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Introduction
T cells are integral components of the adaptive immune system, with multiple subtypes 
and functions. They play vital roles in defending the immune system against infections, 
combating cancer, and regulating immune balance to ensure overall health. Usually, 
they can be categorized into CD8+ cytotoxic T cells and CD4+ helper T cells, primarily 
including Th1, Th2, Th17, and Treg, as well as a small subset known as γδ T cells char-
acterized by the presence of γ and δ chains in their T cell receptors (TCR). Under anti-
gen stimulation, T cells become activated to expand and differentiate into effector status 
with significantly increased proliferation rate and cytokines secretion. They may experi-
ence functional exhaustion under sustained antigen stimulation, weakening their origi-
nally endowed functions. In disease states, T cells may differentiate and cause functional 
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instability, leading to immune system disorders, including autoimmune diseases, allergic 
reactions, immunodeficiency diseases, and cancer.

Clustered regularly interspaced palindromic repeats (CRISPR)-based gene editing 
has been applied to existing methodologies and has further allowed the exploration of 
novel avenues of research. CRISPR–Cas9 has achieved significant success in the labora-
tory and is widely used in clinical applications. Implementing CRISPR–Cas9 to mod-
ify T cell fates, differentiation, and functional specialization has been instrumental to 
recent progress in treating cancer, primary immunodeficiency, and infectious diseases 
[1]. The CRISPR–Cas9 complex, composed of Cas9 protein and guide RNA (gRNA), uti-
lizes single guide (sg)RNA to identify targeted genes within the T cells [2]. Then, upon 
reaching the designated DNA sequence, the Cas9 protein cuts the DNA double strand 
at that location to facilitate the precise deletion or insertion of gene sequences, finally 
regulating T cell differentiation and activation states. Identifying target genes that regu-
late the function and fate of T cells is a crucial step in applying CRISPR–Cas9. CRISPR 
library screening technique is a biological tool based on the CRISPR–Cas9 system used 
for high-throughput gene function research. The application of genome-wide CRISPR–
Cas9 screening techniques can provide an unbiased and comprehensive characterization 
of pivotal factors in cancer cell proliferation, drug resistance, and metastasis [3–5]. Fur-
thermore, the CRISPR screen, together with Cas9 gene editing, can identify the indis-
pensable transcription factors (TF) for the differentiation and functional maintenance of 
T cells and reveal mediators of the immunosuppression and the control of metabolism 
signaling in shaping T cell fates [6–8]. In addition, they can deeply examine the check-
points for human T cells cytokine production [9], and help engineer more efficacious T 
cells against cancer and infections.

In this review, we summarize the application of CRISPR–Cas9 on T cell activation, 
differentiation, and function. First, we describe the CRISPR–Cas9 application on differ-
ent T cells. We then discuss its application in the adoptive T cells therapies in preclinical 
and clinical research. Finally, we review the delivery systems and the high-throughput 
screening of CRISPR–Cas9 in T cell immunity.

CRISPR–Cas9 applications in T cells
Th1

Th1 cells are primarily involved in mediating cellular immune responses. They can secret 
interferon IFNγ, tumor necrosis factor-α (TNFα) to antitumor and activation of antigen-
presenting cells. The cells response is timely dependent: the early reaction can help to 
clear pathogens, whereas the long-term activation can induce tissue injury, scarring, and 
autoimmune diseases. The balance between the time to constrain Th1 cells response is 
essential, and metabolism reprogramming is the critical regulator of Th1 cells reaction 
[10, 11]. For instance, Arginase 1 (Arg1) is a catalytic enzyme that converts arginine to 
ornithine. CRISPR–Cas9-mediated Arg1 deletion in CD4+T cells accelerated differ-
entiation into Th1 cells, resulting in altered glutamine metabolism, utilization, and an 
adaptative increase in GPT2 expression, which sustains cell proliferation in conjunction 
with increased IL-10 production [10]. Further, the CRISPR–Cas9 screen helped to figure 
out the vital transcription factors (TFs) in determining Th1 cell fates. The suppressor 
of cytokine signaling 1(SOCS1) was screened out to be the significant checkpoint for 
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CD4+T proliferation through integrating both IL-2 and IFNγ signals to constrain Th1 
cells response, offering a potential target to optimize adoptive T cell therapy [12–14]. 
Furthermore, CRISPR–Cas9 can be applied to regulate the Th1 lifecycle with implica-
tions for Th1-associated tissue pathologies.

Th2

Th2 cells are essential regulators for promoting antibody production, and they can 
interact with B cells, leading to the differentiation of B cells into plasma cells. This 
interaction is particularly significant in combating parasitic infections and allergic 
inflammation. CRISPR–Cas9 can offer a comprehensive analysis of Th2 cell differen-
tiation, validating known regulators and identifying factors as part of the core regula-
tory network governing Th2 cell fates. Through CRISPR–Cas9 screens targeting 1131 
TFs library, activity-dependent neuroprotector homeobox protein (ADNP) was proven 
to be the indispensable TF to regulate Th2 cell immune reactions to the allergen. Th2 
cells without ADNP exhibit significant impairment in type 2 cytokine expression, such 
as interleukin-4(IL-4), IL-5, and IL-13 [15]. Additionally, with whole mouse genome 
CRISPR–Cas9 screens, IL-4ra, Gata3, and Stat6 were positive regulators of Th2 differ-
entiation, and the integrin αvβ3 was discovered to be previously unappreciated in Th2 
cell differentiation, playing critical roles in cell adhesion and intracellular signaling. Th2 
cells expressing αvβ3 integrin form multicellular factories, serving as hubs for the propa-
gation and amplification of immune responses [16]. Meanwhile, CRISPR–Cas9 screens 
has been combined with RNA-seq, ATAC-seq, and ChIP-seq determine that peroxisome 
proliferator-activated receptor gamma (PPARγ) is the central regulator for Th2 cell pro-
gramming, both in the differentiation and activation after screening its metabolic genes, 
cytokines, and TFs [17, 18]. Together, CRISPR–Cas9, used to modify Th2 cells, is a prac-
tical therapeutic approach to diseases related to Th2 activity.

Treg

Tregs are suppressive CD4+T cells that limit autoreactive effector T cell responses and 
prevent autoimmunity. Tregs are crucial regulators of tissue repair, autoimmune dis-
eases, and cancer. Adoptive Tregs can treat and reverse immune-mediated diseases such 
as graft-versus-host diseases (GVHD) [19] and autoimmunity, as well as organ transplant 
rejection. CRISPR gene editing can enhance Tregs specificity, survival, and function in 
inflammatory diseases. Further, it can be applied to correct Tregs dysfunction as well 
as regulate retention rate, whether in the tumor environment or inflammatory diseases 
[20]. CRISPR–Cas9 can restore Tregs accumulation in inflammatory diseases. In meta-
bolic diseases such as obesity, Tregs can safeguard visceral adipose tissue (VAT) home-
ostasis and metabolic health. In high-fat diet (HFD) fed mice, Tregs increased shortly, 
driven by increased TCR activation. After long-term HFD stimulation, Tregs reduced, 
accompanied by increasing inflammatory cytokine IL-21, IFNγ, and TNFa. This phe-
nomenon indicates the unsuitable microenvironment for Treg proliferation and differen-
tiation in obesity. The specific ablation of IFNαr1 signaling in Tregs using CRISPR–Cas9 
can restore Tregs accumulation in prolonged HFD-fed mice, thus improving insulin 
sensitivity, providing a new aspect for regulating insulin sensitivity and Tregs therapy 
[21, 22]. During allogeneic hematopoietic cell transplant for leukemia, increasing Tregs 
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frequencies can reduce GVHD rates [23]. IFNγ receptor signaling significantly inhib-
its Treg expression and transformation of conventional T cells into Tregs. CRISPR–
Cas9 technology can effectively delete the IFNγ receptor in CD4+T cells, substantially 
increase the Treg ratio, and reduce GVHD rates [24]. CRISPR–Cas9 can modulate Treg 
metabolism to regulate their immunosuppressive function and stability in autoimmun-
ity diseases and solid cancers. The immunosuppressive function of Tregs mainly relies 
on mitochondrial metabolism, although glycolysis is necessary during Treg proliferation. 
CRISPR–Cas9-mediated PFKP deletion significantly improves mitochondrial oxidative 
metabolism to correct Treg dysfunction [25, 26].

Treg dysfunction can lead to losing their ability to prevent excessive immune activation 
and maintain immune system stability. IL-34  is crucial for Tregs to maintain immune 
homeostasis and suppressive function. Using CRISPR–Cas9 to knock out IL-34 in Tregs 
has been demonstrated to increase susceptibility to colitis [27]. In patients with liver cir-
rhosis, it has been observed that circulating Tregs lose their anti-inflammation function 
and exhibit increased intracellular reactive oxygen species (ROS) and changes in mito-
chondria morphology. Heme-oxygenase-1(HO-1) was involved in Treg survival, Tregs 
knock out HO-1 via CRISPR–Cas9, are more prone to cell death during oxidative stress 
without influencing its suppressive capacity. [28]. In solid tumors, immunosuppressive 
lactic acid is highly enriched, and Tregs can consume lactic acid (LA) and display a sig-
nature of activation, enhancing suppressive capacity and proliferation [29]. In contrast, 
in highly glycolytic tumors, LA can induce PD-1 upregulation on Tregs ,and PD-1 block-
ade enhances Treg immunosuppressive activities in a high-LA environment, leading to 
resistance [30]. In patients with head and neck squamous cell carcinoma, tumor necrosis 
factor receptor positive (TNFR+) Tregs are more enriched in the tumor microenviron-
ment, correlated with worse prognosis and are regulated by transcription factor BATF. 
The knockout of BATF using CRISPR–Cas9 increases their suppressive function, leading 
to an elevated expression of 4-1BB, GITR, and OX40 in BATF-deficient Tregs, confirm-
ing the crucial roles of BATF in modulating the activation of TNFR+ Tregs [31]. Tregs 
differentiation and function are mainly controlled by transcription factor Foxp3. CRISPR 
screens can combine with single-cell RNA-seq to identify transcription factors that reg-
ulate critical proteins regulated by Foxp3 in primary human Tregs under basal and pro-
inflammatory conditions. After generating 54,424 single-cell transcriptomes from Tregs, 
transcription factor SATB1 was identified for Tregs immunosuppression, offering novel 
targets for Treg-associated immunotherapies [32]. Pooled CRISPR–Cas9 screening con-
firmed that Trps1 is essential for Tregs to maintain immunosuppressive ability, and its 
CRISPR knockout can reduce ectopic tumor growth [38].

Engineered Tregs with TCR or chimeric antigen receptor (CAR) have been used in 
some autoimmune diseases such as type 1 diabetes and inflammatory bowel disease 
(IBD) [33, 34]. CRISPR–Cas9 helps Tregs to stabilize the expression of Foxp3 and replace 
the endogenous TCR with islet-specific TCR to strongly recognize islet-associated anti-
gens and enhance the immune-suppressive environment [35, 36]. In the engineering 
vascular grafts transplantation, reprogrammed Tregs with a CRISPR–Cas9 nanocarrier 
targeted the Tregs surface marker CD25, upregulated anti-inflammatory cytokines, and 
promoted nerve regeneration [37]. In IBD, Tregs with a novel CAR (Filc-CAR Treg) tar-
geting flagellin (Flic) specific for intestinal antigens could inhibit colitis. The Filc-CAR 
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Tregs could significantly promote trafficking and mediate antigen-specific immunosup-
pression [38, 39]. The demand for Tregs varies across different diseases. In the context 
of cancer, CRISPR–Cas9 editing can inhibit the suppressive effects of Tregs, thereby 
enhancing the immune system’s capacity to combat cancer or infections. Conversely, 
in autoimmune diseases and inflammatory diseases, CRISPR–Cas9 can be employed to 
augment Treg activity, reducing unwarranted autoimmune responses. This underscores 
the potential therapeutic applications of CRISPR–Cas9 in regulating Tregs, enabling tai-
lored interventions based on the specific requirements of various diseases (Fig. 1).

Th17

In infectious diseases, Th17 cells work as a barrier against bacterial and fungal patho-
gens, while Th17 cells can produce IL-17 to drive the pathogenesis in autoimmunity 
diseases [40]. Targeting Th17 cells therapy is a promising emerging treatment approach 
for autoimmune and inflammatory diseases. The lineage-specific transcription factor, 
RORγt, is the vital TF to determine pathogenic Th17 cells differentiation. In rheumatoid 
arthritis, through detecting regulatory elements at the human RORC locus in the T lym-
phocytes, the NFAT pathway was found to bind to the RORC locus. Applying CRISPR–
Cas9 to delete these genes could promote transcription from the RORC promoter [41]. 
Th17 cells differentiation can be influenced by metabolic status, and a hypoxic environ-
ment limits Th17 cells differentiation [42]. In multiple sclerosis, which infiltrates many 
pathogenic Th17 cells, methionine is rapidly absorbed by activated T cells. Methionine 
restriction can help to release disease onset through reducing the expansion of patho-
genic Th17 cells [43]. PPARγ knockout with CRISPR–Cas9 can inhibit Th17 cells num-
bers by reducing fatty acid formation [44]. Aryl hydrocarbon receptor (AHR) activation 

Fig. 1  CRISPR–Cas9 editing of the transcription factor Foxp3, along with the modulation of metabolism 
regulators and the engineering of TCR and CAR in Treg cells, can enable these cells to play distinct roles in 
autoimmune diseases and tumor environments
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has been shown to enhance the functions of nonpathogenic Th17 cells. AHR knockout 
mediated by CRISPR–Cas9 can reduce IL17a expression in the CD4+T primary cells 
[45]. Th17 and Treg cells can converse with each other, regulated by metabolism or some 
transcription factors [46, 47]. CRISPR screening can be used to identify specific medi-
ated checkpoints involved in the balance between Tregs and Th17 cell interactions and 
to apply the CRISPR technology further to edit these genes to investigate their function, 
providing a promising area of research with potential applications in developing thera-
pies for autoimmune diseases and other immune-related disorders [26].

CD8+T

The fate of CD8+ T cells is highly correlated with immunotherapy and prognosis [48, 
49]. CRISPR–Cas9 can edit the differentiation pathways, metabolic pathways, and the 
expression of inhibitory signaling molecules in CD8+ T cells without compromising 
their in vivo function [50]. Metabolic pathways contribute to the dynamics and hetero-
geneity of CD8+T cells, and metabolic inhibitors can function as immunomodulators 
in antitumor therapies. Nonetheless, tumor and immune cells often exhibit distinct 
metabolic characteristics [51, 52]. Methionine metabolism competition between tumor 
cells and CD8+T cells compromises the cytotoxic ability of CD8+T cells, since a defi-
ciency in methionine significantly induces CD8+T cell death and dysfunction. Interest-
ingly, CD8+T cells transport of methionine mainly relies on SLC7A5, while tumor cells 
rely on SLC43A2. Using CRISPR–Cas9 to effectively knockdown SLC43A2 is proven 
to be an effective way to normalize CD8+T cells methionine metabolism [53, 54]. The 
nutrient signaling pathway is a critical determinant in the fate decision of CD8+T effec-
tor subsets. Through an in vivo CRISPR screen of metabolic regulators of CD8+T cells 
fate decisions, the amino acid transporter SLC7A1 can modulate mTORc1 signaling to 
reduce memory T cell differentiation [54].

To enhance the efficacy of immune checkpoint blockades (ICBs), CRISPR–Cas9 can 
target CD8+T cell metabolism and improve its overall fitness [55]. In mouse models 
of colorectal cancer (CRC), systematic CRISPR–Cas9 screening can figure out critical 
regulators for CRC metastasis and identify chondroitin sulfate synthase1(CHSY1) as 
the vital regulator to induce CD8+T cells exhaustion through regulating the metabolism 
pathway. CHSY1 can activate succinate metabolism and PI3K-AKT pathway in CD8+T 
cells, and the combination of CHSY1 inhibitor and anti-PD1 therapy can reduce CRC 
liver metastases [56]. Previous studies show that acetate supplementation metabolically 
bolsters T cell effector functions and proliferation. Targeting acetyl-CoA synthetase 2 
(ACSS2) with CRISPR–Cas9 guides can bolster effector T cell functions to promote the 
antitumor immune response and enhance chemotherapy efficacy in preclinical breast 
cancer models [57]. CRISPR screens can be performed to identify immunotherapy tar-
gets for CD8+ T cells. In triple-negative breast cancer, the screening out of an RNA heli-
case Dhx37 was verified to inhibit CD8+ T effector functions, cytokine production, and 
activation ability via modulating NF-KB. This can work as a candidate target for immu-
notherapy [58]. In glioblastoma, the CRISPR screens help to figure out that the PDIA3 
can enhance the CD8+T effector [59]. Through CRISPR screen, the EFT family TF, Fli1, 
is found to be a key mechanism restraining effector CD8+ T cells biology. Fli1 can bind 
to the cis-regulator elements of effector associated genes and reduce the chromatin 
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accessibility at the ETS motif [60]. CD8+T cells losing Fli1 have a better ability against 
cancer and infections without more potential to effector cell differentiation [8, 9].

During cancer progression, cytotoxic CD8+ T exhaustion impaired the T cell response. 
CRISPR–Cas9 can be applied to figure out epigenetic factors mediating major chroma-
tin-remodeling events in exhausted CD8+T cell differentiation [61]. PBAF is the canoni-
cal SWI/SNF form, inducing TCF+ progenitor T cells to a more exhausted state. The 
loss of PBAF augments responses to PD1 pathway blockade and improves tumor con-
trol in combination with immunotherapy [62]. E3 ubiquitin ligase Cblb is upregulated 
in exhausted CD8+T cells. CRISPR–Cas9-mediated Cblb deletion reduces CAR-T cell 
exhaustion and improves tumor killing with increasing expression of cytotoxic cytokine 
[63]. The knockout of the endogenous TCRα chain gene via CRISPR–Cas9 increases the 
activation and effector function of cytotoxic CD8+T cells and is more specific to patho-
logical targeted cells [64].

γδ T cells

γδ T cells present an attractive alternative in immunotherapy. γδ T cells recognize anti-
gens through TCRs, independent of major histocompatibility complex (MHC). They 
work in innate-like patterns, and these characteristics make it possible for them to dis-
play killing abilities in solid tumors. Unlike conventional αβ TCRs, which recognize pep-
tides presented via the MHC I or II, γδ TCRs bind stress-induced surface molecules in 
an MHC-unrestricted manner[65]. Using combined genome-wide CRISPR screens to 
target cancer cells and coculture with γδ T cells helps to identify pathways that regu-
late γδ T cell killing potential and suggest a new area to enhance γδ T cell therapy [66]. 
CRISPR screens can uncover potential ligands that interact with γδ T cell receptors 
(TCRs), effectively highlighting the proteins or molecules central to regulating these dis-
tinct T cell interactions. By identifying the ligands that engage with γδ TCRs, research-
ers can gain valuable insights into the development of targeted intervention strategies 
[67].

CRISPR–Cas9 applications in adoptive T cell therapy
TILs therapy

In patients with heavy tumor burden and limited treatment options resisting ICB treat-
ment, adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) can get a 
durable response [68, 69]. TIL therapy has yielded objective response rates of approxi-
mately 50% in metastatic melanoma patients [70], whether administered with either 
CD8+ T cells or CD4+ T cells [71]. Autologous TILs have been proven to elicit tumor 
regression in phase I and II clinical studies [72, 73]. In a multicenter, open-label phase III 
trial, patients with melanoma to be infused TILs who underwent resection from mela-
noma lesions have improved progression-free survival compared with ipilimumab [74, 
75], and 86% of the patients recruited were resistant to anti-PD1 therapy. However, the 
therapeutic application faces challenges due to the large number of cells needed during 
the treatment. In addition, TIL isolation and culture time typically vary from 22  days 
to 2  months, and the cells quickly turn to exhaustion. Furthermore, it has not been 
approved by the US Food and Drug Administration (FDA) . TILs possess unique advan-
tages, including diverse TCR clones capable of recognizing tumor-specific antigens and 
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the ability to home back to the tumor site. CRISPR–Cas9 can be exploited to signifi-
cantly improve TIL function and migration into the tumor sites [76].

Enhanced oxidative phosphorylation and mitochondrial lipid metabolism have been 
confirmed in melanoma patients who responded to TIL treatment. Lipid metabolism 
is a regulatory mechanism to increase melanoma immunogenicity by enhancing anti-
gen presentation to increase T cell sensitivity, and CRISPR–Cas9 knockouts of beta-
oxidation genes can regulate the metabolic state of the TILs [77]. Cytokine-induce SH2 
protein (CISH) is found to regulate TIL function, and disruption of CISH mediated by 
CRISPR–Cas9 can significantly enhance T cells neoantigen recognition during immune 
checkpoint therapy [74]. It has been discovered that TILs can coordinate their persis-
tence and effector function to enhance immune response against tumors. Targeting 
REGNASE-1 in CD8+ T cells can reprogram them to long-lived effector cells with exten-
sive accumulation, better persistence, and robust effector function in tumors [78, 79]. 
In ovarian cancer patients, the CRISPR–Cas9-mediated knockout of  inhibitor marker 
TGFBR2 before undergoing a rapid expansion in TILs exhibited strong secretion of pro-
inflammatory cytokines and did not alter their expansion efficiency or TCR clonal diver-
sity [80]. In CRC, the TILs usually express inhibitor markers compared with those in 
the normal sites. The most frequently upregulated exhausted molecule is CD39 on TILs, 
causing loss of cytotoxic function. CRISPR–Cas9-mediated disruption of the endoge-
nous TCRαb chains, together with CD39, could enhance anti-HER-2 TCR-edited T cells 
antitumor activities [81]. Moreover, CRISPR–Cas9 can edit the inhibitor checkpoint-like 
PD1 to enhance the antitumor effect and is stable and efficient; no off-target editing was 
detected in metastatic melanoma [82].

CRISPR–Cas9-edited TILs applied in clinical trials are limited, despite numerous pre-
clinical pieces of evidence that have confirmed their utility in TIL therapy. In lung can-
cer, TIL editing to knockout PD1 via CRISPR–Cas9 was safe and efficient in the phase III 
clinical trial. In conclusion, for TILs, CRISPR–Cas9 can be employed to edit their TCR 
genes, thereby enhancing antigen recognition, modifying TIL stemness, and reducing 
the expression of inhibitory checkpoint markers to counteract exhaustion [79]. In the 
future, clinical therapies involving the modification of TIL using CRISPR–Cas9 hold the 
potential for further advancement (Fig. 2).

CAR‑T cells therapy

TCR- and CAR-based engineered approaches can significantly improve adoptive cell 
therapies. CAR-T cells have some manufacturing bottlenecks and, under certain con-
ditions, fail to persist in the host or even induce immune rejection. The proliferation 
efficiency and CAR expression levels of CAR-T cells originating from different donors 
or tumors vary in  vivo [83]. CRISPR–Cas9 can be used to improve autologous T cell 
fitness and response rates. In preclinical leukemia models, the disruption of immune 
checkpoint signals in the CAR-T cells can increase their efficacy and toxicity profiles 
and prolong CAR expression. CRISPR–Cas9-mediated deletion of CTLA-4 can improve 
CAR-T cells proliferation and antitumor efficacy, and is safe and feasible in patients with 
advanced refractory cancer [84, 85]. TFAP4 and BATF knockin in CAR-T cells with 
CRISPR–Cas9 significantly increase T cell fitness and reduce dysfunction in therapeu-
tic T cells, thereby enhancing leukemia control and survival even under chronic antigen 
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stimulation [86]. Disruption of B2M/CIITA and TRAC genes using CRISPR–Cas9 edit-
ing in CD19 CAR-T can help to release immune rejection and long-term persistence 
compared with only expressed CD19 CAR-T [87].

CAR‑T cells therapy in solid cancer

CAR-T therapy is becoming common in hematologic malignancies, while it is less 
widespread in solid tumors or other autoimmune diseases. In solid cancer, the specific 
microenvironment can induce T cells to differentiate into different statuses, especially 
in hypoxic and acidic environments in solid tumors [88]. In leukemia patients, CAR-T 
cells can persist for up to 24 months after infusion [89]. While in the solid tumor, the 
adoptive T cell therapies expansion and persistence were usually disrupted by the sup-
pressive tumor microenvironment. Moreover, there have always been barriers due to the 
ineffectiveness of CAR-T cell infiltration to the tumor sites and poor expansion in the 
tumor sites [90]. In the solid tumor microenvironment, continual antigen stimulation 
is the central driver for T cell exhaustion [91, 92]. CAR-T cells are prone to exhaustion, 
facing persistent antigen stimulation, especially in solid tumors. And the suppressing 
microenvironment, including suppressive cytokines, chemokines, and metabolites, com-
promise the CAR-T cells therapies. The improvement of T cell persistence, cell effects, 
anti-immunosuppressive, and cell trafficking to tumors were required to enhance CAR-T 
cells therapy effectiveness. CRISPR–Cas9 is a powerful strategy for improving CAR-T 

Fig. 2  Two clinical trials with TIL therapy procedure: tumor surgical specimens were minced into fragments 
and followed by the isolation of T cells. TILs were cultured in a rapid expansion with high dose IL-2, and 
genome editing was processed by CRISPR–Cas9 to target PD1. The patient next to receive the TILs therapies 
needed to undergo nonmyeloablative lympho-depleting chemotherapy previously, and then the expanded 
TILs were infused via a single intravenous dose and then continued to inject high dose IL-2 to maintain TIL 
persistence
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cells persistence and slowing down or preventing CAR-T cells exhaustion, including (1) 
blocking inhibitory receptor ligand, (2) absence of exhaustion-linked transcription fac-
tors, (3) differentiating into effector T cells with the capacity to secrete cytokines and 
elicit cytotoxic function, and (4) improving the metabolic fitness of CAR T cells systems 
(Fig. 3).

CRISPR–Cas9 can insert a costimulating motif or disrupt the inhibitor molecular-like 
PD1 to enhance T cell proliferation. In solid hostile tumors, the PD1 axis can inhibit 
CAR-T cell efficacy by inducing T cell exhaustion when engaged with its ligand. The 
disruption of intrinsic PD1 expression via CRISPR–Cas9 in CAR-T cells has improved 
antitumor activity in solid cancers. While TCR is essential for T cell activation and auto-
immunity, the combination of disruption of PD1 and TCR can significantly improve the 
effect of CAR-T cells and reduce the potential of autoimmune response in preclinical and 
clinical studies [93, 94]. Additionally, overexpression of some motifs to accelerate T cell 
transfer to the tumor sites, such as runx3, is suitable for CAR-T therapy [95, 96]. CAR-T 
cells have the tremendous initial ability to migrate into solid tumor sites, and engineer-
ing the CAR-T cells with migration markers such as IGAT4, CXCR3, and CXCR1 could 
improve T cell infiltration [97, 98]. Forced expression of anti-inflammatory cytokines 
is another choice for CAR-T cell improvement. In melanoma, CAR-T cells can still kill 
tumor cells in which TILs therapy fails, primarily based on the IL-2 signal. CAR-T cells 
were more efficacious in IL-2 transgenic mice, helping CAR-T cells resist the suppressive 
immune environment and finally getting durable antitumoral responses in humanized 
mouse models [99]. IL-23 is a two-subunit cytokine, including the p19 and p40 subu-
nits, known to promote the proliferation of memory T cells and T helper type 17 cells. 
The p40 subunit overexpression in CAR-T cells helps to improve its antitumor activity in 
pancreatic cancer models, showing robust expansion and reducing apoptosis. Further-
more, the CAR p40 subunit shows better antitumor without apparent side effects [100].

As for the metabolic environment, adenosine, a metabolite, can lead to the immuno-
suppressive surrounding the CAR-T cells and the A2A receptor is in response to the 
adenosine in the CAR-T cells to impair its function [101]. With the A2AR gene disrup-
tion mediated by CRISPR–Cas9, CAR-T cells can significantly increase the antitumor 
and anti-exhaustion function [102], enhancing the production of cytokines, including 
IFNγ and TNF and increasing expression of JAK-STAT signaling pathway associated 
genes [103]. CRISPR–Cas9 can be used to edit CAR-T cells, making them more suitable 

Fig. 3  CAR-T cells therapy in solid cancer. Barriers that exist in solid tumors with CAR-T cell therapy 
and CRISPR–Cas9 applications in editing CAR include (1) suppressive cytokines and chemokines, (2) 
tumor-specific antigens, (3) ineffectiveness of CAR-T cells infiltration, and (4) nutrition competition between 
tumor cells and CAR-T cells and the suppressive metabolites
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and enhancing their fitness within the tumor microenvironment. Numerous preclinical 
and clinical studies have confirmed its safety and efficacy (Fig. 4).

TCR‑T therapy

TCR-T therapy is a cancer immunotherapy that adapts a patient’s or a healthy donor’s 
T cells with specific T cell receptors (TCR) capable of recognizing tumor antigens. 
These specific T cells were capable of recognizing tumor antigens and targeting sur-
face or intracellular antigens associated with cancer cells. By leveraging CRISPR–Cas9 
technology, precise TCR genes are integrated into T cells. TCR-gene-engineered T cells 
have demonstrated therapeutic potential in tumors [104], especially in solid cancers. 
In solid cancer, the most common surface markers expressed in the blood and lymph 
cancers have not been found, making it more complicated to apply CAR-T cell therapy 
and compromising its function. Besides, in solid tumors, T cells rapidly lost their ini-
tial effect function, with the tumor cells expressing suppressive cytokine to induce T cell 
exhaustion and immune evasion. The utilization of CRISPR–Cas9 to refine TCR therapy 
enhances antigen recognition and revitalizes T cell activity, paving the way for advanced 
immune cell engineering strategies in solid tumors and potentially in other inflamma-
tory conditions over the coming decade [105].

Targeting personalized TCR to recognize the neoantigen–HLA complexes and knock 
out the endogenous TCR makes it possible for those patients with refractory tumors to 
apply T cell therapy even without common surface markers. Major phase I and phase 
II clinical trials have proven the potential advantage of TCR-T cell therapy, especially 
in solid cancers such as melanoma, hepatocellular carcinoma, lung cancer, and cervi-
cal cancer [106]. CRISPR–Cas9 knockout of endogenous TCRαβ can improve the trans-
genic T cell receptor expression and functions during the TCR gene therapy [107]. 
CRISPR–Cas9 can insert the target TCR transgene into the endogenous TCR locus, 
making T cells produce more homogeneous TCR expression to recognize tumors [108], 
and editing of the endogenous TCR does not adversely affect the function of primary T 
cells for adoptive immunotherapy and can minimize their immunogenicity [109]. The 
first-in-human phase I clinical trial, which utilized a nonviral CRISPR–Cas9 approach 
to insert two chains into the TRAC locus for knocking out the two endogenous TCR 

Fig. 4  Mainly strategies for CRISPR–Cas9 application in editing CAR T cells: (1) infiltrating and migration 
marker-modified CAR T cells, (2) differentiate into effector T cells to increase cytokines and elicit cytotoxic 
function factors, (3) blocking inhibitory receptor ligand and absence of exhaustion-linked transcription, and 
(4) improving the metabolic fitness of CAR T cells systems
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genes, demonstrated better responses and no apparent toxic side effects in 16 patients 
with refractory solid cancers. They received specific TCR with a knockin of auto-specific 
TCR and a knockout of TRAC and TRBC: 5 of them have stable diseases and 11 have 
better responses during the therapy [110]. In a clinical trial with 14 metastatic mela-
noma patients, adoptively transferring MART-1 TCR T cells with MART1 peptide-pulse  
dendritic cell (DC) vaccination could increase T cell expansion in vivo [111].

The TCR plus CRISPR-modified T cells were sensitive to antigens and more prolonged 
to be activated facing persisting antigen stimulation [112]. Subsequently, the engineered 
TCR-T cells were stimulated to expand in vitro to reach the required cell quantity for 
infusion into patients to attack cancer cells. In solid cancer, the majority of the antigens 
are intracellular, and TCR-T is more suitable for recognizing target cells. Solid cancers 
may have diverse antigens, requiring multiple TCRs to cover different antigens, which 
increases the complexity of the treatment. Accurate sorting of TCRs with high activity 
and specificity to tumor antigens is the key to designing TCR-T cell therapy. The affinity 
of mature TRC enhances the efficacy of TCR-T cell therapy [113], and CRISPR-targeted 
genome editing enables the display of functional T cell receptors [114]. Tumor-infiltrat-
ing TCR library screens are needed to identify tumor antigen-specific TCR, and TCR-T 
cell therapy needs to be personalized for each patient, adding complexity to treatment 
design and manufacturing difficulties, as well as economic costs.

Precise therapeutic T cell engineering applications

Using lentivirus or retrovirus and transposon, which insert CAR genes into the genome 
in a semi-random manner, the variations produced by this method determine the pro-
liferation and cytotoxicity of CAR-T cells [115]. Additionally, it will increase the risk of 
endogenous genes disruption and may even lead to the activation of oncogenes [116, 
117]. CRISPR–Cas9 is a valuable tool for integrating specific CARs into the indicated 
designated locus. Antigen-specific CAR-T cells can precisely target and eliminate tumor 
cells. However, certain markers may also be expressed in normal cells in some cases, 
potentially causing fratricide during the treatment. For instance, CD7 is a transmem-
brane protein highly expressed in acute T cell leukemia; it is also expressed in normal T 
cells and natural killer cells. CD7 CAR-T was found to efficiently antitumor, while it was 
also toxic against normal CD7+ T cells and NK lymphocytes [118]. CD7KO CD7 CAR T 
cells with CD7 removal before CAR expression using CRISPR–Cas9 can help to release 
T cell fratricide and still acquire specific cytolytic activity against CD7+ T lymphoblastic 
leukemia [119].

Recently, the exogenous promoter EF1α was used to drive CAR constant expression; 
CAR inserted at the CD7 locus controlled by the EF1α promoter had a better therapeu-
tic effect, enhanced tumor rejection and prevented fratricide, indicating its great clinical 
application potential [120, 121]. CD38-specific CAR can be inserted into the endoge-
nous CD38 promoter locus to knock out CD38 by CRISPR–Cas9 to reduce fratricide 
[122]. Inserting at the TRAC locus of T cells can disrupt its native TCR, making it pos-
sible to devoid their own TCR, which makes them lack the ability to engage in graft-ver-
sus-host responses, facilitating its safe use and significantly improving tumor responses 
and survival. CRISPR–Cas9 makes it accurately insert the CAR into the TRAC locus to 
enhance its anticancer activity and overcome the random vector integration challenges 
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[120, 123]. TRAC–CAR-T showed more remarkable persistence in the bone marrow and 
tumors and was less likely to undergo terminal differentiation or exhaustion [124]. In 
children with refractory B cell leukemia, the combination disruption of TRAC and CD52 
edited by CRISPR–Cas9 in the CD19 CAR-T cells can help patients achieve flow cyto-
metric remission to further proceed with allogeneic stem cell transplantation [125, 126].

Furthermore, the sequence of the T cell activation and Cas9 gene editing procedure 
is proven to influence the extent of chromosomal loss. In a first-in-human phase I clini-
cal trial, three patients with advanced, refractory cancer were infused with the Cas9 
genome-edited T cells targeting TRAC, TRBC, and PDCD1, and these engineered T 
cells were well tolerated and preserved the original therapeutic effects, but accompanied 
by reduced chromosomal loss. By adjusting the CAR-T cells preparation process and 
altering the sequence of T cell activation and Cas9 gene editing, researchers can effec-
tively reduce the frequency of chromosomal loss while ensuring gene editing efficiency 
[127].

CRISPR screen for T cells

T cell therapies make impressive activities against cancers, viruses, and inflammatory 
diseases. Nonetheless, their fates and functions are greatly dependent on microenviron-
ments. Genome-wide CRISPR–Cas9 screens can help to figure out the master regula-
tors of T cell fates and fitness. It is also a valuable tool for gene editing to determine cell 
fates, functions, and differentiation [128]. CRISPR-based screening has fueled a wave of 
remarkable discoveries in cell biology and virus–host interactions [129]. This technology 
has been applied to T cell lines and primary cells in vivo and in vitro, including whole-
genome, metabolic, and transcriptional screenings. CRISPR–Cas9 screenings that focus 
on T cells can be applied to a wide range of diseases, extending beyond hematologic 
and solid cancers. They are also applicable to infectious diseases, inflammatory condi-
tions, and the exploration of resistance factors in immune therapies. They have also been 
instrumental in determining pathways that offer resistance during antitumor processes 
[130] and help to explore genes associated with phenotype on a large scale [131, 132].

T cell exhaustion limits antitumor immunity, especially after chronic antigen stimu-
lation in the tumor environment. CRISPR–Cas9 screens can provide an atlas of the 
genetic regulators of T cell exhaustion [133, 134]. Furthermore, unbiased CRISPR–
Cas9 screens reveal genes associated with the MHC pathway that govern antigen-
dependent T cell activation. In addition, TCR-driven kinases, critical for evaluating 
T cell responses, can be pinpointed through these screens. In a study targeting 25 
TCR-driven kinases within primary T cells, perturbing these kinases revealed that 
only p38 kinase functioned as a central regulator, influencing T cell phenotypic attrib-
utes such as cell expansion, differentiation, response to oxidative stress, and genomic 
stability [135, 136]. In engineered human T cells, the application of CRISPR–Cas9 
library screening serves a pivotal role in the identification of primary regulators gov-
erning cell fate. This innovative approach enables the precise editing of these genes 
with the overarching goal of augmenting cell proliferation, elevating cytokine produc-
tion, and enhancing the efficacy of tumor clearance [128]. It is noteworthy that T cell 
immunotherapies encounter particular challenges in the context of solid tumors. The 
dense and heterogeneous nature of the tumor microenvironment often impedes their 
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effectiveness. Moreover, it is possible to elucidate regulators that govern the cancer-
specific migration of CAR-T cells [137]. By discerning and targeting these regula-
tory elements, CAR-T cells can be tailored to exhibit improved precision in homing 
to solid tumors. CRISPR–Cas9 screens can reveal genetic alterations that control 
responses to immunotherapies and the vital signals in cancer immune evasion. CD58 
is the ligation of T cell costimulatory molecule CD2, and the loss of CD58 confers 
immune evasion through coregulation with PDL1. Via a genome-wide CRISPR–Cas9 
loss-of-function proteomics screen combined with fluorescence-activated cell sort-
ing, CMTM6 is verified for CD58 stability and increases PDL1 upon CD58 loss [138]. 
In gastric cancer (GC), using CRISPR–Cas9 genome-wide screening, TRIM28 is 
found to be the most significant regulator for PDL1 through directly binding to PDL1, 
preventing its ubiquitination, and promoting SUMOylation [139]. In mouse lung can-
cer, the use of a CRISPR–Cas9 screen helps to identify cancer testis antigen ADMA2, 
which works as an immune modulator to restrain interferon and TNFa cytokines. 
Besides, ADMA2 can restrain PDL1 expression and further enhance cytotoxic effi-
cacy [140, 141].

In some nontumor diseases, CRISPR screens can be applied; for example, in 
COVID-19 to figure out the specifically pathological gene and in coronary artery dis-
eases (CAD) to identify disease-associated loci through integration with extensive 
genome-wide association studies (GWAS) [142, 143]. CRISPR–Cas9 genome edit-
ing in different cultures, including liver disease, cerebral organoids, and human colon 
organoids, is used for studying the function of specific genes or certain disease condi-
tions [144–148]. In conclusion, CRISPR screens offer a better understanding of the 
fundamental biology of T cells, which is essential for the rational choice of targets 
for clinical development and synergistic combination treatments (Fig.  5A). CRISPR 
screens have the potential to revolutionize and greatly enhance the effectiveness of T 
cell adoptive immunotherapies and immune checkpoint blockades (Fig. 5B).

Fig. 5  Applications of CRISPR–Cas9 screening system. A CRISPR screens can be applied to various contexts, 
including primary T cells, engineered T cells, and cell lines, as well as various diseases. These applications are 
not limited to hematologic and solid cancers but also extend to infectious and inflammatory diseases. B At 
the cellular level, CRISPR screens can elucidate the roles of transcription factors in determining cell fates and 
differentiation, and they can identify regulators of cell migration, metabolism, and cell exhaustion/activation. 
In the context of hematologic and solid cancers, CRISPR screens can identify cancer-associated antigens and 
factors influencing immunotherapy resistance. For nontumor diseases such as COVID-19 and coronary artery 
disease (CAD), CRISPR screens can help understand coronaviruses’ pathogenic mechanisms and identify 
disease risk factors. At the organoid level, CRISPR screens can be employed to identify susceptibility genes 
and serve as a tool for drug screening and mechanism exploration
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Clinical trials of CRISPR–Cas9 gene‑editing T cell therapies

CRISPR–Cas9 editing in T cell therapy, including CAR-T, TILs, and TCR-T, has 
shown promising results in various clinical trials, demonstrating both effectiveness 
and safety. However, adoptive T cell therapy has encountered several limitations. 
CRISPR–Cas9 technology effectively overcomes the shortcomings present in T cell 
therapy processes. CRISPR–Cas9-mediated multiplex gene editing including double 
and triple editing are applicable to CAR-T cells and provide an upgradation strategy 
for anticancer cells. The multiple edits make these cells more straightforward to use 
and persist longer. For instance, in a phase I trial in adults with relapsed or refrac-
tory (r/r) B cell non-Hodgkin’s lymphoma (B-NHL), a kind of virus-free CAR-T cells 
(PD1-19bblz), in which an anti-CD19 CAR sequence is specifically integrated at the 
PD1 locus using CRISPR–Cas9, exhibited promising efficacy with a manageable tox-
icity profile. Even a low percentage of CAR+ cells still possess a superior ability to 
eradicate tumor cells [149].

During CD19-targetd CAR-T therapy, antigen escape, including the loss of CD19 
antigen and the preexistence of splice variants of CD19 molecule, mediated treat-
ment relapse. Multiantigen-targeting CAR-T can help achieve a better response. 
CRISPR–Cas9-edited dual-targeted (CD19/CD22) CAR-T, was safe and efficient 
for the 11 B cell acute lymphoblastic leukemia (B-ALL) patients, with no reported 
genotoxicity or immunogenicity issues. Interestingly, editing some autoimmunity-
associated genes can significantly improve CAR-T cell efficacy. In the phase I study, 
CRISPR–Cas9 was employed to disrupt host immune-mediated rejection-associated 
genes TRAC and CD52 in universal CD19/CD22-targeting CAR-T cells (CTA101) 
before infusing them into patients with r/r ALL. This approach demonstrated a man-
ageable safety profile and significant antileukemia activity [150]. In three patients 
with relapsed childhood T cell leukemia, CRISPR–Cas9 was applied to inactive three 
genes encoding CD52 and CD7 receptors and the β-chain of the TCR in the CD7 
CAR-T cells [151], equipping the cells to better target and destroy tumors. Further, 
one of the patients who received allogeneic transplantation had successful immuno-
logic reconstitution and ongoing leukemic remission. In a phase I clinical trial with 
patients for mesothelin-positive solid tumor, CAR-T cells generated PD1 and TCR 
knockout with CRISPR–Cas9 were found to be safe and feasible [94].

Clinical applications with CRISPR–Cas9-edited TCR-T cell therapies have also 
achieved significant success. In a first-in-human phase I clinical trial of CRISPR–
Cas9 PD1-edited T cells in patients with advanced non-small cell lung cancer, the 
median mutation frequency of off-target was 0.05% and the median overall sur-
vival was 42.6  weeks, indicating its generally safe and feasible in clinical applica-
tion [152]. In patients with advanced, refractory cancer, autologous NY-ESO-1 
TCR–engineered T cells in patients after CRISPR–Cas9 editing of the TRAC, TRBC, 
and  PDCD1  loci were infused with lasting persistence for 9  months. These edited 
T cells were more durable in expressing engineered TCR, and no clinical toxicities 
were observed [85]. Besides these multiple edits, TCR-T cells exhibited more excel-
lent capability for T cell persistence or antigen evasion compared with nonediting by 
CRISPR–Cas9 [153]. (Table 1).
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Delivery systems of CRISPR–Cas9 system

There are several ways to deliver the CRISPR–Cas9 system: (1) viral vectors includ-
ing lentiviral, adeno-associated viruses(AAV), and adenovirus are the widest used 
methods; (2) nonviral systems including lipid carriers and nanoparticles as well as 
nanotubes [154]; and (3) physical delivery methods such as electroporation. The 
viral vector is the favored method for introducing CRISPR into the target cells, while 
the viral can only transfer molecules lower than 4.7 kb [155]. CRISPR–Cas9 systems 
contain the guide RNA and Cas9, guide RNA helps to bind with the target DNA 
and Cas9 is the enzyme to make the cleavage. The persistent expression of Cas9 and 
guide RNA increases the risk of being off-target [156–158]. Currently, many studies 
focus on nonviral delivery methods such as exosomes, liposomes, and nanomateri-
als. The nonviral systems have been found to have fewer safety concerns and thus 
more potential for clinical translation [159, 160], immunogenicity, high biocompat-
ibility, excellent delivery capability, lower off-target rates, and large-scale production 
[159]. Furthermore, using the homologous recombination (HR) plasmid speeds up 
the manufacturing process to expand for 11 days and is safer compared with lentivi-
ral transduction [110, 161]. In metastatic melanoma patients with immune therapy 
resistance, lower TCR polyclonality was defined. Reconstitution of the neoTCRs in 
the T cells using nonviral CRISPR–Cas9 gene editing with plasmid instead of lentivi-
rus helps to improve CD8+T cell cytotoxicity to lysis the tumor cells [162].

Extracellular vesicles (EVs) are secreted vesicles that mediate cell communication 
[163]. Exosomes can be used as effective carriers for delivering the CRISPR–Cas9 
system to target specific cell populations to achieve therapeutic results resulting 
from their excellent gene loading capacity, stability, and natural targeting. EV deliv-
ery system can also minimize the probability of off-target editing [164, 165]. Addi-
tionally, liposome-mediated in  vivo delivery of CRISPR–Cas9 ribonucleoprotein 
complexes can also precisely edit the targeted allele [166]. Further, Cas9 ribonucleo-
protein (RNP) is a more direct and transient gene editing approach, consisting of 
Cas9 protein and sgRNA or CRISPR RNA(crRNA), and operates within cells for a 
short duration [167, 168].

Table 1  CRISPR-Cas9 applied in the adoptive therapy in clinical trials

r/r relapsed/refractory

Target locus Tumor Antigen References

TCR PD1 Pleural mesothelioma, ovarian carcinoma, pancreatic ductal 
adenocarcinoma

Mesothelin CAR​ [90, 94] 

PD1 r/r aggressive B cell non-Hodgkin’s lymphoma, r/r non-Hodg-
kin’s lymphoma

CD19 CAR​ [185] [149]

CD52 TRAC​ r/r CD19-positive B cell acute lymphoblastic leukemia (B-ALL) CD19 CAR​ [126]

TRAC CD52 r/r acute lymphoblastic leukemia (r/r ALL) CD19/CD22 CAR​ [150]

CD52 TCRβ CD7 Acute lymphoblastic leukemia CD7 CAR​ [151]

TRAC TRBC Myeloma, non-small cell lung cancer, ovarian, breast NeoTCRs [110]

TRAC TRBC PD1 Refractory myeloma; metastatic sarcoma NY-ESO-1(TCR-T) [85]

PD1 Advanced non-small cell lung cancer TIL [152]
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Limitations
CRISPR–Cas9 is a useful tool for editing genes, but there are several bugs considered for 
clinical therapeutic applications. Firstly, off-targets are a prominent problem. A recent 
study found that Cas9 off-targets are modulated by DNA topology, and the transcrip-
tion and replication processes can induce off-targets [169]. However, no single tool can 
accurately predict the off-target editing events, and the gold standard assay to verify 
off-target sites is targeted deep sequencing [170]. The in  vivo destabilization of target 
DNA, triggered by negative supercoiling during crucial processes such as transcription 
and DNA replication, could alter Cas9 specificity and induce off-target activity at previ-
ously overlooked sites. Secondly, CRISPR–Cas9 is not a universal solution applicable to 
all genes and cell types. Some cells may not be easy to edit, and certain gene regions may 
be more challenging to access than others [171].

Additionally, the occasional loss of targeted chromosomes can interfere their clinical 
application. Although CRISPR–Cas9 genome editing is increasingly utilized in numer-
ous cancer diseases during phase I clinical trials, augmenting adoptive T cell therapies, 
for T cell function, Cas9-induced chromosome loss is a generalizable phenomenon. 
The loss of chromosomes can weaken their survival and proliferation capacity [172]. 
CRISPR–Cas9 targeting genes for the TCR chain will induce chromosomal trunca-
tions, leading to oncogenic risk and cell death [173]. This genome editing can generate 
chromosomal structural variations (SVs), persist in the host for several weeks or even 
months, and expand after infusion therapy, threatening genome integrity [174]. A highly 
efficient CRISPR–Cas9 toolbox can eliminate chromosomal translocations and viral vec-
tor integrations in a mouse model [175, 176]. Commonly, translocations are induced by 
Cas9 at the cleave sites. The CRISPR–Cas9 toolbox can reduce this phenomenon by pro-
cessing the broken ends to avoid the formation of microhomology and shortening the 
time of DNA double-stranded breaks exposure [176].

Outlook
The combination of CRISPR–Cas9 technology with modern omics techniques, bioinfor-
matics analyses, and organoid technologies offers new prospects and opportunities in 
areas such as disease research, drug development, and gene therapy. It holds the poten-
tial to accelerate our understanding of biology and medicine, as well as the develop-
ment of disease treatment approaches [177]. Two improvements are applied to enhance 
CRISPR–Cas9 base genome editing efficacies: truncated Cas9 target sequences added at 
the end of the homology-directed repair template interact with Cas9 ribonucleoproteins 
(RNPs), and stabilizing Cas9 RNPs into nanoparticles can significantly improve HDR 
efficiency and reduce toxicity [178].

Screening every possible combination of gene alteration that could improve these 
reprogrammed immune cells is a daunting and slow task. Combining high-throughput 
technologies with CRISPR–Cas9 screening, single-cell sequencing, and bioinformatics 
analytical approaches is essential for in  vivo gene editing and screening. Recently, the 
modular pooled KI screening (ModPoKI) platform made it possible to rapidly assemble 
different gene editing combinations to identify a new gene combination to extend T cell 
lifespans and enhance their anticancer efficacy. Researchers built two ModPoki librar-
ies with 100 transcription factors and 129 natural and synthetic surface receptors. After 
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screening, TFAP4 was identified as enhancing the fitness of CAR-T cells chronically 
stimulated. The nonviral knockin of combined BATF–TFAP4 can significantly enhance 
engineered T cell abilities and improve antitumor efficiency [121]. Additionally, a single-
cell sequencing approach coupled with direct open reading frame (ORF) capture can 
examine nearly 12,000 full-length genes of TCR-driven proliferation, and identify criti-
cal drivers for T cells to secret proinflammation cytokines, providing opportunities for 
clinical transplantation [179].

The successful application of CRISPR–Cas9 technology has also given rise to the 
development of various related tools and techniques, such as genome editing tools 
(Cas12a/Cpf1, or Cas13a/C2c2) [180, 181], gene expression regulation tools [CRISPR 
activation (CRISPRa), CRISPR interference (CRISPRi)] [182, 183], and precise editing 
techniques. The ongoing evolution of these tools expands the possibilities in the field of 
scientific research [184].

Conclusions
Further studies are needed to provide functional and mechanism CRISPR gene edit-
ing therapy has received regulatory approval and opens a new chapter for personalized 
medicine, but it also heralds the potential to bring about a transformation for millions 
of patients worldwide. CRISPR–Cas9 genome editing has enabled T cells to better accli-
mate to specific microenvironments, creating opportunities for advanced T cell thera-
pies in both preclinical and clinical trial settings. This review has provided an overview of 
the CRISPR applications in editing T cells and adoptive T cell therapy in preclinical and 
clinical trials. They have the potential to fundamentally change our approach to treating 
diseases. Given the complexity of diseases and the diversity of genetic background, per-
sonalized treatments that involve modifying specific genes and cells with CRISPR–Cas9 
technology can significantly enhance treatment outcomes and improve the quality of life 
for patients. However, we also face numerous challenges, including the high cost of such 
therapies, confirmation of their long-term efficacy, and ethical concerns surrounding the 
use of gene editing technology in humans, requiring further efforts from us.
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