

HHS Public Access

Author manuscript

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2024 April 12.

Published in final edited form as:

Proc Conf Empir Methods Nat Lang Process. 2023 December ; 2023: 11346–11369. doi:10.18653/v1/2023.emnlp-main.698.

An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives

Young-Min Cho¹, **Sunny Rai**¹, **Lyle Ungar**¹, **João Sedoc**², **Sharath Chandra Guntuku**¹ ¹University of Pennsylvania

²New York University

Abstract

Mental health conversational agents (a.k.a. chatbots) are widely studied for their potential to offer accessible support to those experiencing mental health challenges. Previous surveys on the topic primarily consider papers published in either computer science or medicine, leading to a divide in understanding and hindering the sharing of beneficial knowledge between both domains. To bridge this gap, we conduct a comprehensive literature review using the PRISMA framework, reviewing 534 papers published in both computer science and medicine. Our systematic review reveals 136 key papers on building mental health-related conversational agents with diverse characteristics of modeling and experimental design techniques. We find that computer science papers focus on LLM techniques and evaluating response quality using automated metrics with little attention to the application while medical papers use rule-based conversational agents and outcome metrics to measure the health outcomes of participants. Based on our findings on transparency, ethics, and cultural heterogeneity in this review, we provide a few recommendations to help bridge the disciplinary divide and enable the cross-disciplinary development of mental health conversational agents.

1 Introduction

The proliferation of conversational agents (CAs), also known as chatbots or dialog systems, has been spurred by advancements in Natural Language Processing (NLP) technologies. Their application spans diverse sectors, from education (Okonkwo and Ade-Ibijola, 2021; Durall and Kapros, 2020) to e-commerce (Shenoy et al., 2021), demonstrating their increasing ubiquity and potency.

The utility of CAs within the mental health domain has been gaining recognition. Over 30% of the world's population suffers from one or more mental health conditions; about 75% individuals in low and middle-income countries and about 50% individuals in high-income countries do not receive care and treatment (Kohn et al., 2004; Arias et al., 2022). The sensitive (and often stigmatized) nature of mental health discussions further exacerbates this

jch0@seas.upenn.edu .

⁹ https://manychat.com

problem, as many individuals find it difficult to disclose their struggles openly (Corrigan and Matthews, 2003).

Conversational agents like Woebot (Fitzpatrick et al., 2017) and Wysa (Inkster et al., 2018) were some of the first mobile applications to address this issue. They provide an accessible and considerably less intimidating platform for mental health support, thereby assisting a substantial number of individuals. Their effectiveness highlights the potential of mental health-focused CAs as one of the viable solutions to ease the mental health disclosure and treatment gap.

Despite the successful implementation of certain CAs in mental health, a significant disconnect persists between research in computer science (CS) and medicine. This disconnect is particularly evident when we consider the limited adoption of advanced NLP (e.g. large language models) models in the research published in medicine. While CS researchers have made substantial strides in NLP, there is a lack of focus on the human evaluation and direct impacts these developments have on patients. Furthermore, we observe that mental health CAs are drawing significant attention in medicine, yet remain underrepresented in health-applications-focused research in NLP. This imbalance calls for a more integrated approach in future studies to optimize the potential of these evolving technologies for mental health applications.

In this paper, we present a comprehensive analysis of academic research related to mental health conversational agents, conducted within the domains of CS and medicine¹. Employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework (Moher et al., 2010), we systematically reviewed 136 pertinent papers to discern the trends and research directions in the domain of mental health conversational agents over the past five years. We find that there is a disparity in research focus and technology across communities, which is also shown in the differences in evaluation. Furthermore, we point out the issues that apply across domains, including transparency and language/cultural heterogeneity.

The primary objective of our study is to conduct a systematic and transparent review of mental health CA research papers across the domains of CS and medicine. This process aims not only to bridge the existing gap between these two broad disciplines but also to facilitate reciprocal learning and strengths sharing. In this paper, we aim to address the following key questions:

- 1. What are the prevailing focus and direction of research in each of these domains?
- 2. What key differences can be identified between the research approaches taken by each domain?
- 3. How can we augment and improve mental health CA research methods?

¹Our data and papers are available on our GitHub: https://github.com/JeffreyCh0/mental_chatbot_survey

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2024 April 12.

2 Prior Survey Papers

Mental health conversational agents are discussed in several non-CS survey papers, with an emphasis on their usability in psychiatry (Vaidyam et al., 2019; Montenegro et al., 2019; Laranjo et al., 2018), and users' acceptability (Koulouri et al., 2022; Gaffney et al., 2019). These survey papers focus on underpinning theory (Martinengo et al., 2022), standardized *psychological outcomes* for evaluation (Vaidyam et al., 2019; Gaffney et al., 2019) in addition to *accessibility* (Su et al., 2020), *safety* (Parmar et al., 2022) and *validity* (Pacheco-Lorenzo et al., 2021; Wilson and Marasoiu, 2022) of CAs.

Contrary to surveys for medical audiences, NLP studies mostly focus on the quality of the generated response from the standpoint of text generation. Valizadeh and Parde (2022) in their latest survey, reviewed 70 articles and investigated task-oriented healthcare dialogue systems from a technical perspective. The discussion focuses on the system architecture and design of CAs. The majority of healthcare CAs were found to have pipeline architecture despite the growing popularity of end-to-end architectures in the NLP domain. A similar technical review by Safi et al. (2020) also reports a high reliance on static dialogue systems in CAs developed for medical applications. Task-oriented dialogue systems usually deploy a guided conversation style which fits well with rule-based systems. However, Su et al. (2020); Abd-Alrazaq et al. (2021) pointed to the problem of robotic conversation style in mental health apps where users prefer an unconstrained conversation style and may even want to lead the conversation (Abd-Alrazaq et al., 2019). Huang (2022) further underlines the need for self-evolving CAs to keep up with evolving habits and topics during the course of app usage.

Surveys from the rest of CS cover HCI (de Souza et al., 2022) and the system design of CAs (Dev et al., 2022; Narynov et al., 2021a). de Souza et al. (2022) analyzed 6 mental health mobile applications from an HCI perspective and suggested 24 design considerations including *empathetic* conversation style, *probing*, and *session duration* for effective dialogue. Damij and Bhattacharya (2022) proposed three key dimensions namely *people* (citizen centric goals), *process* (regulations and governance) and *AI technology* to consider when designing public care CAs.

These survey papers independently provide an in-depth understanding of advancements and challenges in the CS and medical domains. However, there is a lack of studies that can provide a joint appraisal of developments to enable cross-learning across these domains. With this goal, we consider research papers from medicine (PubMed), NLP (the ACL Anthology), and the rest of CS (ACM, AAAI, IEEE) to examine the disparities in goals, methods, and evaluations of research related to mental health conversational agents.

3 Methods

3.1 Paper Databases

We source papers from eminent databases in the fields of NLP, the rest of CS, and medicine, as these are integral knowledge areas in the study of mental health CA. These databases include the ACL Anthology (referred to as ACL throughout this paper)², AAAI³,

IEEE⁴, ACM⁵, and PubMed⁶. ACL is recognized as a leading repository that highlights pioneering research in NLP. AAAI features cutting-edge studies in AI. IEEE, a leading community, embodies the forefront of engineering and technology research. ACM represents the latest trends in Human Computer Interaction (HCI) along with several other domains of CS. PubMed, the largest search engine for science and biomedical topics including psychology, psychiatry, and informatics among others provides extensive coverage of the medical spectrum.

Drawing on insights from prior literature reviews (Valizadeh and Parde, 2022; Montenegro et al., 2019; Laranjo et al., 2018) and discussion with experts from both the CS and medical domains, we opt for a combination of specific keywords. These search terms represent both our areas of focus: conversational agents ("conversational agent", "chatbot") and mental health ("mental health", "depression"). Furthermore, we limit our search criteria to the paper between 2017 to 2022 to cover the most recent articles. We also apply the "research article" filter on ACM search, and "Free Full Text or Full Text" for PubMed search. Moreover, we manually add 3 papers recommended by the domain experts (Fitzpatrick et al., 2017; Laranjo et al., 2018; Montenegro et al., 2019). This results in 534 papers.

3.2 Screening Process

For subsequent steps in the screening process, we adhere to a set of defined inclusion criteria. Specifically, we include a paper if it met the following conditions for a focused and relevant review of the literature that aligns with the objectives of our study:

- Primarily focused on CAs irrespective of modality, such as text, speech, or embodied.
- Related to mental health and well-being. These could be related to depression, PTSD, or other conditions defined in the DSM-IV (Bell, 1994) or other emotionrelated intervention targets such as stress.
- Contribute towards directly improving mental health CAs. This could be • proposing novel models or conducting user studies.

The initial step in our screening process is title screening, in which we examine all titles, retaining those that are related to either CA or mental health. Our approach is deliberately inclusive during this phase to maximize the recall. As a result, out of 534 papers, we keep 302 for the next step.

Following this, we proceed with abstract screening. In this stage, we evaluate whether each paper meets our inclusion criteria. To enhance the accuracy and efficiency of our decision-making process, we extract the ten most frequent words from the full text of each paper to serve as keywords. These keywords provide an additional layer of verification,

² https://aclanthology.org/ ³ https://aaai.org/aaai-publications/

⁴ https://ieeexplore.ieee.org/

⁵ https://dl.acm.org/

⁶ https://pubmed.ncbi.nlm.nih.gov/

assisting our decision-making process. Following this step, we are left with a selection of 157 papers.

The final step is full-text screening. When we verify if a paper meets the inclusion criteria, we extract key features (such as model techniques and evaluations) from the paper and summarize them in tables (see appendix). Simultaneously, we highlight and annotate the papers' PDF files to provide evidence supporting our claims about each feature similar to the methodology used in Howcroft et al. (2020). This process is independently conducted by two co-authors on a subset of 25 papers, and the annotations agree with each other. Furthermore, the two co-authors also agree upon the definition of features, following which all the remaining papers receive one annotation.⁷

The final corpus contains 136 papers: 9 from ACL, 4 from AAAI, 20 from IEEE, 40 from ACM, and 63 from PubMed. We categorize these papers into four distinct groups: 102 model/experiment papers, 20 survey papers, and the remaining 14 papers are classified as 'other'. Model papers are articles whose primary focus is on the construction and explanation of a theoretical model, while experimental papers are research studies that conduct specific experiments on the models to answer pertinent research questions. We combine experiment and model papers frequently incorporate evaluations through experiments. The 'other' papers include dataset papers, summary papers describing the proceedings of a workshop, perspectives/viewpoint papers, and design science research papers. In this paper, we focus on analyzing the experiment/model and survey papers, which have a more uniform set of features.

3.3 Feature Extraction

We extract a set of 24 features to have a detailed and complete overview of the recent trend. They include general features (*"paper type", "language", "mental health category", "background", "target group", "target demographic"*), techniques (*"chatbot name", "chatbot type", "model technique", "off the shelf", "outsourced model name", "training data"*), appearance (*"interface", "embodiment", "platform", "public access"*), and experiment (*"study design", "recruitment", "ethics"*). Due to the limited space, we present a subset of the features in the main paper. Description of other features can be found in Appendix.⁸

4 Results

Under the category of model and experiment papers, there are 6 papers from ACL, 3 from AAAI, 15 from IEEE, 35 from ACM, and 43 from PubMed. In this section, we briefly summarize the observations from the different features we extracted.

⁷Annotated PDF files with evidence of each feature are available in our GitHub.

⁸Full feature table is available in the supplemental material.

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2024 April 12.

4.1 Language

We identify if there is a predominant language associated with either the data used for the models or if there is a certain language proficiency that was a part of the inclusion criteria for participants. Our findings, summarized in Table 2, reveal that English dominates these studies with over 71% of the papers utilizing data and/or participants proficient in English. Despite a few (17%) papers emerging from East Asia and Europe, we notice that studies in low-resource languages are relatively rare.

4.2 Mental Health Category

Most of the papers (43%) we reviewed do not deal with a specific mental health condition but work towards general mental health well-being (Saha et al., 2022a). The methods proposed in such papers are applicable to the symptoms associated with a broad range of mental health issues (e.g. emotional dysregulation). Some papers, on the other hand, are more tailored to address the characteristics of targeted mental health conditions. As shown in Table 3, depression and anxiety are two major mental health categories being dealt with, reflecting the prevalence of these conditions (Eagle et al., 2022). Other categories include stress management (Park et al., 2019; Gabrielli et al., 2021); sexual abuse, to help survivors of sexual abuse (Maeng and Lee, 2022; Park and Lee, 2021), and social isolation, mainly targeted toward older adults (Sidner et al., 2018; Razavi et al., 2022). Less-studied categories include affective disorders (Maharjan et al., 2022a,b), COVID-19-related mental health issues (Kim et al., 2022; Ludin et al., 2022), eating disorders (Beilharz et al., 2021), and PTSD (Han et al., 2021).

4.3 Target Demographic

Most of the papers (>65%) do not specify the target demographic of users for their CAs. The target demographic distribution is shown in Table 4. An advantage of the models proposed in these papers is that they could potentially offer support to a broad group of users irrespective of the underlying mental health condition. Papers without a target demographic and a target mental health category focus on proposing methods such as using generative language models for psychotherapy (Das et al., 2022a), or to address specific modules of the CAs such as leveraging reinforcement learning for response generation (Saha et al., 2022b). On the other hand, 31% papers focus on one specific user group such as young individuals, students, women, older adults, etc, to give advanced assistance. Young individuals, including adolescents and teenagers, received the maximum attention (Rahman et al., 2021). Several papers also focus on the mental health care of women, for instance in prenatal and postpartum women (Green et al., 2019; Chung et al., 2021) and sexual abuse survivors (Maeng and Lee, 2022; Park and Lee, 2021). Papers targeting older adults are mainly designed for companionship and supporting isolated elders (Sidner et al., 2018; Razavi et al., 2022).

4.4 Model Technique

Development of Large Language Models such as GPT-series (Radford et al., 2019; Brown et al., 2020)greatly enhanced the performance of generative models, which in turn made a significant impact on the development of CAs (Das et al., 2022b; Nie et al., 2022). However,

as shown in Table 5, LLMs are yet to be utilized in the development of mental health CAs (as of the papers reviewed in this study), especially in medicine. No paper from PubMed in our final list dealt with generative models, with the primary focus being rule-based and retrieval-based CAs.

Rule-based models operate on predefined rules and patterns such as if-then statements or decision trees to match user inputs with predefined responses. The execution of Rulebased CAs can be straightforward and inexpensive, but developing and maintaining a comprehensive set of rules can be challenging. Retrieval-based models rely on a predefined database of responses to generate replies. They use techniques like keyword matching (Daley et al., 2020), similarity measures (Collins et al., 2022), or information retrieval (Morris et al., 2018) to select the most appropriate response from the database based on the user's input. Generative model-based CAs are mostly developed using deep learning techniques such as recurrent neural networks (RNNs) or transformers, which learn from large amounts of text data and generate responses based on the learned patterns and structures. While they can often generate more diverse and contextually relevant responses compared to rule-based or retrieval-based models, they could suffer from hallucination and inaccuracies (Azaria and Mitchell, 2023).

4.5 Outsourced Models

Building a CA model from scratch could be challenging for several reasons such as a lack of sufficient data, compute resources, or generalizability. Publicly available models and architectures have made building CAs accessible. Google Dialogflow (Google, 2021) and Rasa (Bocklisch et al., 2017) are the two most used outsourced platforms and frameworks. Alexa, DialoGPT (Zhang et al., 2019), GPT (2 and 3) (Radford et al., 2019; Brown et al., 2020) and X2AI (now called Cass) (Cass, 2023) are also frequently used for building CA models. A summary can be found in Table 6.

Google Dialogflow is a conversational AI platform developed by Google that enables developers to build and deploy chatbots and virtual assistants across various platforms. Rasa is an open-source conversational AI framework that empowers developers to create and deploy contextual chatbots and virtual assistants with advanced natural language understanding capabilities. Alexa is a voice-controlled virtual assistant developed by Amazon. It enables users to interact with a wide range of devices and services using voice commands, offering capabilities such as playing music, answering questions, and providing personalized recommendations. DialoGPT is a large, pre-trained neural conversational response generation model that is trained on the GPT2 model with 147M conversation-like exchanges from Reddit. X2AI is the leading mental health AI assistant that supports over 30M individuals with easy access.

4.6 Evaluation

Automatic: Mental health CAs are evaluated with various methods and metrics. Multiple factors, including user activity (total sessions, total time, days used, total word count), user utterance (sentiment analysis, LIWC (Pennebaker et al., 2015)), CA response quality (BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), lexical diversity, perplexity), and

performance of CA's submodules (classification f1 score, negative log-likelihood) are measured and tested. We find that papers published in the CS domain focus more on technical evaluation, while the papers published in medicine are more interested in user data.

Human outcomes: Human evaluation using survey assessment is the most prevalent method to gauge mental health CAs' performance. Some survey instruments measure the pre- and post-study status of participants and evaluate the impact of the CA by comparing mental health (e.g. PHQ-9 (Kroenke et al., 2001), GAD-7 (Spitzer et al., 2006), BFI-10 (Rammstedt et al., 2013)) and mood scores (e.g. WHO-5 (Topp et al., 2015)), or collecting user feedback on CA models (usability, difficulty, appropriateness), or asking a group of individuals to annotate user logs or utterances to collect passive feedbacks (self-disclosure level, competence, motivational).

4.7 Ethical Considerations

Mental health CAs inevitably work with sensitive data, including demographics, Personal Identifiable Information (PII), and Personal Health Information (PHI). Thus, careful ethical consideration and a high standard of data privacy must be applied in the studies. Out of the 89 papers that include human evaluations, approximately 70% (62 papers) indicate that they either have been granted approval by Institutional Review Boards (IRB) or ethics review committees or specified that ethical approval is not a requirement based on local policy. On the other hand, there are 24 papers that do not mention seeking ethical approval or consequent considerations in the paper. Out of these 24 papers that lack a statement on ethical concerns, 21 papers are published in the field of CS.

5 Discussion

5.1 Disparity in Research Focus

Mental health Conversational Agents require expert knowledge from different domains. However, the papers we reviewed, treat this task quite differently, evidenced by the base rates of the number of papers matching our inclusion criteria. For instance, there are over 28,000 articles published in the ACL Anthology with the keywords "chatbot" or "conversational agent", which reveals the popularity of this topic in the NLP domain. However, there are only 9 papers related to both mental health and CA, which shows that the focus of NLP researchers is primarily concentrated on the technical development of CA models, less on its applications, including mental health. AAAI shares a similar trend as ACL. However, there are a lot of related papers to mental health CAs in IEEE and ACM, which show great interest from the engineering and HCI community. PubMed represents the latest trend of research in the medical domain, and it has the largest number of publications that fit our inclusion criteria. While CS papers mostly do not have a specific focus on the mental health category for which CAs are being built, papers published in the medical domain often tackle specific mental health categories.

5.2 Technology Gap

CS and medical domains are also different in the technical aspects of the CA model. In the CS domain (ACL, AAAI, IEEE, ACM), 41 (of 73 papers) developed CA models,

while 14 (out of 63) from the medical domain (PubMed) developed models. Among these papers, 8 from the CS domain are based on generative methods, but no paper in PubMed uses this technology. The NLP community is actively exploring the role of generative LLMs (e.g. GPT-4) in designing CAs including mental healthcare-related CAs (Das et al., 2022a; Saha et al., 2022b; Yan and Nakashole, 2021). With the advent of more sophisticated LLMs, *fluency, repetitions* and, *ungrammatical formations* are no longer concerns for dialogue generation. However, stochastic text generation coupled with black box architecture prevents wider adoption of these models in the health sector (Vaidyam et al., 2019). Unlike task-oriented dialogues, mental health domain CAs predominantly involve unconstrained conversation style for *talk-therapy* that can benefit from the advancements in LLMs (Abd-Alrazaq et al., 2021).

PubMed papers rather focus on retrieval-based and rule-based methods, which are, arguably, previous-generation CA models as far as the technical complexity is concerned. This could be due to a variety of factors such as explainability, accuracy, and reliability which are crucial when dealing with patients.

5.3 Response Quality vs Health Outcome

The difference in evaluation also reveals the varying focus across CS and medicine domains. From the CS domains, 30 (of 59 papers) applied automatic evaluation, which checks both model's performance (e.g. BLEU, ROUGE-L, perplexity) and participant's CA usage (total sessions, word count, interaction time). In contrast, only 13 out of 43 papers from PubMed used automatic evaluation, and none of them investigated the models' performance.

The difference is also spotted in human evaluation. 40 (of 43 papers) from PubMed consist of human outcome evaluation, and they cover a wide range of questionnaires to determine participants' status (e.g. PHQ-9, GAD-7, WHO-5). The focus is on users' psychological well-being and evaluating the chatbot's suitability in the clinical setup (Martinengo et al., 2022). Although these papers do not test the CA model's performance through automatic evaluation, they asked for participants' ratings to oversee their model's quality (e.g. helpfulness, System Usability Scale (Brooke et al., 1996), WAI-SR (Munder et al., 2010)).

All 6 ACL papers that satisfied our search criteria, solely focus on dialogue quality (e.g. *fluency, friendliness* etc.) with no discussion on CA's effect on users' well-being through clinical measures such as PHQ-9. CAs that aim to be the first point of contact for users seeking mental health support, should have clinically validated mechanisms to monitor the well-being of their users (Pacheco-Lorenzo et al., 2021; Wilson and Marasoiu, 2022). Moreover, the mental health CAs we review are designed without any underlying theory for psychotherapy or behavior change that puts the utility of CAs providing *emotional support* to those suffering from mental health challenges in doubt.

5.4 Transparency

None of the ACL papers that we reviewed released their model or API. Additionally, a *baseline* or comparison with the existing state-of-the-art model is often missing in the papers. There is no standardized outcome reporting procedure in both medicine and CS domains (Vaidyam et al., 2019). For instance, Valizadeh and Parde (2022) raised concerns

about the replicability of evaluation results and transparency for healthcare CAs. We acknowledge the restrictions posed to making the models public due to the sensitive nature of the data. However, providing APIs could be a possible alternative to enable comparison for future studies. To gauge the true advantage of mental health CAs in a clinical setup, randomized control trials are an important consideration that is not observed in NLP papers. Further, standardized benchmark datasets for evaluating mental health CAs could be useful in increasing transparency.

5.5 Language and Cultural Heterogeneity

Over 75% of the research papers in our review cater to English-speaking participants struggling with depression and anxiety. Chinese and Korean are the two languages with the highest number of research papers following English, even though Chinese is the most populous language in the world. Future works could consider tapping into a diverse set of languages that also have a lot of data available - for instance, Hindi, Arabic, French, Russian, and Japanese, which are among the top 10 most spoken languages in the world. The growing prowess of multilingual LLMs could be an incredible opportunity to transfer universally applicable development in mental health CAs to low-resource languages while being mindful of the racial and cultural heterogeneity which several multilingual models might miss due to being trained on largely English data (Bang et al., 2023).

6 Conclusion

In this paper, we used the PRISMA framework to systematically review the recent studies about mental health CA across both CS and medical domains. From the well-represented databases in both domains, we begin with 865 papers based on a keyword search to identify mental health-related conversational agent papers and use title, abstract, and full-text screening to retain 136 papers that fit our inclusion criteria. Furthermore, we extract a wide range of features from model and experiment papers, summarizing attributes in the fields of general features, techniques, appearance, and experiment. Based on this information, we find that there is a gap between CS and medicine in mental health CA studies. They vary in research focus, technology, and evaluation purposes. We also identify common issues that lie between domains, including transparency and language/cultural heterogeneity.

Potential Recommendations

We systematically study the difference between domains and show that learning from each other is highly beneficial. Since interdisciplinary works consist of a small portion of our final list (20 over 102 based on author affiliations on papers; 7 from ACM, 2 from IEEE, and 11 from PubMed), we suggest more collaborations to help bridge the gap between the two communities. For instance, NLP (and broadly CS) papers on mental health CAs would benefit from adding pre-post analysis on human feedback and considering ethical challenges by requesting a review of an ethics committee. Further, studies in medicine could benefit by tapping into the latest developments in generative methods in addition to the commonly used rule-based methods. In terms of evaluation, both the quality of response by the CAs (in terms of automatic metrics such as BLEU, ROUGE-L, perplexity, and measures of dialogue quality) as well as the effect of CA on users' mental states (in terms of mental

health-specific survey inventories) could be used to assess the performance of mental health CAs. Moreover, increasing the language coverage to include non-English data/participants and adding cultural heterogeneity while providing APIs to compare against current mental health CAs would help in addressing the challenge of mental health care support with a cross-disciplinary effort.

Limitations

This survey paper has several limitations. Our search criteria are between January 2017 to December 2022, which likely did not reflect the development of advanced CA and large language models like ChatGPT and GPT4 (Sanderson, 2023). We couldn't include more recent publications to meet the EMNLP submission date. Nonetheless, we have included relevant comments across the different sections on the applicability of more sophisticated models.

Further, search engines (e.g. Google Scholar) are not deterministic. Our search keywords, filters, and chosen databases do not guarantee the exact same search results. However, we have tested multiple times on database searching and they returned consistent results. We have downloaded PDFs of all the papers and have saved the annotated them to reflect the different steps used in this review paper. These annotations will be made public.

For some databases, the number of papers in the final list may be (surprisingly!) small to represent the general research trends in the respective domains. However, it also indicates the lack of focus on mental health CA from these domains, which also proposes further attention is required in the field.

Ethics Statement

Mental Health CAs, despite their accessibility, potential ability, and anonymity, cannot replace human therapists in providing mental health care. There are a lot of ongoing discussions about the range of availability of mental health CAs, and many raise several challenges and suspicions about automated conversations. Rule-based and retrieval-based models can be controlled for content generation, but cannot answer out-of-domain questions. Generative models are still a developing field, their non-deterministic nature raises concerns about the safety and reliability of the content. Thus at the current stage, CA could play a great supporting complementary role in mental healthcare to identify individuals who potentially need more immediate care in an already burdened healthcare system.

Since the patient's personal information and medical status are extremely sensitive, we highly encourage researchers and developers to pay extra attention to data security and ethics Arias et al. (2022). The development, validation, and deployment of mental health CAs should involve multiple diverse stakeholders to determine how, when, and which data is being used to train and infer participants' mental health. This effort requires a multidisciplinary effort to address the complex challenges of mental health care (Chancellor et al., 2019).

Acknowledgements

We would like to thank the reviewers for their fruitful discussion with us. This work was partly supported by grant NIMHD: R01MD018340 from the National Institutes of Health and Penn Global Research Engagement Fund. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

A: Venues of Selected Papers

In this paper, we searched all venues indexed under 5 databases to cover most of the venues that are interested in mental health conversational agents. In Table 7, we show the distribution of venues under each database for the papers that are selected for the final list.

Table 7:

Venues in each database that have at least one paper in our final list and the corresponding number of model/experiment papers.

AAA	AI	ACI	<u>.</u>	ACM		IEE	E	PubMed	
Venue	Count	Venue	Count	Venue	Count	Venue	Count	Venue	Count
HCOMP	2	EMNLP	1	CHI	9	ICIRCA	2	JMIR Form Res	9
AAAI	1	SIGDIAL	1	ACM-TiiS	4	ACII	2	J Med Internet Res	7
		BioNLP	1	IVA	4	ICoICT	1	Front Digit Health	4
		NAACL	1	ACM-HCI	3	UCET	1	JMIR Mhealth Uhealth	3
		NLP4PI	1	UbiComp- ISWC	2	ICCCI	1	JMIR Res Protoc	3
		LREC	1	CUI	2	ICHCI	1	Digit Health	2
				PervasiveHealth	2	ICACCS	1	JMIR Ment Health	2
				CHItaly	1	ISCC	1	JMIR Hum Factors	2
				ACSW	1	IEEE Trans. Emerg.	1	Internet Interv	2
				Н3	1	SIEDS	1	Curr Psychol	1
				Asian CHI	1	IEEE Pervasive Comput.	1	Comput Math Methods Med	1
				DIS	1	ICCAS	1	Inf Process Manag	1
				CHIuXiD	1	INCET	1	Front Psychol	1
				ACM-HEALTH	1			Trials	1
				IASA	1			Front Psychiatry	1

AA	AAAI		ACL		ACM		IEEE		PubMed	
Venue	Count	Venue	Count	Venue		Count	Venue	Count	Venue	Count
				ECCE		1			Drug Alcohol Depend	1
									Sensors (Basel)	1
									JMIR Med Inform	1

B: Full Table Explanation

We show our final list of model/experiment papers in Table 8, Table 9 and Table 10. Due to the limited size of the paper, some columns ("background") are removed and long values are truncated. The full table is available on our GitHub.

For an easier understanding of our full table, we briefly introduce each feature we extracted below.

- *Paper*: The citation of the selected paper.
- *Database*: The source of the paper.
- *Paper Type*: The type of the paper. We here only show model or experiment papers.
- *Language*: Target language used in this paper.
- *Mental Health Category*: Target mental health category in this paper.
- *Target Group*: Target group of this paper. Could be patients, caregivers, or clinicians.
- *Target Demographic*: Target demographic of this paper. If it is not specified or can be used by anyone, we mark it as General.
- *Chatbot Name*: The name of the chatbot model used in this paper.
- *Chatbot Type*: Type of the mental health CA. Could be QA, open domain, or task-oriented.
- *Model Technique*: Type of technique used to build the model. Could be rulebased, retrieval-based, or generative.
- *Off the Shelf*. Information about the usage of off-the-shelf models in the system. We limit Off-the-shelf models to pre-trained models or applications. Could be yes (directly used), used as a part (off-the-shelf model is a part of the pipeline), or finetuned.
- *Outsourced Model Name*: The name of the off-the-shelf model, if any.
- *Training Data*: The name or source of the training data, if any.
- *Interface*: Type of input the model takes. Could be text, voice, visual, or button.

- *Embodiment*: Embodiment of the model. Could be physical or visual.
- *Platform*: The platform the model run on. Could be Web, Mobile, PC, or other devices.
- *Public Access*: If the availability of the model is disclosed in the paper. Could be fully open (parameter level) or API (able to use).
- *Study Design*: Type of user study performed in the paper. Could be RCT (Randomized Controlled Trial), user study (ask participants to use and evaluate), or comparative analysis (divide users with different conditions and compare the results).
- *Recruitment*: How participants are recruited.
- *Sample Size*: Size of the participants.
- *Duration*: Duration of the user study.
- *Automatic Evaluation*: List of automatic evaluation metrics used in this paper.
- *Human Evaluation*: List of parameters/metrics derived from Human Evaluation used in this paper.
- *Statistical Test*: List of statistical tests used for measuring significance in this paper.
- *Ethics*: Whether the paper mentioned ethical consideration. Could be IRB (Institutional Review Board), or yes (ethical consideration is mentioned in the paper).

Table 8:

All method/experiment papers in the final list of this survey. This table only shows general and appearance features.

Paper	Database	Paper Type	Language	Mental Health Category	Target Group	Target Demographic	Interface	Embodiment	Platform	P A
Jiang et al. (2022)	PubMed	Experiment	Chinese	General	Patients	Women	Text	Virtual	Mobile, PC	A
Bennion et al. (2020)	PubMed	Experiment	English	General	Patients	Older Adults	Text	/	Web	/
Suganuma et al. (2018)	PubMed	Experiment	Japanese	General	Patients	General	Button	/	Web	/
Goonesekera and Donkin (2022)	PubMed	Experiment	English	Anxiety	Patients	General	Text	/	Mobile, PC	/
Gaffney et al. (2020)	PubMed	Experiment	English	General	Patients	General	Text	/	Web	/
Mariamo et al. (2021)	PubMed	Experiment	English	General	Patients	Adolescents	/	/	/	/
Provoost et al. (2020)	PubMed	Experiment	English	Low mood, Depression	Patients	General	Text	Virtual	Mobile, Web	/
Greer et al. (2019)	PubMed	Experiment	English	After Cancer Treatment	Patients	Young Adults	Text	/	Mobile, PC	/

Paper	Database	Paper Type	Language	Mental Health Category	Target Group	Target Demographic	Interface	Embodiment	Platform	ļ
Klos et al. (2021)	PubMed	Experiment	Spanish	Depression, Anxiety	Patients	General	Text	/	Mobile, PC	/
Liu et al. (2022)	PubMed	Experiment	Chinese	Depression	Patients	University Students	Text, Voice	/	Mobile, PC	A
Linden et al. (2020)	PubMed	Experiment	English	Anxiety, Depression, PTSD	Patients	Military Community	Text	/	Mobile	/
Gupta et al. (2022)	PubMed	Experiment	English	General	Patients	General	Text	/	Mobile	/
Prochaska et al. (2021a)	PubMed	Experiment	English	Substance Use Disorder	Patients	General	Text	/	Mobile, PC	/
Prochaska et al. (2021b)	PubMed	Experiment	English	Substance Use Disorder	Patients	General	Text	/	Mobile, PC	A
Darcy et al. (2021)	PubMed	Experiment	English	Depression, Anxiety	Patients	General	Text	/	Mobile, PC	A
Green et al. (2020)	PubMed	Experiment	English	Depression	Patients	Pregnant Women, New Mothers	Text	/	Mobile	/
Sinha et al. (2022)	PubMed	Experiment	English	General	Patients	General	/	/	Mobile	A
Schick et al. (2022)	PubMed	Experiment	German	Mental Disorders	Patients	Adolescence, Young Adulthood	Text, Button	/	PC	/
Beatty et al. (2022)	PubMed	Experiment	English	General	Patients	General	Text	/	Mobile	/
Meheli et al. (2022)	PubMed	Experiment	English	General	Patients	General	Text	/	Mobile	/
Dosovitsky et al. (2020)	PubMed	Experiment	English	General	Patients	General	Text	/	/	/
Dosovitsky et al. (2021)	PubMed	Experiment	English	Depression	Patients	General	Text	/	Mobile, PC	/
Hungerbuehler et al. (2021)	PubMed	Experiment	Portuguese	General	Patients	Employee	Text	Nan	Mobile, PC	/
Daley et al. (2020)	PubMed	Experiment	Portuguese	Anxiety, Depression, Stress	Patients	General	Text	Nan	Internet- Enabled Device	А
Ly et al. (2017)	PubMed	Experiment	Swedish	General	Patients	General	Text	/	Mobile	/
Gabrielli et al. (2021)	PubMed	Experiment	Italian	Stress, Anxiety	Patients	University Students	Text	/	Mobile, PC	A
He et al. (2022)	PubMed	Experiment	Chinese	General	Patients	Young Adults	Text	/	Mobile	/
Park et al. (2022)	PubMed	Model	English	General	Patients	General	Button	/	/	/
Hassan et al. (2021)	PubMed	Model	English	General	Patients	General	Text	/	Web	/
Burger et al. (2022)	PubMed	Model	English	Depression	Patients	General	Text	/	/	/
De Gennaro et al. (2020)	PubMed	Model	English	Social Exclusion	Patients	General	Text, Button	Virtual	Web	/
Grové (2021)	PubMed	Model	English	General	Patients	Young People	Text	/	/	/

Paper	Database	Paper Type	Language	Mental Health Category	Target Group	Target Demographic	Interface	Embodiment	Platform	F A
Park et al. (2019)	PubMed	Model	English	Stress	Patients	General	Text	/	Web	/
Rathnayaka et al. (2022)	PubMed	Model	English	General	Patients	General	Text	/	Mobile	A
Ludin et al. (2022)	PubMed	Model	English	Pandamic- Related Worry, Anxiety	Patients	Young People	Text	/	Web	/
Fitzpatrick et al. (2017)	PubMed	Model	English	Depression, Anxiety	Clinicians	University Students	Text	/	Mobile, PC	A
Noble et al. (2022)	PubMed	Model	English	General	Patients	Health Care Worker	Text	/	Web	/
Mauriello et al. (2021)	PubMed	Model	English	Stress	Patients	General	Text	/	Mobile	/
Chung et al. (2021)	PubMed	Model	Korean	General	Patients, Caregivers	Perinatal Womens, Partners	Text	/	Mobile	/
Morris et al. (2018)	PubMed	Model	English	General	Patients	General	Text	/	Mobile	A
Beilharz et al. (2021)	PubMed	Model	Chinese	Body Image, Eating Disorders	Patients	General	Button	/	Web	/

Table 9:

All method/experiment papers in the final list of this survey. This table only shows technique features. Long values are truncated due to limited space.

Paper	Chatbot Name	Chatbot Type	Model Technique	Off the Shelf	Outsourced Model Name	Training Data
Denecke et al. (2020)	SERMO	Task Oriented	Retrieval- Based	Used As a Part	OSCOVA	/
Ghandeharioun et al. (2019b)	Unnamed	Task Oriented	Rule-Based	/	/	/
Schwartz et al. (2022)	DARA	Task Oriented	Retrieval- Based	Used As a Part, Finetuned	MindTrails	/
Maharjan et al. (2022b)	Sofia	Task Oriented	Retrieval- Based	Used As a Part	Google Dialogflow	/
Narynov et al. (2021b)	Unnamed	Task Oriented	Retrieval- Based	Used As a Part	Rasa	(New) Marked Entities In The D
Crasto et al. (2021)	Carebot	Open Domain	Generative	Used As a Part, Finetuned	DialoGPT	(New) Data Scraped From Counse
Chan et al. (2022)	Unnamed	Task Oriented	Rule-Based	Used As a Part	X2AI	Body Positive Conversations
Zhu et al. (2022)	Xiaolv	/	/	/	/	/
Jiang et al. (2022)	Replika	/	/	/	/	/
Bennion et al. (2020)	MYLO, ELIZA	Task Oriented	Rule-Based, Retrieval- Based	/	/	/

Paper	Chatbot Name	Chatbot Type	Model Technique	Off the Shelf	Outsourced Model Name	Training Data
Suganuma et al. (2018)	SABORI	Task Oriented	Rule-Based	/	/	/
Goonesekera and Donkin (2022)	Otis	Task Oriented	Rule-Based	Yes	Chatfuel	/
Gaffney et al. (2020)	MYLO	Task Oriented	Retrieval- Based	/	/	/
Mariamo et al. (2021)	/	/	/	/	/	/
Provoost et al. (2020)	Moodbuster Lite	Task Oriented	Rule-Based	/	/	/
Greer et al. (2019)	Vivibot	Task Oriented	Rule-Based	/	/	/
Klos et al. (2021)	Tess	Task Oriented	Retrieval- Based	/	/	/
Liu et al. (2022)	XiaoNan	Task Oriented	Retrieval- Based	Used As a Part	Rasa	/
Linden et al. (2020)	Here4U App - Military Version	Task Oriented	Retrieval- Based	Yes	IBM's Watson Assistant	/
Gupta et al. (2022)	Wysa	Task Oriented	Retrieval- Based	/	/	/
Prochaska et al. (2021a)	W-SUDs (Weobot For SUDs)	Task Oriented	Rule-Based	/	/	/
Prochaska et al. (2021b)	Woebot	Task Oriented	Rule-Based	/	/	/
Darcy et al. (2021)	Woebot	Task Oriented	Rule-Based	/	/	/
Green et al. (2020)	Healthy Mons	Task Oriented	Rule-Based	Yes	Tess(Zuri)	/
Sinha et al. (2022)	Wysa	Task Oriented	Retrieval- Based	/	/	/
Schick et al. (2022)	Microfost Bot	Task Oriented	Retrieval- Based	/	/	/
Beatty et al. (2022)	Wysa	Task Oriented	Retrieval- Based	/	/	/
Meheli et al. (2022)	Wysa	Task Oriented	Retrieval- Based	/	/	/
Dosovitsky et al. (2020)	Tess	Task Oriented	Retrieval- Based	Yes	X2AI	/
Dosovitsky et al. (2021)	Tess	Task Oriented	Retrieval- Based	Yes	X2AI	/
Hungerbuehler et al. (2021)	Viki	Task Oriented	Rule-Based	/	/	/
Daley et al. (2020)	Vitalk	Task Oriented	Rule-Based	/	/	/
Ly et al. (2017)	Shim	Task Oriented	Rule-Based	1	/	(New) Professionals I Psychol
Gabrielli et al. (2021)	Atena	Task Oriented	Rule-Based	/	/	(New) Psychologists
He et al. (2022)	XiaoE	Task Oriented	Retrieval- Based	Used As a Part	Rasa	(New) Psychologist Panel, Clin

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2024 April 12.

Paper	Chatbot Name	Chatbot Type	Model Technique	Off the Shelf	Outsourced Model Name	Training Data
Park et al. (2022)	Unnamed	Task Oriented	Rule-Based	Used As a Part	Google DialogFlow	CDC's Mental Health Resourced
Hassan et al. (2021)	Unnamed	Task Oriented	Retrieval- Based	/	/	/
Burger et al. (2022)	Unnamed	Task Oriented	Rule-Based	Used As a Part	Rasa	/
De Gennaro et al. (2020)	Rose	/	Rule-Based	/	/	/
Grové (2021)	Ash	Task Oriented	Retrieval- Based	/	/	/
Park et al. (2019)	Bonobot	Task Oriented	Retrieval- Based	Used As a Part	ELIZA	/
Rathnayaka et al. (2022)	Bunji	Task Oriented	Retrieval- Based	Used As a Part	Rasa	/
Ludin et al. (2022)	Aroha	Task Oriented	Retrieval- Based	Used As a Part	Google DialogFlow	/
Fitzpatrick et al. (2017)	Woebot	Task Oriented	Rule-Based	/	/	/
Noble et al. (2022)	MIRA	Task Oriented	Retrieval- Based	Used As a Part	Rasa	(New) Study Team Members
Mauriello et al. (2021)	Popbots	Task Oriented	Retrieval- Based	/	/	(New) Workshop With Designers
Chung et al. (2021)	Dr. Joy	QA	Retrieval- Based	Yes	Kakao i	(New) Obstetric QA Knowledge D
Morris et al. (2018)	Unnamed	Task Oriented	Retrieval- Based	/	/	(New) Koko Corpus
Beilharz et al. (2021)	KIT	Task Oriented	Rule-Based	/	/	(New) By The Authors

Table 10:

All method/experiment papers in the final list of this survey. This table only shows experiment features. Long values are truncated due to limited space.

Paper	Study Design	Recruitment	Sample Size	Duration	Automatic Evaluation	Human Evaluation	Ethics	Statistical Test
Jiang et al. (2022)	/	/	/	/	/	Related Social Media Posts	/	/
Bennion et al. (2020)	RCT	Advertised Over The Web, Poste	112	2 Weeks	Time	Personal Problems, Helpfulness	Yes	ANOVA, Independent t Tests Tha
Suganuma et al. (2018)	Comparative Analysis	Internet Research Company	191,263	1 Month	/	WHO-5-J, K19, BADS- AC, BADS- AR	Yes	Two-Factor Mixed Model ANOVA
Goonesekera and Donkin (2022)	User Study	Facebook, Instagram, Twitter,	29	2 Weeks	Adherence	SHAI-18, GAD-7, IUS-12, ONS4,	Yes	Paired Samples t Tests And 1- W
Gaffney et al. (2020)	User Study	Email, Telephone	15	2 Weeks	Frequency, Duration	Helpfulness, Key	Yes	Power Analysis,

Paper	Study Design	Recruitment	Sample Size	Duration	Automatic Evaluation	Human Evaluation	Ethics	Statistical Test
						Mechanisms Of		Paired Samples
Mariamo et al. (2021)	Comparative Analysis	Flyers And Facebook Advertisem	19	/	/	Perceived Emotionla Valence, L	Yes	Panel Logistic Regressions
Provoost et al. (2020)	RCT	Advertisements In Digital Medi	35, 35	4 Weeks	Adherence	Short Motivation Feedback List	Yes	Point Estimates, General Linea
Greer et al. (2019)	RCT	Facebook, Usrvivorship Organiz	51	4 Weeks	Time Spent On All Sessions	Engagement With The Chatbot, C	Yes	Chi-Square Test, t-Test
Klos et al. (2021)	RCT	Presentations In University Co	39, 34	8 Weeks	/	PHQ-9. GAD-7	Yes	Mann- Whitney U And Wilcoxo Te
Liu et al. (2022)	RCT	Online Poster	83	16 Weeks	/	PHQ-9, GAD-7 (Spitzeret Al., 2	Yes	Independent t Tests And Chi-Sq
Linden et al. (2020)	User Study	Snowball Sampling	93	/	/	Usability, Suggestions, Identi	Yes	/
Gupta et al. (2022)	User Study	Internet Communities	/	8 Weeks	/	NPRS, PROMIS-PI, PHQ-9, GAD-7,	Yes	Wilcoxon Signed-Rank Test, Pai
Prochaska et al. (2021a)	RCT	Qualtrics, Stanford Listservs,	180	8 Weeks	/	Change In Past-Month Substance	IRB	Paired Samples t- Tests And Chi
Prochaska et al. (2021b)	User Study	User, Social Media, Craigslist	101	8 Weeks	/	The Alcohol Use Disorders Iden	IRB	Paired Samples t Tests And McN
Darcy et al. (2021)	User Study		36070	5 Days	/	PHQ-2, Working Alliance Invent	IRB	Spearman Rank-Order Correlatio
Green et al. (2020)	User Study	Hospital	10	1-2 Weeks	Intervention Use	Feasibility, Acceptability, De	IRB	Bayesian Linear Mixed Effects
Sinha et al. (2022)	User Study	US Tertiary Care Orthopedic Cl	49	8 Weeks	App's Usage Log, Number Of Ses	/	IRB	Kaplan-Meier Nonparametri Est
Schick et al. (2022)	Comparative Analysis	University's Research Panel	146	/	/	Experience, Balanced Inventory	Yes	ANOVA, Repeated- Measures ANOVA
Beatty et al. (2022)	User Study	New Users	1205	3 Days	Textual Snippets From Users	Working Alliance Inventory- Sho	Yes	The Wilcoxon Signed Rank Test
Meheli et al. (2022)	User Study	Users	2194	/	Textual Snippets, Tool Usage, 	PHQ-9, GAD-7	Yes	Mann- Whitney U Test, Paired t
Dosovitsky et al. (2020)	User Study	Users	354	/	Total Messages	/	Yes	/

Paper	Study Design	Recruitment	Sample Size	Duration	Automatic Evaluation	Human Evaluation	Ethics	Statistical Test
					Sent From/To Us			
Dosovitsky et al. (2021)	User Study	Facebook	3895	6 Month	/	PHQ-9, Usefulness	Yes	Cronbach's Alpha, Spearman's R
Hungerbuehler et al. (2021)	User Study	Email, Intranet, Banners, Leaf	77	/	/	PHD-9, GAD-7, DASS-21, Insomni	Yes	/
Daley et al. (2020)	User Study		3629	90 Days	/	PHD-9, GAD-7, DASS-21	Yes	Cohen's d, Standardized Coeffi
Ly et al. (2017)	RCT	Universities, Website, Social 	14, 14	2 Weeks	/	Flourishing Scale, The Satisfa	IRB	Independent t Tests And X2 Tes
Gabrielli et al. (2021)	User Study	Recruited From University	71	4 Weeks	/	Perceived Stress Scale, Genera	Yes	Shapiro Test, Paired- Samples t
He et al. (2022)	RCT	Social Media Outlets, Online P	148	1 Week	/	PHQ-9, Diagnostic AndStatistic	Yes	G* Power, Analysis Of Covarian
Park et al. (2022)	Comparative Analysis	Amazon Mechanical Turk	348	/	/	Chatbot Emotional Disclosure,	/	Cronbach's , And Correlation
Hassan et al. (2021)	/	/	/	/	/	/	/	/
Burger et al. (2022)	Comparative Analysis	Prolific, a Crowd- Sourcing Pla	308		/	PHQ-9, Engagement In Self-Refl	Yes	Spearman's p
De Gennaro et al. (2020)	Comparative Analysis	Department Subject Pool	64, 64	/	/	Positive And Negative Affect S	Yes	Independent Samples t- Test, AN
Grové (2021)	User Study	Recruited	40	/	/	Participants' Interests And Th	Yes	/
Park et al. (2019)	User Study	University Online Bulletin	30	/	/	Perceived Stress Scale (PSS-10	IRB	/
Rathnayaka et al. (2022)	User Study	Users	34	8 Weeks	Activity Scheduling Details, A	PHQ-9	IRB	Shapiro-Wilk Test, Mann- Whitne
Ludin et al. (2022)	User Study	Users	127	/	/	Chatbot Feedbacks	Yes	/
Fitzpatrick et al. (2017)	RCT	US University Students	70	2 Weeks	/	PHD-9, GAD-7, PANAS, Acceptabi	IRB	Cohen's , ANCOVA, ANOVA
Noble et al. (2022)	User Study	Snowball Sampling, Social Medi	/	/	Effectiveness, Engagement	Clinical Outcomes In Routine E	Yes	/
Mauriello et al. (2021)	User Study	Word Of Mouth And a University	47	1 Week	/	Stress Levels, Sleep Quality, 	Yes	Wilcoxon Signed-Rank Test
Chung et al. (2021)	User Study	From Clinic, Snowball Sampling	15	1 Week	User's Utterances	USE Questionnaire, Perceived B	IRB	Spearman Correlation, Shapiro

Paper	Study Design	Recruitment	Sample Size	Duration	Automatic Evaluation	Human Evaluation	Ethics	Statistical Test
Morris et al. (2018)	User Study	User	37169	/	/	User Ratings	Yes	Chi-Square Analysis
Beilharz et al. (2021)	User Study	Social Media Outlets, Online P	17	2 Weeks	/	Content, Structure, And Design	Yes	/

References

- Abbas Tahir, Khan Vassilis-Javed, Gadiraju Ujwal, and Markopoulos Panos. 2020. Trainbot: A conversational interface to train crowd workers for delivering on-demand therapy. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, volume 8, pages 3–12.
- Abd-Alrazaq Alaa A, Alajlani Mohannad, Alalwan Ali Abdallah, Bewick Bridgette M, Gardner Peter, and Househ Mowafa. 2019. An overview of the features of chatbots in mental health: A scoping review. International Journal of Medical Informatics, 132:103978. [PubMed: 31622850]
- Abd-Alrazaq Alaa A, Alajlani Mohannad, Ali Nashva, Denecke Kerstin, Bewick Bridgette M, and Househ Mowafa. 2021. Perceptions and opinions of patients about mental health chatbots: scoping review. Journal of medical Internet research, 23(1):e17828. [PubMed: 33439133]
- Ali Mohammad Rafayet, Razavi Seyedeh Zahra, Langevin Raina, Al Mamun Abdullah, Kane Benjamin, Rawassizadeh Reza, Schubert Lenhart K, and Hoque Ehsan. 2020. A virtual conversational agent for teens with autism spectrum disorder: Experimental results and design lessons. In Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, pages 1–8.
- Arias Daniel, Saxena Shekhar, and Verguet Stéphane. 2022. Quantifying the global burden of mental disorders and their economic value. EClinicalMedicine, 54:101675. [PubMed: 36193171]
- Azaria Amos and Mitchell Tom. 2023. The internal state of an llm knows when its lying. arXiv preprint arXiv:2304.13734.
- Brandtzæg Petter Bae Bae, Skjuve Marita, Dysthe Kim Kristoffer Kristoffer, and Følstad Asbjørn. 2021. When the social becomes non-human: young people's perception of social support in chatbots. In Proceedings of the 2021 CHI conference on human factors in computing systems, pages 1–13.
- Bang Yejin, Cahyawijaya Samuel, Lee Nayeon, Wenliang Dai Dan Su, Wilie Bryan, Lovenia Holy, Ji Ziwei, Yu Tiezheng, Chung Willy, et al. 2023. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023.
- Beatty Clare, Malik Tanya, Meheli Saha, and Sinha Chaitali. 2022. Evaluating the therapeutic alliance with a free-text cbt conversational agent (wysa): A mixed-methods study. Frontiers in Digital Health, 4:847991. [PubMed: 35480848]
- Beilharz Francesca, Sukunesan Suku, Susan L Rossell Jayashri Kulkarni, Sharp Gemma, et al. 2021. Development of a positive body image chatbot (kit) with young people and parents/carers: qualitative focus group study. Journal of Medical Internet Research, 23(6):e27807. [PubMed: 34132644]
- Bell Carl C. 1994. Dsm-iv: diagnostic and statistical manual of mental disorders. Jama, 272(10):828–829.
- Bennion Matthew Russell, Hardy Gillian E, Moore Roger K, Kellett Stephen, and Millings Abigail. 2020. Usability, acceptability, and effectiveness of web-based conversational agents to facilitate problem solving in older adults: controlled study. Journal of Medical Internet Research, 22(5):e16794. [PubMed: 32384055]
- Bhangdia Yashwardhan, Bhansali Rashi, Chaudhari Ninad, Chandnani Dimple, and Dhore ML. 2021. Speech emotion recognition and sentiment analysis based therapist bot. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), pages 96– 101. IEEE.

- Bocklisch Tom, Faulkner Joey, Pawlowski Nick, and Nichol Alan. 2017. Rasa: Open source language understanding and dialogue management. arXiv preprint arXiv:1712.05181.
- Boyd Kyle, Potts Courtney, Bond Raymond, Mulvenna Maurice, Broderick Thomas, Burns Con, Bickerdike Andrea, Mctear Mike, Kostenius Catrine, Vakaloudis Alex, et al. 2022. Usability testing and trust analysis of a mental health and wellbeing chatbot. In Proceedings of the 33rd European Conference on Cognitive Ergonomics, pages 1–8.
- Brooke John et al. 1996. Sus-a quick and dirty usability scale. Usability evaluation in industry, 189(194):4–7.
- Brown Tom, Mann Benjamin, Ryder Nick, Subbiah Melanie, Jared D Kaplan Prafulla Dhariwal, Neelakantan Arvind, Shyam Pranav, Sastry Girish, Askell Amanda, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.
- Burger Franziska, Neerincx Mark A, and Brinkman Willem-Paul. 2022. Using a conversational agent for thought recording as a cognitive therapy task: Feasibility, content, and feedback. Frontiers in Digital Health, page 125.
- Cass. 2023. Cass: The leading mental health ai assistant. Cass website.
- Chan William W, Fitzsimmons-Craft Ellen E, Smith Arielle C, Firebaugh Marie-Laure, Fowler Lauren A, DePietro Bianca, Topooco Naira, Wilfley Denise E, Taylor C Barr, and Jacobson Nicholas C. 2022. The challenges in designing a prevention chatbot for eating disorders: observational study. JMIR Formative Research, 6(1):e28003. [PubMed: 35044314]
- Chancellor Stevie, Birnbaum Michael L, Caine Eric D, Silenzio Vincent MB, and De Choudhury Munmun. 2019. A taxonomy of ethical tensions in inferring mental health states from social media. In Proceedings of the conference on fairness, accountability, and transparency, pages 79– 88.
- Chung Kyungmi, Cho Hee Young, and Park Jin Young. 2021. A chatbot for perinatal women's and partners' obstetric and mental health care: Development and usability evaluation study. JMIR Medical Informatics, 9(3):e18607. [PubMed: 33656442]
- Collins Christopher, Arbour Simone, Beals Nathan, Yama Shawn, Laffier Jennifer, and Zhao Zixin. 2022. Covid connect: Chat-driven anonymous story-sharing for peer support. In Designing Interactive Systems Conference, pages 301–318.
- Corrigan Patrick and Matthews Alicia. 2003. Stigma and disclosure: Implications for coming out of the closet. Journal of mental health, 12(3):235–248.
- Cox Samuel Rhys and Ooi Wei Tsang. 2022. Does chatbot language formality affect users' selfdisclosure? In Proceedings of the 4th Conference on Conversational User Interfaces, pages 1–13.
- Crasto Reuben, Dias Lance, Miranda Dominic, and Kayande Deepali. 2021. Carebot: A mental health chatbot. In 2021 2nd International Conference for Emerging Technology (INCET), pages 1–5. IEEE.
- Daley Kate, Hungerbuehler Ines, Cavanagh Kate, Claro Heloísa Garcia, Swinton Paul Alan, and Kapps Michael. 2020. Preliminary evaluation of the engagement and effectiveness of a mental health chatbot. Frontiers in digital health, 2:576361. [PubMed: 34713049]
- Damij Nadja and Bhattacharya Suman. 2022. The role of ai chatbots in mental health related public services in a (post) pandemic world: A review and future research agenda. In 2022 IEEE Technology and Engineering Management Conference (TEMSCON EUROPE), pages 152–159. IEEE.
- Darcy Alison, Daniels Jade, Salinger David, Wicks Paul, and Robinson Athena. 2021. Evidence of human-level bonds established with a digital conversational agent: cross-sectional, retrospective observational study. JMIR Formative Research, 5(5):e27868. [PubMed: 33973854]
- Das Avisha, Selek Salih, Warner Alia R, Zuo Xu, Hu Yan, Keloth Vipina Kuttichi, Li Jianfu, Zheng W Jim, and Xu Hua. 2022a. Conversational bots for psychotherapy: A study of generative transformer models using domain-specific dialogues. In Proceedings of the 21st Workshop on Biomedical Language Processing, pages 285–297.
- Das Avisha, Selek Salih, Warner Alia R., Zuo Xu, Hu Yan, Vipina Kuttichi Keloth Jianfu Li, Zheng W. Jim, and Xu Hua. 2022b. Conversational bots for psychotherapy: A study of generative transformer models using domain-specific dialogues. In Proceedings of the 21st Workshop on

Biomedical Language Processing, pages 285–297, Dublin, Ireland. Association for Computational Linguistics.

- De Gennaro Mauro, Krumhuber Eva G, and Lucas Gale. 2020. Effectiveness of an empathic chatbot in combating adverse effects of social exclusion on mood. Frontiers in psychology, page 3061. [PubMed: 32038415]
- De Nieva Johan Oswin, Joaquin Jose Andres, Tan Chaste Bernard, Marc Te Ruzel Khyvin, and Ong Ethel. 2020. Investigating students' use of a mental health chatbot to alleviate academic stress. In 6th International ACM In-Cooperation HCI and UX Conference, pages 1–10.
- de Souza Paula Maia, da Costa Pires Isabella, Motti Vivian Genaro, Caseli Helena Medeiros, Neto Jair Barbosa, Martini Larissa C, and de Almeida Neris Vânia Paula. 2022. Design recommendations for chatbots to support people with depression. In Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems, pages 1–11.
- Deepa Ashlin, Karlapati Prathyusha, Mulagondla Mrunhaalhini Reddy, Amaranayani Pavitra, and Toram Anika Pranavi. 2022. An innovative emotion recognition and solution recommendation chatbot. In 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), volume 1, pages 1100–1105. IEEE.
- Demasi Orianna, Li Yu, and Yu Zhou. 2020. A multi-persona chatbot for hotline counselor training. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3623–3636.
- Denecke Kerstin, Vaaheesan Sayan, and Arulnathan Aaganya. 2020. A mental health chatbot for regulating emotions (sermo)-concept and usability test. IEEE Transactions on Emerging Topics in Computing, 9(3):1170–1182.
- Dev Pranto, Haque Sameeha, Noor Asmita, Abir Alam Srabon Mashruk Mohammed Wasik, Mim Sumaiya, Sharife Shadman Bin, Rahman Fariha, Syara Syeda Rifa, Iqbal Shadab, et al. 2022. A comparative study of chatbot catered toward mental health. In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), pages 1–6. IEEE.
- Dhanasekar Varshaa, Preethi Yenugu, Vishali S, Joe IR Praveen, et al. 2021. A chatbot to promote students mental health through emotion recognition. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), pages 1412–1416. IEEE.
- Dosovitsky Gilly, Kim Erick, and Bunge Eduardo L. 2021. Psychometric properties of a chatbot version of the phq-9 with adults and older adults. Frontiers in Digital Health, 3:645805. [PubMed: 34713116]
- Dosovitsky Gilly, Pineda Blanca S, Jacobson Nicholas C, Chang Cyrus, Bunge Eduardo L, et al. 2020. Artificial intelligence chatbot for depression: descriptive study of usage. JMIR Formative Research, 4(11):e17065. [PubMed: 33185563]
- Durall Eva and Kapros Evangelos. 2020. Co-design for a competency self-assessment chatbot and survey in science education. In Learning and Collaboration Technologies. Human and Technology Ecosystems: 7th International Conference, LCT 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part II 22, pages 13–24. Springer.
- Eagle Tessa, Blau Conrad, Bales Sophie, Desai Noopur, Li Victor, and Whittaker Steve. 2022. "i don't know what you mean byi am anxious": A new method for evaluating conversational agent responses to standardized mental health inputs for anxiety and depression. ACM Transactions on Interactive Intelligent Systems (TiiS), 12(2):1–23.
- Fadhil Ahmed, Schiavo Gianluca, Wang Yunlong, and Yilma Bereket A. 2018. The effect of emojis when interacting with conversational interface assisted health coaching system. In Proceedings of the 12th EAI international conference on pervasive computing technologies for healthcare, pages 378–383.
- Fitzpatrick Kathleen Kara, Darcy Alison, and Vierhile Molly. 2017. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): a randomized controlled trial. JMIR mental health, 4(2):e7785.
- Gabrielli Silvia, Rizzi Silvia, Bassi Giulia, Carbone Sara, Maimone Rosa, Marchesoni Michele, and Forti Stefano. 2021. Engagement and effectiveness of a healthy-coping intervention via chatbot for university students during the covid-19 pandemic: mixed methods proof-of-concept study. JMIR mHealth and uHealth, 9(5):e27965. [PubMed: 33950849]

- Gaffney Hannah, Mansell Warren, and Tai Sara. 2019. Conversational agents in the treatment of mental health problems: mixed-method systematic review. JMIR mental health, 6(10):e14166. [PubMed: 31628789]
- Gaffney Hannah, Mansell Warren, and Tai Sara. 2020. Agents of change: Understanding the therapeutic processes associated with the helpfulness of therapy for mental health problems with relational agent mylo. Digital Health, 6:2055207620911580.
- Garg Sahil, Rish Irina, Cecchi Guillermo, Goyal Palash, Ghazarian Sarik, Gao Shuyang, Ver Steeg Greg, and Galstyan Aram. 2020. Modeling dialogues with hash-code representations: A nonparametric approach. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3970–3979.
- Ghandeharioun Asma, McDuff Daniel, Czerwinski Mary, and Rowan Kael. 2019a. Emma: An emotion-aware wellbeing chatbot. In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), pages 1–7. IEEE.
- Ghandeharioun Asma, McDuff Daniel, Czerwinski Mary, and Rowan Kael. 2019b. Towards understanding emotional intelligence for behavior change chatbots. In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), pages 8–14. IEEE.
- Goel Raman, Vashisht Sachin, Dhanda Armaan, and Susan Seba. 2021. An empathetic conversational agent with attentional mechanism. In 2021 International Conference on Computer Communication and Informatics (ICCCI), pages 1–4. IEEE.
- Google. 2021. Google dialogflow: A conversational ai platform. Google Cloud Platform Documentation.
- Goonesekera Yenushka and Donkin Liesje. 2022. A cognitive behavioral therapy chatbot (otis) for health anxiety management: Mixed methods pilot study. JMIR Formative Research, 6(10):e37877.[PubMed: 36150049]
- Green Eric P, Lai Yihuan, Pearson Nicholas, Rajasekharan Sathyanath, Rauws Michiel, Joerin Angela, Kwobah Edith, Musyimi Christine, Jones Rachel M, Bhat Chaya, et al. 2020. Expanding access to perinatal depression treatment in kenya through automated psychological support: Development and usability study. JMIR Formative Research, 4(10):e17895. [PubMed: 33016883]
- Green Eric P, Pearson Nicholas, Rajasekharan Sathyanath, Rauws Michiel, Joerin Angela, Kwobah Edith, Musyimi Christine, Bhat Chaya, Jones Rachel M, and Lai Yihuan. 2019. Expanding access to depression treatment in kenya through automated psychological support: protocol for a singlecase experimental design pilot study. JMIR research protocols, 8(4):e11800. [PubMed: 31033448]
- Greer Stephanie, Ramo Danielle, Chang Yin-Juei, Fu Michael, Moskowitz Judith, Haritatos Jana, et al. 2019. Use of the chatbot "vivibot" to deliver positive psychology skills and promote well-being among young people after cancer treatment: randomized controlled feasibility trial. JMIR mHealth and uHealth, 7(10):e15018. [PubMed: 31674920]
- Grové Christine. 2021. Co-developing a mental health and wellbeing chatbot with and for young people. Frontiers in psychiatry, 11:606041. [PubMed: 33597898]
- Gupta Megha, Malik Tanya, Sinha Chaitali, et al. 2022. Delivery of a mental health intervention for chronic pain through an artificial intelligence–enabled app (wysa): Protocol for a prospective pilot study. JMIR Research Protocols, 11(3):e36910. [PubMed: 35314423]
- Han Hee Jeong, Mendu Sanjana, Jaworski Beth K, Owen Jason E, and Abdullah Saeed. 2021. Ptsdialogue: Designing a conversational agent to support individuals with post-traumatic stress disorder. In Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, pages 198–203.
- Hassan Abid, Ali MD, Ahammed Rifat, Bourouis Sami, Khan Mohammad Monirujjaman, et al. 2021. Development of nlp-integrated intelligent web system for e-mental health. Computational and Mathematical Methods in Medicine, 2021.
- He Yuhao, Yang Li, Zhu Xiaokun, Wu Bin, Zhang Shuo, Qian Chunlian, and Tian Tian. 2022. Mental health chatbot for young adults with depressive symptoms during the covid-19 pandemic: Singleblind, three-arm randomized controlled trial. Journal of Medical Internet Research, 24(11):e40719. [PubMed: 36355633]

- Holt-Quick Chester and Warren Jim. 2021. Establishing a dialog agent policy using deep reinforcement learning in the psychotherapy domain. In 2021 Australasian Computer Science Week Multiconference, pages 1–9.
- Howcroft David M., Belz Anya, Clinciu Miruna-Adriana, Gkatzia Dimitra, Hasan Sadid A., Mahamood Saad, Mille Simon, van Miltenburg Emiel, Santhanam Sashank, and Rieser Verena.
 2020. Twenty years of confusion in human evaluation: NLG needs evaluation sheets and standardised definitions. In Proceedings of the 13th International Conference on Natural Language Generation, pages 169–182, Dublin, Ireland. Association for Computational Linguistics.
- Huang Xiao. 2022. Ideal construction of chatbot based on intelligent depression detection techniques. In 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), pages 511–515. IEEE.
- Hungerbuehler Ines, Daley Kate, Cavanagh Kate, Claro Heloísa Garcia, and Kapps Michael. 2021. Chatbot-based assessment of employees' mental health: Design process and pilot implementation. JMIR Formative Research, 5(4):e21678. [PubMed: 33881403]
- Inkster Becky, Sarda Shubhankar, Subramanian Vinod, et al. 2018. An empathy-driven, conversational artificial intelligence agent (wysa) for digital mental wellbeing: real-world data evaluation mixed-methods study. JMIR mHealth and uHealth, 6(11):e12106. [PubMed: 30470676]
- Ishii Etsuko, Winata Genta Indra, Cahyawijaya Samuel, Lala Divesh, Kawahara Tatsuya, and Fung Pascale. 2021. Erica: an empathetic android companion for covid-19 quarantine. arXiv preprint arXiv:2106.02325.
- Jaiswal Shashank, Valstar Michel, Kusumam Keerthy, and Greenhalgh Chris. 2019. Virtual human questionnaire for analysis of depression, anxiety and personality. In Proceedings of the 19th acm international conference on intelligent virtual agents, pages 81–87.
- Jiang Qiaolei, Zhang Yadi, and Pian Wenjing. 2022. Chatbot as an emergency exist: Mediated empathy for resilience via human-ai interaction during the covid-19 pandemic. Information Processing & Management, 59(6):103074. [PubMed: 36059428]
- Kawasaki Masamune, Yamashita Naomi, Lee Yi-Chieh, and Nohara Kayoko. 2020. Assessing users' mental status from their journaling behavior through chatbots. In Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, pages 1–8.
- Kim Junhan, Muhic Jana, Robert Lionel Peter, and Park Sun Young. 2022. Designing chatbots with black americans with chronic conditions: Overcoming challenges against covid-19. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pages 1–17.
- Klos Maria Carolina, Escoredo Milagros, Joerin Angela, Lemos Viviana Noemi, Rauws Michiel, and Bunge Eduardo L. 2021. Artificial intelligence–based chatbot for anxiety and depression in university students: pilot randomized controlled trial. JMIR formative research, 5(8):e20678. [PubMed: 34092548]
- Kohn Robert, Saxena Shekhar, Levav Itzhak, and Saraceno Benedetto. 2004. The treatment gap in mental health care. Bulletin of the World health Organization, 82(11):858–866. [PubMed: 15640922]
- Koulouri Theodora, Macredie Robert D, and Olakitan David. 2022. Chatbots to support young adults' mental health: An exploratory study of acceptability. ACM Transactions on Interactive Intelligent Systems (TiiS), 12(2):1–39.
- Kroenke Kurt, Spitzer Robert L, and Williams Janet BW. 2001. The phq-9: validity of a brief depression severity measure. Journal of general internal medicine, 16(9):606–613. [PubMed: 11556941]
- Laranjo Liliana, Dunn Adam G, Tong Huong Ly, Kocaballi Ahmet Baki, Chen Jessica, Bashir Rabia, Surian Didi, Gallego Blanca, Magrabi Farah, Lau Annie YS, et al. 2018. Conversational agents in healthcare: a systematic review. Journal of the American Medical Informatics Association, 25(9):1248–1258. [PubMed: 30010941]
- Lee Minha, Ackermans Sander, Van As Nena, Chang Hanwen, Lucas Enzo, and IJsselsteijn Wijnand. 2019. Caring for vincent: a chatbot for self-compassion. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–13.

- Lee Yi-Chieh, Yamashita Naomi, and Huang Yun. 2020a. Designing a chatbot as a mediator for promoting deep self-disclosure to a real mental health professional. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1):1–27.
- Lee Yi-Chieh, Yamashita Naomi, Huang Yun, and Fu Wai. 2020b. "i hear you, i feel you": encouraging deep self-disclosure through a chatbot. In Proceedings of the 2020 CHI conference on human factors in computing systems, pages 1–12.
- Lin Chin-Yew. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.
- Linden Brooke, Tam-Seto Linna, and Stuart Heather. 2020. Adherence of the# here4u app–military version to criteria for the development of rigorous mental health apps. JMIR Formative Research, 4(6):e18890. [PubMed: 32554374]
- Liu Hao, Peng Huaming, Song Xingyu, Xu Chenzi, and Zhang Meng. 2022. Using ai chatbots to provide self-help depression interventions for university students: A randomized trial of effectiveness. Internet Interventions, 27:100495. [PubMed: 35059305]
- Ludin Nicola, Holt-Quick Chester, Hopkins Sarah, Stasiak Karolina, Hetrick Sarah, Warren Jim, and Cargo Tania. 2022. A chatbot to support young people during the covid-19 pandemic in new zealand: Evaluation of the real-world rollout of an open trial. Journal of Medical Internet Research, 24(11):e38743. [PubMed: 36219754]
- Luerssen Martin H and Hawke Tim. 2018. Virtual agents as a service: Applications in healthcare. In Proceedings of the 18th International Conference on Intelligent Virtual Agents, pages 107–112.
- Ly Kien Hoa, Ly Ann-Marie, and Andersson Gerhard. 2017. A fully automated conversational agent for promoting mental well-being: A pilot rct using mixed methods. Internet interventions, 10:39– 46. [PubMed: 30135751]
- Maeng Wookjae and Lee Joonhwan. 2022. Designing and evaluating a chatbot for survivors of imagebased sexual abuse. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pages 1–21.
- Maharjan Raju, Doherty Kevin, Rohani Darius Adam, Bækgaard Per, and Bardram Jakob E. 2022a. Experiences of a speech-enabled conversational agent for the self-report of wellbeing among people living with affective disorders: An in-the-wild study. ACM Transactions on Interactive Intelligent Systems (TiiS), 12(2):1–29.
- Maharjan Raju, Rohani Darius A, Doherty Kevin, Bækgaard Per, and Bardram Jakob E. 2022b. What is the difference? investigating the self-report of well-being via conversational agent and web app. IEEE Pervasive Computing, 21(2):60–68.
- Maharjan Raju, Rohani Darius Adam, Bækgaard Per, Bardram Jakob, and Doherty Kevin. 2021. Can we talk? design implications for the questionnaire-driven self-report of health and wellbeing via conversational agent. In Proceedings of the 3rd Conference on Conversational User Interfaces, pages 1–11.
- Mariamo Audrey, Temcheff Caroline Elizabeth, Léger Pierre-Majorique, Senecal Sylvain, Lau Marianne Alexandra, et al. 2021. Emotional reactions and likelihood of response to questions designed for a mental health chatbot among adolescents: Experimental study. JMIR human factors, 8(1):e24343. [PubMed: 33734089]
- Martinengo Laura, Jabir Ahmad Ishqi, Goh Westin Wei Tin, Lo Nicholas Yong Wai, Ho Moon-Ho Ringo, Kowatsch Tobias, Atun Rifat, Michie Susan and Tudor Car Lorainne. 2022. Conversational agents in health care: Scoping review of their behavior change techniques and underpinning theory. Journal of Medical Internet Research, 24(10):e39243. [PubMed: 36190749]
- Mauriello Matthew Louis, Tantivasadakarn Nantanick, Mora-Mendoza Marco Antonio, Lincoln Emmanuel Thierry, Hon Grace, Nowruzi Parsa, Simon Dorien, Hansen Luke, Nathaniel H Goenawan Joshua Kim, et al. 2021. A suite of mobile conversational agents for daily stress management (popbots): Mixed methods exploratory study. JMIR formative research, 5(9):e25294. [PubMed: 34519655]
- Meheli Saha, Sinha Chaitali, and Kadaba Madhura. 2022. Understanding people with chronic pain who use a cognitive behavioral therapy–based artificial intelligence mental health app (wysa): Mixed methods retrospective observational study. JMIR Human Factors, 9(2):e35671. [PubMed: 35314422]

- Moher David, Liberati Alessandro, Tetzlaff Jennifer, Douglas G Altman Prisma Group, et al. 2010. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. International journal of surgery, 8(5):336–341. [PubMed: 20171303]
- Montenegro Joao Luis Zeni, da Costa Cristiano André, and da Rosa Righi Rodrigo. 2019. Survey of conversational agents in health. Expert Systems with Applications, 129:56–67.
- Morris Robert R, Kouddous Kareem, Kshirsagar Rohan, and Schueller Stephen M. 2018. Towards an artificially empathic conversational agent for mental health applications: system design and user perceptions. Journal of medical Internet research, 20(6):e10148. [PubMed: 29945856]
- Munder Thomas, Wilmers Fabian, Leonhart Rainer, Linster Hans Wolfgang, and Barth Jürgen. 2010. Working alliance inventory-short revised (wai-sr): psychometric properties in outpatients and inpatients. Clinical Psychology & Psychotherapy: An International Journal of Theory & Practice, 17(3):231–239.
- Narynov Sergazy, Zhumanov Zhandos, Gumar Aidana, Khassanova Mariyam, and Omarov Batyrkhan. 2021a. Chatbots and conversational agents in mental health: A literature review. In 2021 21st International Conference on Control, Automation and Systems (ICCAS), pages 353–358. IEEE.
- Narynov Sergazy, Zhumanov Zhandos, Gumar Aidana, Khassanova Mariyam, and Omarov Batyrkhan. 2021b. Development of chatbot psychologist applying natural language understanding techniques. In 2021 21st International Conference on Control, Automation and Systems (ICCAS), pages 636–641. IEEE.
- Nie Jingping, Shao Hanya, Zhao Minghui, Xia Stephen, Preindl Matthias, and Jiang Xiaofan. 2022. Conversational ai therapist for daily function screening in home environments. In Proceedings of the 1st ACM International Workshop on Intelligent Acoustic Systems and Applications, pages 31–36.
- Noble Jasmine M, Zamani Ali, Gharaat MohamadAli, Merrick Dylan, Maeda Nathanial, Foster Alex Lambe, Nikolaidis Isabella, Goud Rachel, Stroulia Eleni, Agyapong Vincent IO, et al. 2022. Developing, implementing, and evaluating an artificial intelligence–guided mental health resource navigation chatbot for health care workers and their families during and following the covid-19 pandemic: Protocol for a cross-sectional study. JMIR Research Protocols, 11(7):e33717. [PubMed: 35877158]
- Okonkwo Chinedu Wilfred and Ade-Ibijola Abejide. 2021. Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2:100033.
- Pacheco-Lorenzo Moisés R, Valladares-Rodríguez Sonia M, Anido-Rifón Luis E, and Fernández-Iglesias Manuel J. 2021. Smart conversational agents for the detection of neuropsychiatric disorders: A systematic review. Journal of Biomedical Informatics, 113:103632. [PubMed: 33276112]
- Papineni Kishore, Roukos Salim, Ward Todd, and Zhu Wei-Jing. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.
- Park Gain, Chung Jiyun, and Lee Seyoung. 2022. Effect of ai chatbot emotional disclosure on user satisfaction and reuse intention for mental health counseling: a serial mediation model. Current Psychology, pages 1–11.
- Park Hyanghee and Lee Joonhwan. 2021. Designing a conversational agent for sexual assault survivors: defining burden of self-disclosure and envisioning survivor-centered solutions. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–17.
- Park SoHyun, Choi Jeewon, Lee Sungwoo, Oh Changhoon, Kim Changdai, La Soohyun, Lee Joonhwan, and Suh Bongwon. 2019. Designing a chatbot for a brief motivational interview on stress management: Qualitative case study. Journal of medical Internet research, 21(4):e12231. [PubMed: 30990463]
- Park SoHyun, Thieme Anja, Han Jeongyun, Lee Sungwoo, Rhee Wonjong, and Suh Bongwon. 2021. "i wrote as if i were telling a story to someone i knew.": Designing chatbot interactions for expressive writing in mental health. In Designing Interactive Systems Conference 2021, pages 926–941.

- Parmar Pritika, Ryu Jina, Pandya Shivani, Sedoc João, and Agarwal Smisha. 2022. Health-focused conversational agents in person-centered care: a review of apps. NPJ digital medicine, 5(1):21. [PubMed: 35177772]
- Pennebaker James, Booth Roger, Boyd Ryan, and Francis Martha. 2015. Linguistic inquiry and word count: Liwc2015.
- Potts Courtney, Bond Raymond, Mulvenna Maurice D, Ennis Edel, Bickerdike Andrea, Coughlan Edward K, Broderick Thomas, Burns Con, McTear Michael F, Kuosmanen Lauri, et al. 2021. Insights and lessons learned from trialling a mental health chatbot in the wild. In 2021 IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.
- Prochaska Judith J, Vogel Erin A, Chieng Amy, Baiocchi Michael, Maglalang Dale Dagar, Pajarito Sarah, Weingardt Kenneth R, Darcy Alison, and Robinson Athena. 2021a. A randomized controlled trial of a therapeutic relational agent for reducing substance misuse during the covid-19 pandemic. Drug and Alcohol Dependence, 227:108986. [PubMed: 34507061]
- Prochaska Judith J, Vogel Erin A, Chieng Amy, Kendra Matthew, Baiocchi Michael, Pajarito Sarah, and Robinson Athena. 2021b. A therapeutic relational agent for reducing problematic substance use (woebot): development and usability study. Journal of medical Internet research, 23(3):e24850. [PubMed: 33755028]
- Provoost Simon, Kleiboer Annet, Ornelas José, Bosse Tibor, Ruwaard Jeroen, Rocha Artur, Cuijpers Pim, and Riper Heleen. 2020. Improving adherence to an online intervention for low mood with a virtual coach: study protocol of a pilot randomized controlled trial. Trials, 21:1–12. [PubMed: 31898511]
- Quiroz Juan C, Bongolan Tristan, and Ijaz Kiran. 2020. Alexa depression and anxiety self-tests: a preliminary analysis of user experience and trust. In Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pages 494–496.
- Radford Alec, Wu Jeffrey, Child Rewon, Luan David, Amodei Dario, Sutskever Ilya, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.
- Rahman Rifat, Rahman Md Rishadur, Tripto Nafis Irtiza, Ali Mohammed Eunus, Apon Sajid Hasan, and Shahriyar Rifat. 2021. Adolescentbot: Understanding opportunities for chatbots in combating adolescent sexual and reproductive health problems in bangladesh. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–15.
- Rammstedt Beatrice, Christoph J Kemper Mira Céline Klein, Beierlein Constanze, and Kovaleva Anastassiya. 2013. A short scale for assessing the big five dimensions of personality: 10 item big five inventory (bfi-10). methods, data, analyses, 7(2):17.
- Rastogi Neelesh, Keshtkar Fazel, and Miah Md Suruz. 2018. A multi-modal human robot interaction framework based on cognitive behavioral therapy model. In Proceedings of the Workshop on Human-Habitat for Health (H3): Human-Habitat Multimodal Interaction for Promoting Health and Well-Being in the Internet of Things Era, pages 1–6.
- Rathnayaka Prabod, Mills Nishan, Burnett Donna, De Silva Daswin, Alahakoon Damminda, and Gray Richard. 2022. A mental health chatbot with cognitive skills for personalised behavioural activation and remote health monitoring. Sensors, 22(10):3653. [PubMed: 35632061]
- Razavi S Zahra, Schubert Lenhart K, van Orden Kimberly, Ali Mohammad Rafayet, Kane Benjamin, and Hoque Ehsan. 2022. Discourse behavior of older adults interacting with a dialogue agent competent in multiple topics. ACM Transactions on Interactive Intelligent Systems (TiiS), 12(2):1–21.
- Ryu Hyeyoung, Kim Soyeon, Kim Dain, Han Sooan, Lee Keeheon, and Kang Younah. 2020. Simple and steady interactions win the healthy mentality: designing a chatbot service for the elderly. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2):1–25.
- Safi Zeineb, Abd-Alrazaq Alaa, Khalifa Mohamed, Househ Mowafa, et al. 2020. Technical aspects of developing chatbots for medical applications: scoping review. Journal of medical Internet research, 22(12):e19127. [PubMed: 33337337]
- Saha Tulika, Reddy Saichethan, Das Anindya, Saha Sriparna, and Bhattacharyya Pushpak. 2022a. A shoulder to cry on: Towards a motivational virtual assistant for assuaging mental agony. In Proceedings of the 2022 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 2436–2449, Seattle, United States. Association for Computational Linguistics.

- Saha Tulika, Reddy Saichethan, Das Anindya, Saha Sriparna, and Bhattacharyya Pushpak. 2022b. A shoulder to cry on: Towards a motivational virtual assistant for assuaging mental agony. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2436–2449.
- Sanderson Katharine. 2023. Gpt-4 is here: what scientists think. Nature, 615(7954):773. [PubMed: 36928404]
- Schick Anita, Feine Jasper, Morana Stefan, Maedche Alexander, and Reininghaus Ulrich. 2022. Validity of chatbot use for mental health assessment: Experimental study. JMIR mHealth and uHealth, 10(10):e28082. [PubMed: 36315228]
- Schroeder Jessica, Wilkes Chelsey, Rowan Kael, Toledo Arturo, Paradiso Ann, Czerwinski Mary, Mark Gloria, and Linehan Marsha M. 2018. Pocket skills: A conversational mobile web app to support dialectical behavioral therapy. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–15.
- Schwartz RX, Ramanan Aparna, Patel Disha, Lynch Annabel, Baee Sonia, and Barnes Laura. 2022. Dara: Development of a chatbot support system for an anxiety reduction digital intervention. In 2022 Systems and Information Engineering Design Symposium (SIEdS), pages 139–144. IEEE.
- Shenoy Ashish, Bodapati Sravan, and Kirchhoff Katrin. 2021. ASR adaptation for E-commerce chatbots using cross-utterance context and multi-task language modeling. In Proceedings of the 4th Workshop on e-Commerce and NLP, pages 18–25, Online. Association for Computational Linguistics.
- Shin Ji Youn and Huh-Yoo Jina. 2020. Designing everyday conversational agents for managing health and wellness: A study of alexa skills reviews. In Proceedings of the 14th EAI International Conference on Pervasive Computing Technologies for Healthcare, pages 50–61.
- Sia Dominic Ethan, Yu Marco Jalen, Daliva Justine Leo, Montenegro Jaycee, and Ong Ethel. 2021. Investigating the acceptability and perceived effectiveness of a chatbot in helping students assess their well-being. In Asian CHI Symposium 2021, pages 34–40.
- Siddik Sayed Abu Noman, Arifuzzaman BM, and Kalam Abul. 2022. Psyche conversa-a deep learning based chatbot framework to detect mental health state. In 2022 10th International Conference on Information and Communication Technology (ICoICT), pages 146–151. IEEE.
- Sidner Candace L, Bickmore Timothy, Nooraie Bahador, Rich Charles, Ring Lazlo, Shayganfar Mahni, and Vardoulakis Laura. 2018. Creating new technologies for companionable agents to support isolated older adults. ACM Transactions on Interactive Intelligent Systems (TiiS), 8(3):1–27.
- Sinha Chaitali, Cheng Abby L, and Kadaba Madhura. 2022. Adherence and engagement with a cognitive behavioral therapy–based conversational agent (wysa for chronic pain) among adults with chronic pain: Survival analysis. JMIR Formative Research, 6(5):e37302. [PubMed: 35526201]
- Spitzer Robert L, Kroenke Kurt, Williams Janet BW, and Löwe Bernd. 2006. A brief measure for assessing generalized anxiety disorder: the gad-7. Archives of internal medicine, 166(10):1092–1097. [PubMed: 16717171]
- Su Zhaoyuan, Mayara Costa Figueiredo Jueun Jo, Zheng Kai, and Chen Yunan. 2020. Analyzing description, user understanding and expectations of ai in mobile health applications. In AMIA Annual Symposium Proceedings, volume 2020, page 1170. American Medical Informatics Association.
- Suganuma Shinichiro, Sakamoto Daisuke, Shimoyama Haruhiko, et al. 2018. An embodied conversational agent for unguided internet-based cognitive behavior therapy in preventative mental health: feasibility and acceptability pilot trial. JMIR mental health, 5(3):e10454. [PubMed: 30064969]
- Sun Lu, Liu Yuhan, Joseph Grace, Yu Zhou, Zhu Haiyi, and Dow Steven P. 2022. Comparing experts and novices for ai data work: Insights on allocating human intelligence to design a conversational agent. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, volume 10, pages 195–206.

- Sweeney Colm, Potts Courtney, Ennis Edel, Bond Raymond, Maurice D Mulvenna Siobhan O'neill, Malcolm Martin, Kuosmanen Lauri, Kostenius Catrine, Vakaloudis Alex, et al. 2021. Can chatbots help support a person's mental health? perceptions and views from mental healthcare professionals and experts. ACM Transactions on Computing for Healthcare, 2(3):1–15.
- Topp Christian Winther, Üstergaard Søren Dinesen, Søndergaard Susan, and Bech Per. 2015. The who-5 well-being index: a systematic review of the literature. Psychotherapy and psychosomatics, 84(3):167–176. [PubMed: 25831962]
- Vaidyam Aditya Nrusimha, Wisniewski Hannah, Halamka John David, Kashavan Matcheri S, and Torous John Blake. 2019. Chatbots and conversational agents in mental health: a review of the psychiatric landscape. The Canadian Journal of Psychiatry, 64(7):456–464. [PubMed: 30897957]
- Valizadeh Mina and Parde Natalie. 2022. The ai doctor is in: A survey of task-oriented dialogue systems for healthcare applications. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6638–6660.
- Valtolina Stefano and Hu Liliana. 2021. Charlie: A chatbot to improve the elderly quality of life and to make them more active to fight their sense of loneliness. In CHItaly 2021: 14th Biannual Conference of the Italian SIGCHI Chapter, pages 1–5.
- van Cuylenburg Hashmaryne C and Ginige TNDS. 2021. Emotion guru: A smart emotion tracking application with ai conversational agent for exploring and preventing depression. In 2021 International Conference on UK-China Emerging Technologies (UCET), pages 1–6. IEEE.
- van Waterschoot Jelte, Hendrickx Iris, Khan Mohammed Arif, Klabbers Esther, de Korte Marcel, Strik Helmer, Cucchiarini Catia, and Theune Mariët. 2020. Bliss: An agent for collecting spoken dialogue data about health and well-being. In Proceedings of the 12th language resources and evaluation conference, pages 449–458.
- Wang Jinping, Yang Hyun, Shao Ruosi, Abdullah Saeed, and Sundar S Shyam. 2020a. Alexa as coach: Leveraging smart speakers to build social agents that reduce public speaking anxiety. In Proceedings of the 2020 CHI conference on human factors in computing systems, pages 1–13.
- Wang Liuping, Wang Dakuo, Tian Feng, Peng Zhenhui, Fan Xiangmin, Zhang Zhan, Yu Mo, Ma Xiaojuan, and Wang Hongan. 2021. Cass: Towards building a social-support chatbot for online health community. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1):1–31. [PubMed: 36644216]
- Wang Ruyi, Wang Jiankun, Liao Yuan, and Wang Jinyu. 2020b. Supervised machine learning chatbots for perinatal mental healthcare. In 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), pages 378–383. IEEE.
- Weizenbaum Joseph. 1966. Eliza—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1):36–45.
- Wilson Lee and Marasoiu Mariana. 2022. The development and use of chatbots in public health: Scoping review. JMIR human factors, 9(4):e35882. [PubMed: 36197708]
- Yan Xinxin and Nakashole Ndapa. 2021. A grounded well-being conversational agent with multiple interaction modes: Preliminary results. arXiv preprint arXiv:2111.14083.
- Zhang Yizhe, Sun Siqi, Galley Michel, Chen Yen-Chun, Brockett Chris, Gao Xiang, Gao Jianfeng, Liu Jingjing, and Dolan Bill. 2019. Dialogpt: Large-scale generative pre-training for conversational response generation. arXiv preprint arXiv:1911.00536.
- Zhu Yonghan, Wang Rui, and Pu Chengyan. 2022. "i am chatbot, your virtual mental health adviser." what drives citizens' satisfaction and continuance intention toward mental health chatbots during the covid-19 pandemic? an empirical study in china. Digital Health, 8:20552076221090031. [PubMed: 35381977]

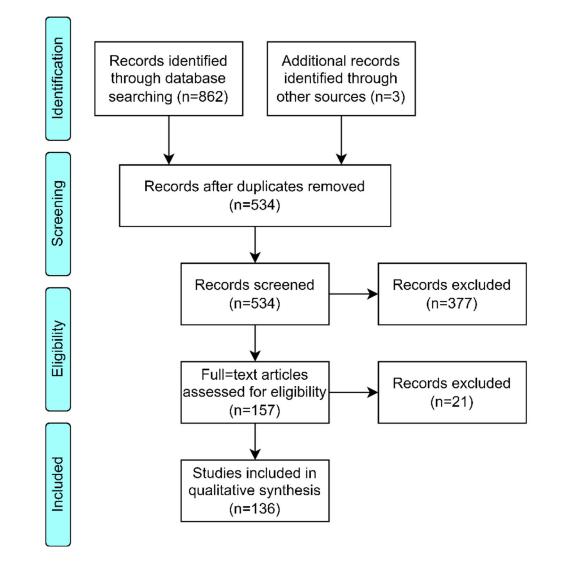


Table 1:

Steps in the screening process and the number of papers retained in each database.

Screening Process	ACL	AAAI	IEEE	ACM	PubMed
Database Search	68	30	52	280	104
Title Screening	26	16	39	137	84
Abstract Screening	9	4	31	45	68
Full-Text Screening	9	4	20	40	63
Model / Experiment	6	3	15	35	43

Table 2:

Distribution of predominant language of the data and/or participants recruited in mental health CA papers. Other languages include Bangla, Danish, Dutch, Japanese, Kazakh, Norwegian, Spanish, and Swedish.

Language	CS	Med	All	
English	47	30	77	
Chinese	1	5	6	
Korean	4	1	5	
German	1	1	2	
Italian	1	1	2	
Portuguese	0	2	2	
Other	5	3	8	

Author Manuscript

Table 3:

Distribution of mental health category in mental health CA papers. A paper could have multiple focused targets. Other categories include affective disorder, COVID-19, eating disorders, PTSD, substance use disorder, etc.

Mental Health Category	CS	Med	All
Not Specified	32	21	53
Depression	9	10	19
Anxiety	8	8	16
Stress	0	4	4
Sexual Abuse	3	0	3
Social Isolation	3	0	3
Other	14	11	25

Table 4:

Distribution of demographics focused by mental health CA papers. A paper could have multiple focused target demographic groups. Other includes black American, the military community, and employee.

Target Demographic	CS	Med	All
General	43	26	69
Young People	4	6	10
Students	5	3	8
Women	3	4	7
Older adults	4	1	5
Other	1	4	5

Table 5:

Distribution of model techniques used in mental health CA papers. A paper could use multiple modeling techniques. The Not Specified group includes papers without a model but employing surveys to ask people's opinions and suggestions towards mental health CA.

Model Technique	CS	Med	All
Retrieval-Based	27	22	49
Rule-Based	23	19	42
Generative	10	0	10
Not Specified	3	3	6

Table 6:

Distribution of outsourced models used for building models used in mental health CA papers. Other includes Manychat⁹, Woebot (Fitzpatrick et al., 2017) and Eliza (Weizenbaum, 1966).

Outsourced Model	CS	Med	All
Google Dialogflow	11	2	13
Rasa	5	5	10
Alexa	4	0	4
DialoGPT	3	0	3
GPT	3	0	3
X2AI	0	3	3
Other	17	6	23