Patients University 
Students

Text / Mobile, 
PC

API

He et al. 
(2022)

PubMed Experiment Chinese General Patients Young Adults Text / Mobile /

Park et al. 
(2022)

PubMed Model English General Patients General Button / / /

Hassan et al. 
(2021)

PubMed Model English General Patients General Text / Web /

Burger et al. 
(2022)

PubMed Model English Depression Patients General Text / / /

De Gennaro et 
al. (2020)

PubMed Model English Social 
Exclusion

Patients General Text, 
Button

Virtual Web /

Grové (2021) PubMed Model English General Patients Young People Text / / /
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Paper Database Paper 
Type

Language Mental 
Health 
Category

Target 
Group

Target 
Demographic

Interface Embodiment Platform Public 
Access

Park et al. 
(2019)

PubMed Model English Stress Patients General Text / Web /

Rathnayaka et 
al. (2022)

PubMed Model English General Patients General Text / Mobile API

Ludin et al. 
(2022)

PubMed Model English Pandamic-
Related 
Worry, 
Anxiety

Patients Young People Text / Web /

Fitzpatrick et 
al. (2017)

PubMed Model English Depression, 
Anxiety

Clinicians University 
Students

Text / Mobile, 
PC

API

Noble et al. 
(2022)

PubMed Model English General Patients Health Care 
Worker

Text / Web /

Mauriello et 
al. (2021)

PubMed Model English Stress Patients General Text / Mobile /

Chung et al. 
(2021)

PubMed Model Korean General Patients, 
Caregivers

Perinatal 
Womens, 
Partners

Text / Mobile /

Morris et al. 
(2018)

PubMed Model English General Patients General Text / Mobile API

Beilharz et al. 
(2021)

PubMed Model Chinese Body 
Image, 
Eating 
Disorders

Patients General Button / Web /

Table 9:

All method/experiment papers in the final list of this survey. This table only shows technique 

features. Long values are truncated due to limited space.

Paper Chatbot 
Name

Chatbot 
Type

Model 
Technique

Off the 
Shelf

Outsourced 
Model Name

Training Data

Denecke et al. 
(2020)

SERMO Task 
Oriented

Retrieval-
Based

Used As a 
Part

OSCOVA /

Ghandeharioun et 
al. (2019b)

Unnamed Task 
Oriented

Rule-Based / / /

Schwartz et al. 
(2022)

DARA Task 
Oriented

Retrieval-
Based

Used As a 
Part, 
Finetuned

MindTrails /

Maharjan et al. 
(2022b)

Sofia Task 
Oriented

Retrieval-
Based

Used As a 
Part

Google 
Dialogflow

/

Narynov et al. 
(2021b)

Unnamed Task 
Oriented

Retrieval-
Based

Used As a 
Part

Rasa (New) Marked 
Entities In The 
D…

Crasto et al. (2021) Carebot Open 
Domain

Generative Used As a 
Part, 
Finetuned

DialoGPT (New) Data 
Scraped From 
Counse…

Chan et al. (2022) Unnamed Task 
Oriented

Rule-Based Used As a 
Part

X2AI Body Positive 
Conversations

Zhu et al. (2022) Xiaolv / / / / /

Jiang et al. (2022) Replika / / / / /

Bennion et al. 
(2020)

MYLO, 
ELIZA

Task 
Oriented

Rule-Based, 
Retrieval-
Based

/ / /
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Paper Chatbot 
Name

Chatbot 
Type

Model 
Technique

Off the 
Shelf

Outsourced 
Model Name

Training Data

Suganuma et al. 
(2018)

SABORI Task 
Oriented

Rule-Based / / /

Goonesekera and 
Donkin (2022)

Otis Task 
Oriented

Rule-Based Yes Chatfuel /

Gaffney et al. 
(2020)

MYLO Task 
Oriented

Retrieval-
Based

/ / /

Mariamo et al. 
(2021)

/ / / / / /

Provoost et al. 
(2020)

Moodbuster 
Lite

Task 
Oriented

Rule-Based / / /

Greer et al. (2019) Vivibot Task 
Oriented

Rule-Based / / /

Klos et al. (2021) Tess Task 
Oriented

Retrieval-
Based

/ / /

Liu et al. (2022) XiaoNan Task 
Oriented

Retrieval-
Based

Used As a 
Part

Rasa /

Linden et al. (2020) Here4U App 
- Military 
Version

Task 
Oriented

Retrieval-
Based

Yes IBM’s 
Watson 
Assistant

/

Gupta et al. (2022) Wysa Task 
Oriented

Retrieval-
Based

/ / /

Prochaska et al. 
(2021a)

W-SUDs 
(Weobot For 
SUDs)

Task 
Oriented

Rule-Based / / /

Prochaska et al. 
(2021b)

Woebot Task 
Oriented

Rule-Based / / /

Darcy et al. (2021) Woebot Task 
Oriented

Rule-Based / / /

Green et al. (2020) Healthy 
Mons

Task 
Oriented

Rule-Based Yes Tess(Zuri) /

Sinha et al. (2022) Wysa Task 
Oriented

Retrieval-
Based

/ / /

Schick et al. (2022) Microfost 
Bot

Task 
Oriented

Retrieval-
Based

/ / /

Beatty et al. (2022) Wysa Task 
Oriented

Retrieval-
Based

/ / /

Meheli et al. (2022) Wysa Task 
Oriented

Retrieval-
Based

/ / /

Dosovitsky et al. 
(2020)

Tess Task 
Oriented

Retrieval-
Based

Yes X2AI /

Dosovitsky et al. 
(2021)

Tess Task 
Oriented

Retrieval-
Based

Yes X2AI /

Hungerbuehler et 
al. (2021)

Viki Task 
Oriented

Rule-Based / / /

Daley et al. (2020) Vitalk Task 
Oriented

Rule-Based / / /

Ly et al. (2017) Shim Task 
Oriented

Rule-Based / / (New) 
Professionals In 
Psychol…

Gabrielli et al. 
(2021)

Atena Task 
Oriented

Rule-Based / / (New) 
Psychologists

He et al. (2022) XiaoE Task 
Oriented

Retrieval-
Based

Used As a 
Part

Rasa (New) 
Psychologist 
Panel, Clin…
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Paper Chatbot 
Name

Chatbot 
Type

Model 
Technique

Off the 
Shelf

Outsourced 
Model Name

Training Data

Park et al. (2022) Unnamed Task 
Oriented

Rule-Based Used As a 
Part

Google 
DialogFlow

CDC’s Mental 
Health 
Resourced

Hassan et al. (2021) Unnamed Task 
Oriented

Retrieval-
Based

/ / /

Burger et al. (2022) Unnamed Task 
Oriented

Rule-Based Used As a 
Part

Rasa /

De Gennaro et al. 
(2020)

Rose / Rule-Based / / /

Grové (2021) Ash Task 
Oriented

Retrieval-
Based

/ / /

Park et al. (2019) Bonobot Task 
Oriented

Retrieval-
Based

Used As a 
Part

ELIZA /

Rathnayaka et al. 
(2022)

Bunji Task 
Oriented

Retrieval-
Based

Used As a 
Part

Rasa /

Ludin et al. (2022) Aroha Task 
Oriented

Retrieval-
Based

Used As a 
Part

Google 
DialogFlow

/

Fitzpatrick et al. 
(2017)

Woebot Task 
Oriented

Rule-Based / / /

Noble et al. (2022) MIRA Task 
Oriented

Retrieval-
Based

Used As a 
Part

Rasa (New) Study 
Team Members

Mauriello et al. 
(2021)

Popbots Task 
Oriented

Retrieval-
Based

/ / (New) 
Workshop With 
Designers …

Chung et al. (2021) Dr. Joy QA Retrieval-
Based

Yes Kakao i (New) Obstetric 
QA Knowledge 
D…

Morris et al. (2018) Unnamed Task 
Oriented

Retrieval-
Based

/ / (New) Koko 
Corpus

Beilharz et al. 
(2021)

KIT Task 
Oriented

Rule-Based / / (New) By The 
Authors

Table 10:

All method/experiment papers in the final list of this survey. This table only shows 

experiment features. Long values are truncated due to limited space.

Paper Study 
Design

Recruitment Sample 
Size

Duration Automatic 
Evaluation

Human 
Evaluation

Ethics Statistical 
Test

Jiang et al. 
(2022)

/ / / / / Related Social 
Media Posts

/ /

Bennion et al. 
(2020)

RCT Advertised 
Over The Web, 
Poste…

112 2 Weeks Time Personal 
Problems, 
Helpfulness…

Yes ANOVA, 
Independent t 
Tests Tha…

Suganuma et 
al. (2018)

Comparative 
Analysis

Internet 
Research 
Company

191,263 1 Month / WHO-5-J, 
K19, BADS-
AC, BADS-
AR

Yes Two-Factor 
Mixed Model 
ANOVA

Goonesekera 
and Donkin 
(2022)

User Study Facebook, 
Instagram, 
Twitter,…

29 2 Weeks Adherence SHAI-18, 
GAD-7, 
IUS-12, 
ONS4, …

Yes Paired 
Samples t 
Tests And 1-
W…

Gaffney et al. 
(2020)

User Study Email, 
Telephone

15 2 Weeks Frequency, 
Duration

Helpfulness, 
Key 

Yes Power 
Analysis, 
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Paper Study 
Design

Recruitment Sample 
Size

Duration Automatic 
Evaluation

Human 
Evaluation

Ethics Statistical 
Test

Mechanisms 
Of…

Paired 
Samples…

Mariamo et al. 
(2021)

Comparative 
Analysis

Flyers And 
Facebook 
Advertisem…

19 / / Perceived 
Emotionla 
Valence, L…

Yes Panel Logistic 
Regressions

Provoost et al. 
(2020)

RCT Advertisements 
In Digital 
Medi…

35, 35 4 Weeks Adherence Short 
Motivation 
Feedback 
List…

Yes Point 
Estimates, 
General 
Linea…

Greer et al. 
(2019)

RCT Facebook, 
Usrvivorship 
Organiz…

51 4 Weeks Time Spent 
On All 
Sessions

Engagement 
With The 
Chatbot, C…

Yes Chi-Square 
Test, t-Test

Klos et al. 
(2021)

RCT Presentations 
In University 
Co…

39, 34 8 Weeks / PHQ-9. 
GAD-7

Yes Mann-
Whitney U 
And Wilcoxon 
Te…

Liu et al. 
(2022)

RCT Online Poster 83 16 
Weeks

/ PHQ-9, 
GAD-7 
(Spitzeret Al., 
2…

Yes Independent t-
Tests And 
Chi-Sq…

Linden et al. 
(2020)

User Study Snowball 
Sampling

93 / / Usability, 
Suggestions, 
Identi…

Yes /

Gupta et al. 
(2022)

User Study Internet 
Communities

/ 8 Weeks / NPRS, 
PROMIS-PI, 
PHQ-9, 
GAD-7,…

Yes Wilcoxon 
Signed-Rank 
Test, Pai…

Prochaska et 
al. (2021a)

RCT Qualtrics, 
Stanford 
Listservs,…

180 8 Weeks / Change In 
Past-Month 
Substance…

IRB Paired 
Samples t-
Tests And 
Chi…

Prochaska et 
al. (2021b)

User Study User, Social 
Media, 
Craigslist…

101 8 Weeks / The Alcohol 
Use Disorders 
Iden…

IRB Paired 
Samples t 
Tests And 
McN…

Darcy et al. 
(2021)

User Study 36070 5 Days / PHQ-2, 
Working 
Alliance 
Invent…

IRB Spearman 
Rank-Order 
Correlatio…

Green et al. 
(2020)

User Study Hospital 10 1-2 
Weeks

Intervention 
Use

Feasibility, 
Acceptability, 
De…

IRB Bayesian 
Linear Mixed-
Effects …

Sinha et al. 
(2022)

User Study US Tertiary 
Care 
Orthopedic 
Cl…

49 8 Weeks App’s Usage 
Log, Number 
Of Ses…

/ IRB Kaplan-Meier 
Nonparametric 
Est…

Schick et al. 
(2022)

Comparative 
Analysis

University’s 
Research Panel

146 / / Experience, 
Balanced 
Inventory…

Yes ANOVA, 
Repeated-
Measures 
ANOVA…

Beatty et al. 
(2022)

User Study New Users 1205 3 Days Textual 
Snippets 
From Users

Working 
Alliance 
Inventory-
Sho…

Yes The Wilcoxon 
Signed Rank 
Test

Meheli et al. 
(2022)

User Study Users 2194 / Textual 
Snippets, 
Tool Usage, 
…

PHQ-9, 
GAD-7

Yes Mann-
Whitney U 
Test, Paired t 
…

Dosovitsky et 
al. (2020)

User Study Users 354 / Total 
Messages 

/ Yes /
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Paper Study 
Design

Recruitment Sample 
Size

Duration Automatic 
Evaluation

Human 
Evaluation

Ethics Statistical 
Test

Sent From/To 
Us…

Dosovitsky et 
al. (2021)

User Study Facebook 3895 6 Month / PHQ-9, 
Usefulness

Yes Cronbach’s 
Alpha, 
Spearman’s 
R…

Hungerbuehler 
et al. (2021)

User Study Email, Intranet, 
Banners, 
Leaf…

77 / / PHD-9, 
GAD-7, 
DASS-21, 
Insomni…

Yes /

Daley et al. 
(2020)

User Study 3629 90 Days / PHD-9, 
GAD-7, 
DASS-21

Yes Cohen’s d, 
Standardized 
Coeffi…

Ly et al. 
(2017)

RCT Universities, 
Website, Social 
…

14, 14 2 Weeks / Flourishing 
Scale, The 
Satisfa…

IRB Independent t-
Tests And X2-
Tes…

Gabrielli et al. 
(2021)

User Study Recruited 
From 
University

71 4 Weeks / Perceived 
Stress Scale, 
Genera…

Yes Shapiro Test, 
Paired-
Samples t…

He et al. 
(2022)

RCT Social Media 
Outlets, Online 
P…

148 1 Week / PHQ-9, 
Diagnostic 
AndStatistic…

Yes G* Power, 
Analysis Of 
Covarian…

Park et al. 
(2022)

Comparative 
Analysis

Amazon 
Mechanical 
Turk

348 / / Chatbot 
Emotional 
Disclosure, …

/ Cronbach’s , 
And 
Correlation …

Hassan et al. 
(2021)

/ / / / / / / /

Burger et al. 
(2022)

Comparative 
Analysis

Prolific, a 
Crowd-
Sourcing Pla…

308 / PHQ-9, 
Engagement 
In Self-Refl…

Yes Spearman’s p

De Gennaro et 
al. (2020)

Comparative 
Analysis

Department 
Subject Pool

64, 64 / / Positive And 
Negative 
Affect S…

Yes Independent 
Samples t-
Test, AN…

Grové (2021) User Study Recruited 40 / / Participants’ 
Interests And 
Th…

Yes /

Park et al. 
(2019)

User Study University 
Online Bulletin

30 / / Perceived 
Stress Scale 
(PSS-10…

IRB /

Rathnayaka et 
al. (2022)

User Study Users 34 8 Weeks Activity 
Scheduling 
Details, A…

PHQ-9 IRB Shapiro-Wilk 
Test, Mann-
Whitne…

Ludin et al. 
(2022)

User Study Users 127 / / Chatbot 
Feedbacks

Yes /

Fitzpatrick et 
al. (2017)

RCT US University 
Students

70 2 Weeks / PHD-9, 
GAD-7, 
PANAS, 
Acceptabi…

IRB Cohen’s , 
ANCOVA, 
ANOVA

Noble et al. 
(2022)

User Study Snowball 
Sampling, 
Social Medi…

/ / Effectiveness, 
Engagement

Clinical 
Outcomes In 
Routine E…

Yes /

Mauriello et 
al. (2021)

User Study Word Of 
Mouth And a 
University…

47 1 Week / Stress Levels, 
Sleep Quality, 
…

Yes Wilcoxon 
Signed-Rank 
Test

Chung et al. 
(2021)

User Study From Clinic, 
Snowball 
Sampling

15 1 Week User’s 
Utterances

USE 
Questionnaire, 
Perceived B…

IRB Spearman 
Correlation, 
Shapiro-…
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Paper Study 
Design

Recruitment Sample 
Size

Duration Automatic 
Evaluation

Human 
Evaluation

Ethics Statistical 
Test

Morris et al. 
(2018)

User Study User 37169 / / User Ratings Yes Chi-Square 
Analysis

Beilharz et al. 
(2021)

User Study Social Media 
Outlets, Online 
P…

17 2 Weeks / Content, 
Structure, And 
Design…

Yes /
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Figure 1: 
Pipeline of our PRISMA framework.
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Table 1:

Steps in the screening process and the number of papers retained in each database.

Screening
Process ACL AAAI IEEE ACM PubMed

Database Search 68 30 52 280 104

Title Screening 26 16 39 137 84

Abstract Screening 9 4 31 45 68

Full-Text Screening 9 4 20 40 63

Model / Experiment 6 3 15 35 43
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Table 2:

Distribution of predominant language of the data and/or participants recruited in mental health CA papers. 

Other languages include Bangla, Danish, Dutch, Japanese, Kazakh, Norwegian, Spanish, and Swedish.

Language CS Med All

English 47 30 77

Chinese 1 5 6

Korean 4 1 5

German 1 1 2

Italian 1 1 2

Portuguese 0 2 2

Other 5 3 8
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Table 3:

Distribution of mental health category in mental health CA papers. A paper could have multiple focused 

targets. Other categories include affective disorder, COVID-19, eating disorders, PTSD, substance use 

disorder, etc.

Mental Health Category CS Med All

Not Specified 32 21 53

Depression 9 10 19

Anxiety 8 8 16

Stress 0 4 4

Sexual Abuse 3 0 3

Social Isolation 3 0 3

Other 14 11 25
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Table 4:

Distribution of demographics focused by mental health CA papers. A paper could have multiple focused target 

demographic groups. Other includes black American, the military community, and employee.

Target Demographic CS Med All

General 43 26 69

Young People 4 6 10

Students 5 3 8

Women 3 4 7

Older adults 4 1 5

Other 1 4 5
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Table 5:

Distribution of model techniques used in mental health CA papers. A paper could use multiple modeling 

techniques. The Not Specified group includes papers without a model but employing surveys to ask people’s 

opinions and suggestions towards mental health CA.

Model Technique CS Med All

Retrieval-Based 27 22 49

Rule-Based 23 19 42

Generative 10 0 10

Not Specified 3 3 6
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Table 6:

Distribution of outsourced models used for building models used in mental health CA papers. Other includes 

Manychat9, Woebot (Fitzpatrick et al., 2017) and Eliza (Weizenbaum, 1966).

Outsourced Model CS Med All

Google Dialogflow 11 2 13

Rasa 5 5 10

Alexa 4 0 4

DialoGPT 3 0 3

GPT 3 0 3

X2AI 0 3 3

Other 17 6 23
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